" REFERENSI

rEMRUOLRAMAL
DA RdmPUTrRSI

NUMERIR | ox
DARITEORI KE APLIKAS! = -
' >

BUKU REFERENSI

PEMROGRAMAN DAN
KOMPUTASI NUMERIK
DARI TEORI KE APLIKASI

Zunaida Sitorus, S.Si., M.Si.

EEEEEEEEEEEEEEEEEEEEEE

PEMROGRAMAN DAN KOMPUTASI NUMERIK
DARI TEORI KE APLIKASI

Ditulis oleh:

Zunaida Sitorus, S.Si., M.Si.

Hak Cipta dilindungi oleh undang-undang. Dilarang keras memperbanyak,
menerjemahkan atau mengutip baik sebagian ataupun keseluruhan isi buku
tanpa izin tertulis dari penerbit.

VMPI

PT MEDIA PENERBIT INDONESIA

ISBN: 978-634-7305-84-8
IV +219 hlm; 18,2 x 25,7 cm.
Cetakan I, Oktober 2025

Desain Cover dan Tata Letak:
Ajrina Putri Hawari, S.AB.

Diterbitkan, dicetak, dan didistribusikan oleh

PT Media Penerbit Indonesia

Royal Suite No. 6C, Jalan Sedap Malam IX, Sempakata
Kecamatan Medan Selayang, Kota Medan 20131

Telp: 081362150605

Email: ptmediapenerbitindonesia@gmail.com

Web: https://mediapenerbitindonesia.com

Anggota IKAPI No.088/SUT/2024

mailto:ptmediapenerbitindonesia@gmail.com
https://mediapenerbitindonesia.com/

Perkembangan teknologi informasi dan sains komputasi telah
membawa transformasi besar dalam berbagai bidang ilmu pengetahuan.
Dalam konteks ini, pemrograman dan komputasi numerik berperan vital
sebagai jembatan antara model matematis dan penyelesaian praktis terhadap
persoalan kompleks yang tidak selalu dapat diselesaikan secara analitik.
Mulai dari simulasi teknik, pemodelan ekonomi, hingga analisis data
berskala besar, kemampuan untuk menerapkan algoritma numerik dalam
bentuk program komputer menjadi keterampilan yang semakin dibutuhkan.

Buku referensi “Pemrograman dan Komputasi Numerik: Dari Teori
ke Aplikasi” membahas berbagai konsep dasar dan lanjutan dalam
komputasi numerik, mulai dari representasi bilangan dan analisis kesalahan,
hingga penyelesaian persamaan aljabar linear, interpolasi, integrasi, dan
diferensial numerik. Selain itu, buku referensi ini membahas bahasa
pemrograman seperti Python dan MATLAB sebagai alat implementasi
algoritma numerik. Buku referensi ini juga membahas seperti optimisasi,
komputasi matriks, serta aplikasi dalam bidang teknik, sains, dan keuangan
juga disertakan, dilengkapi studi kasus dan latihan untuk memperkuat
pemahaman dan keterampilan praktis pembaca.

Semoga buku referensi ini dapat menjadi sumber pengetahuan yang
bermanfaat bagi para pembaca dalam memahami dan menguasai konsep
serta aplikasi pemrograman dan komputasi numerik.

Salam Hangat

Penulis

Buku Referensi i

rt "../index.css";

KATA PENGANTAR i
DAFTAR ISI ii

BAB I PENGANTAR PEMROGRAMAN DAN KOMPUTASI

NUMERIK 1
A. Definisi dan Ruang Lingkup Komputasi Numerik.............. 1
B. Perbedaan Metode Analitik vs. Numerik.............cccceennene. 8
C. Jenis Kesalahan: Trunkasi, Pembulatan, dan Presisi......... 12
D. Peran Pemrograman dalam Pemecahan Masalah Numerik15
BAB II BAHASA PEMROGRAMAN UNTUK KOMPUTASI.....21
A. Pemilihan Bahasa: Python, MATLAB, atau C++ 21
B. Struktur Dasar Pemrograman: Variabel, Tipe Data, dan
Struktur Kontrol........ccccooieiiiiiiieniieeeeeeeeeeee, 26
C. Fungsi dan Modularisasi Program............ccccoeevveeiiiennnenns 31
D. Visualisasi Data Numerik (Plotting dan Grafik) 35

BAB III REPRESENTASI BILANGAN DAN ARITMETIKA

Sawp

KOMPUTASI 39
Representasi Bilangan Floating point dan Biner................ 39
Stabilitas dan Propagasi Kesalahanc...coccocceininne. 42
Operasi Aritmetika dan Pembulatan dalam Mesin............ 45
Standard IEEE 754cooiiiiiiiiiiiiieeeeeeeeceee 48

BAB IV PENYELESATAN PERSAMAAN ALJABAR LINEAR. 53

OSawpx

ii

Sistem Persamaan Linear dan Matriks Koefisien.............. 53
Eliminasi Gauss dan Pivoting...........cccceeveenieinienieeneenne 58
Metode Iteratif: Jacobi dan Gauss-Seidel.......................... 61
Implementasi dalam Python/MATLABcccccccvvevrnnnene 65

Pemrograman dan Komputasi Numerik

BAB V INTERPOLASI DAN APROKSIMASI FUNGSI.............. 71

A. Interpolasi Polinomial (Lagrange, Newton) 71
B. Interpolasi Spline dan Kurva Halus..........c.ccccceeeeiirnnnnn. 77
C. Least Squares dan Regresi Polinomialc.cccoeeeuneenn. 82
D. Visualisasi dan Evaluasi Aproksimasi............cccccueevuvennnenn. 89
BAB VI DIFERENSIASI DAN INTEGRASI NUMERIK.............. 97
A. Metode Selisih Hingga (Finite Difference) 97
B. Metode Trapezoid, Simpson, dan Romberg..................... 104
C. Evaluasi Akurasi dan Estimasi Kesalahan...................... 114
D. Aplikasi pada Persoalan Teknikcccocoeeeiiiininninnen. 119
BAB VII PENYELESAIAN PERSAMAAN NONLINEAR......... 129
A. Metode Bagi Dua dan Regulafalsi.........ccccccoeeinninnennee. 129
B. Metode Newton-Raphson dan Secant..............ccceeeueenneee. 136
C. Konvergensi dan Stabilitas Solusi........c.cccceevevieniennennnen. 143
BAB VIII PERSAMAAN DIFERENSIAL BIASA (PDB)............ 153
A. Pengenalan PDB dan Model Aplikatifcccccuneeneee. 153
B. Metode Euler dan Runge-Kutta Orde 4............cccoeneeeee. 159
C. Sistem PDB dan Solusi NumeriK..........c.cccceeevvervennennen. 163
D. Simulasi Dinamis dalam Sistem Teknik dan Biologi...... 169

BAB IX KOMPUTASI MATRIKS DAN ALJABAR LINIER

LANJUT .cuirriiiriinnicnisnsssesssissssssesssssssssssssssssssssasssssses 177
A. FEigenvalue dan Eigenvectorcccceecceeeeveeeeceeennne. 177
B. Dekomposisi LU, QR, dan SVDccccccovviviiienieenen. 186
C. Aplikasi dalam Pemrosesan Data dan Machine Learning
... 190
D. Optimasi Performa Komputasi Matriks.............cccoecnee... 193
BAB X STUDI KASUS DAN PROYEK APLIKASIcccceuuee. 199
A. Simulasi Perpindahan Panas...........c.ccccceeevvieiiieeennnnne, 199
B. Pemodelan Populasi dan Epidemicccceevveeevveeneen. 204
C. Optimasi Portofolio dan Pemodelan Finans..................... 209

Buku Referensi iii

DAFTAR PUSTAKA ..cuuiitiitintinttncninssnesnesssnessessssssssssssessssessses 213
GLOSARIUM ..ccuiiiiiinnicsnnisnisssensssicsnssssesssessssessssssssssssassssssssasssssss 215
INDEKS ceeitttcnttennntecnnnessnesssssessssseessssnssssssssssssessssessssssses 217
BIOGRAFI PENULIS.....cciiiiiiittiinnninssneenssnnecssnnccsssnscsssesssseessssenes 219
iv Pemrograman dan Komputasi Numerik

PENGANTAR
PEMROGRAMAN DAN
KOMPUTASI NUMERIK

Pemrograman bukan hanya tentang menulis baris-baris kode,
tetapi tentang bagaimana menyusun logika dan algoritma yang efisien
untuk menyelesaikan permasalahan nyata secara sistematis. Sementara
itu, komputasi numerik hadir sebagai jawaban atas keterbatasan metode
analitik dalam menyelesaikan persoalan matematika yang rumit dan
tidak memiliki solusi eksak. Dalam bab ini, membahas konsep dasar
komputasi numerik, sejarah perkembangannya, serta peran strategisnya
dalam berbagai bidang seperti teknik, sains, ekonomi, hingga data
science. Pendahuluan ini juga memberikan gambaran mengenai
bagaimana komputer merepresentasikan angka dan bagaimana
kesalahan dalam perhitungan numerik dapat muncul serta memengaruhi
hasil akhir. Dengan pendekatan yang sederhana namun mendalam, bab
ini bertujuan untuk membuka wawasan pembaca bahwa komputasi
numerik bukan sekadar teori matematis, melainkan alat yang sangat
berguna dalam menyelesaikan masalah-masalah nyata yang menuntut
ketelitian, kecepatan, dan efisiensi dalam perhitungannya.

A. Definisi dan Ruang Lingkup Komputasi Numerik

Menurut Chapra dan Canale (2010) dalam Numerical Methods
for Engineers, komputasi numerik didefinisikan sebagai bidang ilmu
yang berkaitan dengan formulasi, pengembangan, dan implementasi

Buku Referensi 1

algoritma numerik untuk menyelesaikan permasalahan matematis
melalui pendekatan komputasi. Komputasi numerik menggabungkan
prinsip-prinsip matematika, ilmu komputer, dan teknik rekayasa dalam
menyusun metode-metode yang memungkinkan pemecahan masalah
matematika kompleks secara mendekati (aproksimasi), khususnya ketika
solusi eksak secara analitik sulit diperoleh. Dalam dunia nyata, banyak
permasalahan yang melibatkan data besar, model non-linear, atau bentuk
fungsi yang tidak dapat diselesaikan dengan metode analitik
konvensional. Di sinilah peran komputasi numerik menjadi sangat vital.

Tujuan utama dari komputasi numerik adalah memperoleh solusi
numerik yang mendekati kebenaran aktual dengan tingkat kesalahan
yang dapat diterima, serta memastikan metode tersebut dapat diterapkan
dalam waktu dan sumber daya komputasi yang efisien. Dengan kata lain,
komputasi numerik tidak berusaha menggantikan metode eksak, tetapi
melengkapi dan memperluas cakupan penyelesaian masalah matematis
yang realistis dan kompleks. Seperti dijelaskan oleh Atkinson (1989)
dalam An Introduction to Numerical Analysis, pendekatan numerik
bertumpu pada keterbatasan sistem digital dalam merepresentasikan
bilangan real dan fungsi kontinu. Oleh karena itu, seluruh proses numerik
mencakup pengubahan bentuk matematis ke bentuk diskret dan
operasional, yang selanjutnya dapat dihitung oleh komputer
menggunakan algoritma tertentu. Komputasi numerik mencakup
berbagai ruang lingkup yang luas dan beragam. Secara umum, ruang
lingkup tersebut dapat dikelompokkan ke dalam beberapa kategori besar
berikut:

1. Representasi Bilangan dan Analisis Kesalahan

Pada komputasi numerik, representasi bilangan dan analisis
kesalahan merupakan aspek fundamental yang memengaruhi akurasi dan
keandalan hasil perhitungan. Komputer tidak dapat merepresentasikan
semua bilangan real secara presisi karena keterbatasan dalam sistem
bilangan biner dan panjang bit. Sebagaimana dijelaskan oleh Chapra dan
Canale (2010), komputer menggunakan sistem floating point untuk
merepresentasikan bilangan real, yang terdiri dari mantissa dan
eksponen. Representasi ini menyebabkan munculnya round-off error,
yaitu kesalahan akibat pembulatan bilangan yang tidak dapat ditulis
secara tepat dalam sistem biner. Sebagai contoh, bilangan desimal seperti

0.1 tidak dapat direpresentasikan secara akurat dalam biner, sehingga
2 Pemrograman dan Komputasi Numerik

terjadi deviasi kecil yang bisa terakumulasi dalam operasi numerik
berulang.

Terdapat pula truncation error, yaitu kesalahan yang muncul
karena pendekatan suatu metode numerik terhadap bentuk matematis
yang sebenarnya. Menurut Burden dan Faires (2011), kesalahan ini
sering muncul dalam metode diferensiasi dan integrasi numerik ketika
fungsi kontinu diganti dengan aproksimasi diskrit. Pentingnya analisis
kesalahan terletak pada kemampuannya untuk memprediksi dan
mengendalikan dampak dari ketidakakuratan dalam algoritma numerik.
Oleh karena itu, metode numerik yang baik harus memperhitungkan
stabilitas numerik yakni kemampuan algoritma untuk membatasi
propagasi kesalahan kecil agar tidak menjadi besar secara eksponensial
selama proses komputasi.

2. Penyelesaian Persamaan Aljabar

Penyelesaian persamaan aljabar merupakan salah satu fokus
utama dalam komputasi numerik karena banyak persoalan dalam sains
dan teknik dapat dimodelkan dalam bentuk sistem persamaan, baik linier
maupun non-linier. Sistem persamaan linier, seperti Ax=b, sering
muncul dalam simulasi struktur, aliran fluida, maupun pemodelan
ekonomi. Untuk menyelesaikan sistem ini secara numerik, digunakan
berbagai metode seperti eliminasi Gauss, dekomposisi LU, dan metode
iteratif seperti Jacobi dan Gauss-Seidel. Menurut Chapra dan Canale
(2010), metode eliminasi Gauss merupakan pendekatan langsung (direct
method) yang efisien untuk sistem ukuran kecil hingga menengah,
namun kurang cocok untuk sistem sangat besar karena kompleksitas
komputasi dan kebutuhan memori yang tinggi.

Pada kasus sistem non-linier, penyelesaian persamaan semacam
f(x)=0 memerlukan pendekatan iteratif, karena bentuk analitiknya sering
kali tidak tersedia. Metode numerik yang umum digunakan meliputi
metode bisection, secant, dan Newton-Raphson. Menurut Burden dan
Faires (2011), metode Newton-Raphson sangat populer karena
konvergensinya yang cepat, tetapi memerlukan turunan fungsi dan
tebakan awal yang cukup dekat dengan akar sebenarnya agar hasilnya
akurat. Di sisi lain, metode bisection lebih stabil tetapi konvergensinya
lambat.

Pentingnya penyelesaian persamaan aljabar dalam komputasi

numerik terletak pada aplikasinya yang luas di berbagai bidang.
Buku Referensi 3

Misalnya, dalam simulasi mekanika struktur, gaya dan respons sistem
dirumuskan dalam bentuk sistem persamaan linier. Dalam pemodelan
non-linier, seperti perambatan panas atau reaksi kimia, persamaan non-
linier menjadi dasar dari model numeriknya. Oleh karena itu,
pemahaman tentang metode-metode ini dan perilakunya sangat penting
untuk memastikan hasil komputasi yang akurat, stabil, dan efisien.

3. Interpolasi dan Aproksimasi Fungsi

Interpolasi dan aproksimasi fungsi merupakan dua teknik penting
dalam komputasi numerik yang digunakan untuk mendekati fungsi-
fungsi matematis berdasarkan sejumlah titik data terbatas. Interpolasi
bertujuan untuk mencari fungsi yang melewati seluruh titik data yang
diberikan secara tepat, sedangkan aproksimasi berusaha mencari fungsi
yang "mendekati" data secara keseluruhan, meskipun tidak harus melalui
semua titik tersebut. Teknik ini sangat bermanfaat ketika fungsi eksak
tidak diketahui, namun tersedia data hasil pengukuran atau simulasi.

Metode interpolasi yang umum digunakan antara lain interpolasi
polinomial (seperti interpolasi Lagrange dan Newton) dan interpolasi
spline. Interpolasi polinomial bekerja dengan membangun satu
polinomial derajat tinggi yang melewati seluruh titik data, tetapi metode
ini rentan terhadap fenomena Runge, yaitu osilasi ekstrem pada tepi
interval ketika jumlah titik meningkat. Sebagai solusi, interpolasi spline
kubik menawarkan alternatif dengan membagi interval menjadi segmen
kecil dan menggunakan polinomial derajat rendah pada tiap segmen,
sehingga hasilnya lebih halus dan stabil.

Pada aproksimasi, metode least squares sering digunakan untuk
mencari fungsi yang meminimalkan selisih kuadrat antara nilai fungsi
dan data yang tersedia. Pendekatan ini sangat berguna dalam analisis
regresi dan pemodelan data eksperimental. Interpolasi dan aproksimasi
tidak hanya digunakan dalam matematika murni, tetapi juga dalam
berbagai aplikasi praktis seperti rekonstruksi sinyal digital, pemetaan
geografis, grafika komputer, dan pengolahan citra. Keduanya menjadi
alat penting dalam menghubungkan data diskrit menjadi representasi
fungsi kontinu yang dapat dianalisis lebih lanjut atau digunakan dalam
simulasi numerik yang lebih kompleks.

4 Pemrograman dan Komputasi Numerik

4. Penyelesaian Persamaan Diferensial

Penyelesaian persamaan diferensial secara numerik merupakan
komponen penting dalam komputasi ilmiah, karena banyak fenomena
alam dan teknik yang dimodelkan menggunakan persamaan diferensial.
Persamaan diferensial menggambarkan hubungan antara suatu fungsi
dengan turunannya, dan digunakan untuk merepresentasikan perubahan
dinamis dalam sistem fisik seperti gerak, panas, pertumbuhan populasi,
hingga sirkuit listrik. Dalam praktiknya, persamaan ini terbagi menjadi
dua jenis utama: persamaan diferensial biasa (ODE) dan persamaan
diferensial parsial (PDE).

Untuk ODE, yaitu persamaan diferensial yang melibatkan satu
variabel bebas, metode numerik seperti metode Euler, Runge-Kutta, dan
metode Adams-Bashforth digunakan secara luas. Metode Euler, yang
paling sederhana, menghitung nilai fungsi ke titik berikutnya
menggunakan turunan lokal, namun memiliki tingkat akurasi yang
rendah. Sebaliknya, metode Runge-Kutta orde keempat (RK4)
menawarkan akurasi yang jauh lebih tinggi dengan tetap menjaga
kestabilan komputasi, sehingga lebih banyak digunakan dalam simulasi
sistem dinamis.

PDE melibatkan lebih dari satu variabel bebas dan sering
digunakan untuk memodelkan fenomena dua atau tiga dimensi, seperti
perpindahan panas dalam ruang atau perambatan gelombang.
Penyelesaiannya memerlukan pendekatan numerik yang lebih kompleks
seperti metode beda hingga (finite difference method), elemen hingga
(finite element method), dan volume hingga (finite volume method).
Metode-metode ini mengubah persamaan diferensial menjadi sistem
persamaan aljabar yang dapat diselesaikan secara iteratif oleh komputer.

5. Optimisasi Numerik

Optimisasi numerik merupakan cabang penting dalam komputasi
numerik yang fokus pada pencarian nilai minimum atau maksimum dari
suatu fungsi, baik dalam ruang satu variabel maupun multivariat.
Optimisasi ini sangat relevan dalam berbagai bidang, seperti teknik,
ekonomi, sains data, dan machine learning, di mana banyak
permasalahan nyata yang memerlukan solusi optimal dari suatu model
matematis. Misalnya, dalam perencanaan produksi, kita ingin
meminimalkan biaya dengan tetap memenuhi permintaan; dalam

Buku Referensi 5

machine learning, algoritma pelatihan bertujuan meminimalkan /loss
function.

Gambar 1. Machine Learning

J T 3
50 - ©-© E@
: =]

"’\ & >

& il

OqlititipS
O—@ IO
Qyy @Oy
Oveq >
Omoe & 0100]

Sumber: Codepolitan

Optimisasi numerik terbagi menjadi dua kelompok utama:
unconstrained optimization (tanpa kendala) dan constrained
optimization (dengan kendala). Untuk kasus tanpa kendala, metode
seperti gradient descent, Newton-Raphson, dan conjugate gradient
banyak digunakan. Metode gradient descent bekerja dengan mengikuti
arah turunan (gradien) fungsi secara iteratif menuju titik minimum, dan
sering digunakan dalam pelatihan model Al. Di sisi lain, metode Newton
lebih cepat karena menggunakan informasi turunan kedua (Hessian),
tetapi lebih mahal secara komputasi.

Untuk optimisasi dengan kendala, seperti pembatasan sumber
daya atau batas nilai variabel, metode seperti Lagrange multipliers dan
metode pemrograman kuadrat digunakan. Dalam pendekatan numerik,
solusi sering kali tidak diperoleh secara eksak melainkan secara iteratif,
sehingga penting untuk memperhatikan aspek konvergensi dan
kestabilan algoritma. Penerapan optimisasi numerik sangat luas dan
berkembang seiring kemajuan teknologi. Dalam perencanaan kota,
optimisasi digunakan untuk mengatur lalu lintas; dalam keuangan, untuk
portofolio optimal; dan dalam robotika, untuk menentukan jalur

6 Pemrograman dan Komputasi Numerik

pergerakan paling efisien. Dengan kemampuan komputer modern,
optimisasi numerik telah menjadi alat yang sangat kuat dalam
pengambilan keputusan berbasis data dan perancangan sistem yang
kompleks dan adaptif.

6. Aplikasi Interdisipliner

Aplikasi interdisipliner dalam komputasi numerik mencerminkan
peran vital metode numerik dalam menjembatani berbagai bidang ilmu
untuk menyelesaikan persoalan kompleks yang tidak dapat dipecahkan
secara analitik. Karena banyak sistem dalam dunia nyata bersifat
dinamis, non-linear, dan berbasis data, maka komputasi numerik menjadi
kunci dalam membangun model, melakukan simulasi, serta
mengevaluasi hasil dalam beragam konteks ilmiah dan praktis.

Pada teknik sipil dan mesin, misalnya, metode numerik
digunakan untuk menganalisis tegangan dan deformasi struktur
bangunan dengan pendekatan elemen hingga (finite element method),
serta simulasi aliran fluida dengan metode volume hingga (finite volume
method). Di bidang fisika dan kimia, komputasi numerik digunakan
untuk mensimulasikan dinamika partikel, reaksi kimia, atau perambatan
gelombang elektromagnetik. Dalam biologi dan kedokteran, pendekatan
numerik diterapkan pada pemodelan penyebaran penyakit, analisis
jaringan biologis, hingga simulasi organ virtual untuk keperluan bedah
presisi.

Di ranah ekonomi dan keuangan, komputasi numerik sangat
berperan dalam pemodelan harga opsi (seperti model Black-Scholes),
optimisasi portofolio investasi, serta analisis sensitivitas terhadap
perubahan pasar. Bahkan di bidang lingkungan dan geografi, metode
numerik dimanfaatkan untuk mensimulasikan pola perubahan iklim,
pergerakan tanah, atau aliran air dalam sistem hidrologi. Selain itu,
dengan kemunculan bidang data science dan kecerdasan buatan, metode
numerik menjadi tulang punggung dalam pelatihan model pembelajaran
mesin melalui optimisasi, regresi, dan aproksimasi fungsi. Kolaborasi
lintas disiplin inilah yang menjadikan komputasi numerik tidak hanya
sebagai alat matematis, tetapi juga sebagai fondasi teknologi modern
yang mengintegrasikan sains, teknik, dan kebijakan dalam pengambilan
keputusan yang berbasis data dan simulasi.

Buku Referensi 7

B. Perbedaan Metode Analitik vs. Numerik

Menurut Chapra dan Canale (2010) dalam Numerical Methods
for Engineers, metode analitik dan metode numerik merupakan dua
pendekatan utama dalam penyelesaian persoalan matematika dan
rekayasa. Keduanya memiliki karakteristik, keunggulan, dan
keterbatasan masing-masing. Pemahaman akan perbedaan mendasar
antara keduanya sangat penting, terutama dalam memilih pendekatan
yang paling sesuai untuk suatu jenis permasalahan dalam konteks
akademik maupun praktis.

Metode analitik (analytical methods) atau dikenal juga sebagai
metode eksak, merupakan pendekatan penyelesaian yang menghasilkan
solusi dalam bentuk tertutup (closed-form solution). Artinya, solusi
diperoleh melalui manipulasi simbolik menggunakan kaidah-kaidah
matematika yang telah terdefinisi secara formal. Misalnya, untuk
menyelesaikan integral atau turunan, kita dapat menggunakan rumus
kalkulus klasik, seperti

1
fxzdxz §x3+C

Pada konteks persamaan diferensial, metode analitik mencakup
teknik seperti pemisahan variabel, transformasi Laplace, dan integrasi
faktor. Solusi yang diperoleh biasanya dalam bentuk fungsi eksplisit
yang dapat dievaluasi untuk nilai tertentu dengan presisi sempurna.
Burden dan Faires (2011) dalam Numerical Analysis menyatakan bahwa
metode analitik cocok untuk sistem yang relatif sederhana dan linier, di
mana model matematis dapat dinyatakan dalam bentuk fungsi-fungsi
dasar (eksponensial, trigonometri, logaritma, dll.). Sebaliknya, metode
numerik (numerical methods) adalah pendekatan aproksimatif yang
mencari solusi mendekati (approximate solution) dari suatu
permasalahan matematika, dengan memanfaatkan algoritma dan
perhitungan numerik berbasis komputer. Pendekatan ini digunakan
ketika solusi analitik sulit atau bahkan mustahil untuk diperoleh.

Contoh klasiknya adalah menyelesaikan persamaan non-linier
seperti e”
eksplisit. Dalam kasus seperti ini, digunakan metode numerik seperti
Newton-Raphson atau bisection method untuk mencari nilai X yang
mendekati solusi sejati. Menurut Atkinson (1989) dalam An Introduction
to Numerical Analysis, metode numerik sangat berguna dalam konteks
8 Pemrograman dan Komputasi Numerik

¥ = x, yang tidak memiliki solusi analitik dalam bentuk fungsi

perhitungan numerik yang kompleks, besar skala, atau tidak dapat
dipecahkan secara simbolik. Komputasi numerik memanfaatkan
algoritma rekursif, iterasi, dan teknik pendekatan diskrit untuk
menggantikan analisis simbolik.

1. Perbandingan Karakteristik Utama

Perbandingan karakteristik utama antara metode analitik dan
metode numerik mencerminkan dua pendekatan yang berbeda dalam
menyelesaikan permasalahan matematika dan ilmiah, baik dari segi
prinsip dasar, teknik eksekusi, hasil yang diperoleh, hingga tingkat
fleksibilitasnya. Metode analitik dikenal sebagai pendekatan matematis
yang menghasilkan solusi eksak melalui manipulasi simbolik terhadap
persamaan yang ada. Misalnya, dalam menyelesaikan turunan suatu
fungsi, metode analitik akan menghasilkan bentuk fungsi turunan secara

langsung, seperti %(XZ) = 2x. Sebaliknya, metode numerik

menghasilkan solusi aproksimasi melalui pendekatan diskrit dan
perhitungan iteratif yang dapat dijalankan menggunakan komputer,
misalnya dengan memanfaatkan metode finite difference untuk
menghampiri nilai turunan suatu fungsi berdasarkan data numerik yang
terbatas.

Salah satu karakteristik pembeda utama terletak pada jenis solusi
yang dihasilkan. Solusi analitik berbentuk tertutup (closed-form) dan
eksak, sementara solusi numerik bersifat pendekatan (approximate) dan
bergantung pada nilai awal, parameter langkah, serta struktur algoritma.
Oleh karena itu, dalam hal akurasi, metode analitik secara teori lebih
unggul karena tidak mengandung kesalahan pembulatan maupun
pemotongan, selama manipulasi simbolik dilakukan dengan benar.
Namun demikian, metode numerik memungkinkan pengendalian tingkat
kesalahan melalui pemilihan ukuran langkah (step size), jumlah iterasi,
atau tingkat presisi floating point.

Dari sisi fleksibilitas dan skalabilitas, metode numerik jauh lebih
unggul. Metode analitik hanya dapat diterapkan pada sistem yang bentuk
matematikanya relatif sederhana, linier, dan terdefinisi secara simbolik.
Ketika berhadapan dengan sistem yang sangat besar, non-linier, atau
mengandung data empiris yang tidak berbentuk fungsi eksplisit, metode
analitik sering kali gagal. Di sisi lain, metode numerik dapat menangani
sistem non-linier, multidimensi, bahkan yang berbasis data diskrit,

Buku Referensi 9

seperti yang sering dijumpai dalam pemodelan iklim, rekayasa struktur,
atau sistem keuangan.

Pada sumber daya yang dibutuhkan, metode analitik lebih ringan
karena hanya membutuhkan keterampilan matematis dan alat tulis,
sedangkan metode numerik membutuhkan dukungan komputasi, baik
perangkat lunak seperti MATLAB, Python, atau C++, maupun perangkat
keras dengan kapasitas pemrosesan tinggi. Hal ini menjadikan metode
numerik lebih bergantung pada perkembangan teknologi dan algoritma
komputasi.

Kestabilan solusi juga menjadi faktor penting yang membedakan
keduanya. Solusi numerik rentan terhadap instabilitas numerik, yaitu
situasi di mana kesalahan kecil yang terjadi dalam perhitungan dapat
berkembang secara signifikan, menyebabkan hasil yang menyimpang.
Oleh karena itu, dalam metode numerik, analisis kestabilan dan
konvergensi sangat penting, sedangkan dalam metode analitik, hal ini
relatif tidak menjadi isu utama.

Secara umum, metode analitik lebih cocok untuk persoalan
sederhana dan sebagai dasar pemahaman matematis, sedangkan metode
numerik unggul dalam menangani permasalahan kompleks yang
melibatkan banyak variabel, bentuk non-linier, dan pengolahan data
besar. Dalam praktik modern, keduanya tidak saling menggantikan tetapi
justru saling melengkapi, di mana metode analitik digunakan untuk
validasi atau pembuktian konsep, sementara metode numerik digunakan
untuk eksplorasi dan simulasi dalam skala besar serta berorientasi pada
hasil praktis.

2. Analisis Kesalahan dan Akurasi

Pada komputasi numerik, analisis kesalahan dan akurasi
merupakan aspek fundamental yang menentukan seberapa dapat
dipercaya hasil perhitungan numerik yang diperoleh. Tidak seperti
metode analitik yang menghasilkan solusi eksak, metode numerik hanya
memberikan solusi pendekatan yang rentan terhadap berbagai jenis
kesalahan. Oleh karena itu, pemahaman mendalam terhadap sumber-
sumber kesalahan, cara mengukurnya, serta strategi untuk
meminimalkan dampaknya sangat penting dalam praktik komputasi
numerik.

Secara umum, kesalahan dalam komputasi numerik dapat

diklasifikasikan ke dalam dua jenis utama, yaitu kesalahan pembulatan
10 Pemrograman dan Komputasi Numerik

(round-off error) dan kesalahan pemotongan (truncation error).
Kesalahan pembulatan terjadi karena komputer hanya mampu
merepresentasikan bilangan dalam presisi terbatas, biasanya dalam
format floating point. Misalnya, bilangan desimal seperti 0.1 tidak dapat
direpresentasikan secara tepat dalam biner, sehingga setiap operasi
aritmetika dapat menimbulkan deviasi kecil yang terakumulasi selama
proses komputasi. Dalam kasus iterasi yang panjang, akumulasi
kesalahan pembulatan ini dapat memengaruhi hasil akhir secara
signifikan. Sebaliknya, kesalahan pemotongan terjadi ketika suatu proses
matematis yang seharusnya berlanjut tanpa batas seperti deret tak hingga
atau proses diferensiasi/integrasi, dihentikan pada titik tertentu demi
kepraktisan perhitungan. Sebagai contoh, metode numerik seperti
metode Euler untuk penyelesaian persamaan diferensial menghampiri
solusi dengan interval diskrit, yang pasti berbeda dari solusi kontinu
yang sebenarnya.

Untuk mengevaluasi sejauh mana hasil numerik mendekati solusi
yang benar, digunakan ukuran seperti galat absolut (absolute error) dan
galat relatif (relative error). Galat absolut adalah selisih antara nilai
eksak dan nilai numerik, sedangkan galat relatif menunjukkan proporsi
kesalahan terhadap nilai eksaknya. Analisis ini membantu menentukan
apakah suatu metode numerik menghasilkan solusi yang cukup akurat
untuk tujuan tertentu. Selain itu, konsep kondisioning dan stabilitas
numerik menjadi bagian penting dalam analisis kesalahan. Kondisioning
mengacu pada sensitivitas masalah terhadap perubahan kecil pada data
input, sedangkan stabilitas berkaitan dengan bagaimana kesalahan input
atau pembulatan memengaruhi hasil dalam proses algoritma. Sebuah
metode disebut stabil jika tidak memperbesar kesalahan kecil menjadi
besar selama iterasi.

Pada desain algoritma numerik, perhatian terhadap orde akurasi
juga krusial. Metode dengan orde yang lebih tinggi umumnya
memberikan hasil yang lebih akurat dengan langkah yang lebih kecil.
Misalnya, metode Runge-Kutta orde keempat dalam penyelesaian ODE
memberikan akurasi yang lebih tinggi daripada metode Euler dengan
langkah yang sama. Namun, akurasi yang tinggi tidak selalu berarti
efisien, karena sering kali memerlukan komputasi lebih banyak. Oleh
karena itu, dalam praktik, analis numerik harus menyeimbangkan antara
akurasi, efisiensi komputasi, dan stabilitas.

Buku Referensi 11

C. Jenis Kesalahan: Trunkasi, Pembulatan, dan Presisi

Di dunia komputasi numerik, kesalahan (error) adalah hal yang
tidak dapat dihindari. Komputer sebagai alat komputasi digital memiliki
keterbatasan dalam merepresentasikan bilangan real dan melakukan
operasi matematika yang kompleks secara presisi. Oleh karena itu, hasil
dari metode numerik umumnya merupakan aproksimasi terhadap solusi
eksak, dan mengandung berbagai jenis kesalahan. Menurut Chapra dan
Canale (2010) dalam Numerical Methods for Engineers, kesalahan
dalam komputasi numerik dapat dikelompokkan ke dalam tiga jenis
utama, yaitu kesalahan trunkasi (truncation error), kesalahan
pembulatan (round-off error), dan kesalahan presisi (precision error).
Masing-masing jenis kesalahan ini memiliki sumber, sifat, dan dampak
yang berbeda terhadap hasil akhir komputasi.

1. Kesalahan Trunkasi (Truncation Error)

Kesalahan trunkasi (truncation error) adalah jenis kesalahan
numerik yang muncul akibat pemotongan atau penyederhanaan dari
proses matematis yang seharusnya dilakukan secara lengkap atau tak
hingga. Dalam konteks komputasi numerik, kesalahan ini terjadi ketika
metode analitik yang kompleks, seperti deret tak hingga atau proses
kalkulus kontinu, diubah menjadi bentuk diskrit atau dipangkas untuk
membuatnya lebih mudah dihitung oleh komputer. Menurut Burden dan
Faires (2011) dalam Numerical Analysis, kesalahan trunkasi bukan
berasal dari representasi bilangan seperti pada kesalahan pembulatan,
melainkan dari penggunaan aproksimasi terhadap ekspresi matematis,
seperti menghentikan deret Taylor pada suku tertentu atau mengganti
integral eksak dengan metode pendekatan numerik seperti trapezoid atau
Simpson.

Sebagai contoh, pendekatan turunan pertama dari suatu fungsi
f(x) menggunakan metode beda hingga (finite difference):

oy < T h]z @)
Mengandung kesalahan trunkasi karena hanya menggunakan

sebagian informasi dari ekspansi Taylor, tanpa memperhitungkan suku-
suku berikutnya yang juga memengaruhi nilai turunan sebenarnya.

Semakin besar nilai h (interval diskret), semakin besar kesalahan
trunkasi yang terjadi. Oleh karena itu, salah satu cara untuk mengurangi
12 Pemrograman dan Komputasi Numerik

kesalahan ini adalah dengan memperkecil nilai h, atau menggunakan
metode orde lebih tinggi yang mempertimbangkan lebih banyak suku
dalam deret Taylor.

Kesalahan trunkasi juga muncul dalam metode numerik
penyelesaian persamaan diferensial, seperti metode Euler atau Runge-
Kutta. Misalnya, metode Euler hanya menggunakan gradien pada titik
awal untuk memperkirakan nilai berikutnya, dan mengabaikan
perubahan gradien yang terjadi sepanjang langkah tersebut. Ini
menimbulkan perbedaan antara solusi eksak dan hasil numerik. Analisis
terhadap kesalahan trunkasi penting dilakukan untuk menilai seberapa
akurat suatu metode numerik dalam menghampiri solusi sebenarnya.
Dalam praktiknya, terdapat kompromi antara akurasi dan efisiensi
komputasi: semakin kecil kesalahan trunkasi yang diinginkan, semakin
kompleks atau banyak komputasi yang dibutuhkan. Oleh karena itu,
pemilihan metode dan parameter numerik yang tepat sangat penting
untuk menjaga akurasi sambil tetap efisien secara komputasi.

2. Kesalahan Pembulatan (Round-off Error)

Kesalahan pembulatan (round-off error) adalah kesalahan
numerik yang terjadi akibat keterbatasan komputer dalam
merepresentasikan bilangan real secara presisi penuh. Komputer modern
menggunakan sistem bilangan biner dan format floating point (misalnya,
IEEE 754) untuk menyimpan dan memproses angka. Karena hanya
tersedia sejumlah digit terbatas untuk menyimpan bilangan, maka nilai-
nilai desimal yang tidak dapat diwakili secara tepat dalam bentuk biner
harus dibulatkan ke angka terdekat yang masih dapat ditampung. Hal ini
menyebabkan terjadinya deviasi kecil dari nilai sebenarnya, yang dapat
terakumulasi dan berdampak signifikan dalam proses komputasi
berulang atau kompleks (Overton, 2001).

Sebagai contoh klasik, bilangan desimal seperti 0.1 tidak dapat
dinyatakan secara eksak dalam sistem biner, sehingga saat digunakan
dalam perhitungan komputer, nilainya hanya mendekati 0.1 tetapi tidak
persis sama. Kesalahan kecil ini mungkin terlihat sepele dalam satu
operasi, namun dalam algoritma numerik yang melibatkan ribuan atau
bahkan jutaan iterasi, seperti simulasi numerik atau pemrosesan citra
digital, akumulasi dari kesalahan pembulatan ini bisa menghasilkan hasil
yang keliru secara signifikan. Terutama dalam operasi aritmatika yang

sensitif, seperti pengurangan antara dua bilangan yang hampir sama,
Buku Referensi 13

fenomena yang disebut loss of significance dapat terjadi, di mana
sebagian besar digit penting menghilang akibat pembulatan.

Kesalahan pembulatan juga dipengaruhi oleh jenis presisi yang
digunakan: single precision (biasanya 32 bit) dan double precision (64
bit). Double precision memungkinkan representasi angka dengan lebih
banyak digit signifikan, sehingga mengurangi kesalahan pembulatan.
Namun, penggunaan presisi lebih tinggi juga memerlukan lebih banyak
sumber daya komputasi. Untuk memitigasi dampak kesalahan
pembulatan, perancang algoritma numerik dapat melakukan berbagai
strategi, seperti mengatur ulang urutan operasi (menghindari
penjumlahan antara angka besar dan kecil secara langsung),
menggunakan teknik compensated summation, atau memilih algoritma
yang stabil secara numerik. Dengan memahami dan mengelola kesalahan
pembulatan secara cermat, hasil komputasi numerik dapat dibuat lebih
andal dan akurat dalam berbagai aplikasi ilmiah dan rekayasa.

3. Kesalahan Presisi (Precision Error)

Kesalahan presisi (precision error) adalah jenis kesalahan
numerik yang berkaitan erat dengan batas kemampuan komputer dalam
membedakan dua bilangan yang sangat dekat nilainya, terutama akibat
keterbatasan representasi bilangan dalam sistem floating point.
Komputer menyimpan angka dalam bentuk biner dengan jumlah bit
tertentu, seperti single precision (32 bit) atau double precision (64 bit).
Setiap format memiliki batas presisi yang disebut machine epsilon, yaitu
nilai terkecil yang dapat ditambahkan ke 1 sehingga menghasilkan angka
berbeda dari 1 dalam sistem floating point tersebut. Dalam sistem double
precision IEEE 754, machine epsilon bernilai sekitar 22.2 x 10716,
yang menunjukkan bahwa setiap perbedaan nilai di bawah angka ini bisa
diabaikan oleh komputer (Overton, 2001).

Kesalahan presisi muncul secara nyata ketika kita berurusan
dengan angka-angka yang sangat kecil atau sangat besar, atau ketika
melakukan operasi antara bilangan yang memiliki magnitudo berbeda
secara signifikan. = Misalnya, jika dua bilangan seperti
1.000000000000000 dan 1.000000000000001 dikurangkan dalam
sistem dengan presisi terbatas, hasil pengurangannya bisa saja menjadi
nol karena komputer tidak mampu membedakan keduanya. Fenomena

14 Pemrograman dan Komputasi Numerik

ini dikenal sebagai cancellation error, dan sering terjadi dalam algoritma
yang tidak dirancang untuk mempertimbangkan batas presisi tersebut.
Kesalahan presisi juga memengaruhi hasil dari iterasi numerik,
di mana hasil dari satu langkah digunakan sebagai input untuk langkah
berikutnya. Jika kesalahan presisi terjadi di awal proses, maka hasil yang
terus digunakan dalam iterasi bisa menyebarkan atau bahkan
memperbesar kesalahan tersebut. Hal ini menjadi sangat penting dalam
metode numerik seperti solusi persamaan diferensial, sistem linier besar,
dan optimisasi. Untuk mengurangi dampak kesalahan presisi, beberapa
langkah yang dapat diambil antara lain: menggunakan format double
precision untuk perhitungan sensitif, menghindari pengurangan antara
bilangan yang hampir sama, dan memilih algoritma yang dirancang
dengan stabilitas numerik tinggi. Dengan memahami sifat kesalahan
presisi, pengguna komputasi numerik dapat merancang solusi yang lebih
akurat dan tahan terhadap keterbatasan representasi bilangan digital.

D. Peran Pemrograman dalam Pemecahan Masalah Numerik

Menurut Chapra dan Canale (2010) dalam Numerical Methods
for Engineers, pemecahan masalah numerik memerlukan serangkaian
langkah sistematis yang sering kali tidak dapat dilakukan secara manual,
terutama ketika masalah tersebut berskala besar, melibatkan ribuan
variabel, atau membutuhkan iterasi kompleks. Dalam konteks ini,
pemrograman menjadi perantara yang sangat krusial antara konsep
matematika numerik dan implementasi praktisnya. Pemrograman
memungkinkan transformasi algoritma matematis ke dalam bentuk yang
dapat dijalankan oleh komputer, sehingga mempercepat, mempermudah,
dan memperluas cakupan penyelesaian masalah numerik dalam berbagai
bidang seperti sains, teknik, keuangan, hingga ilmu data.

1. Pemrograman sebagai Sarana Implementasi Algoritma
Numerik

Pemrograman memiliki peran krusial sebagai sarana utama

dalam implementasi algoritma numerik, yakni metode matematis yang

digunakan untuk menyelesaikan masalah yang tidak dapat diselesaikan

secara eksak atau analitik. Algoritma numerik seperti metode bisection,

Newton-Raphson, Gauss-Seidel, atau Runge-Kutta memerlukan proses

iteratif dan perhitungan yang kompleks, yang secara manual sangat sulit,
Buku Referensi 15

lambat, dan rawan kesalahan. Dengan adanya pemrograman, algoritma-
algoritma tersebut dapat diubah menjadi rangkaian instruksi logis yang
dieksekusi oleh komputer dengan cepat, akurat, dan efisien.

Pemrograman memungkinkan pengguna untuk membuat fungsi
modular, mengatur struktur data, melakukan pengulangan (looping), dan
mengatur logika percabangan, yang semuanya sangat penting dalam
menjalankan algoritma numerik. Sebagai contoh, dalam metode
Newton-Raphson untuk mencari akar suatu fungsi non-linier,
pemrograman memungkinkan proses iteratif dilakukan otomatis dengan
toleransi galat yang dapat disesuaikan. Hal ini membuat algoritma dapat
digunakan secara luas dalam berbagai permasalahan, cukup dengan
mengganti fungsi yang ingin diselesaikan.

Bahasa pemrograman seperti Python, MATLAB, C++, atau R
menyediakan berbagai fitur untuk mempermudah implementasi metode
numerik. Python, misalnya, memiliki pustaka NumPy dan SciPy yang
menyediakan fungsi bawaan untuk operasi numerik kompleks seperti
penyelesaian sistem linier, interpolasi, integrasi numerik, hingga
pemodelan diferensial. MATLAB dikenal dengan kemampuannya dalam
manipulasi matriks dan visualisasi yang sangat mendukung eksperimen
numerik.

Pemrograman juga mendukung proses eksperimen dan validasi
algoritma. Pengguna dapat dengan mudah menguji performa algoritma
pada berbagai parameter, mengamati konvergensi, dan mengevaluasi
kestabilan numerik. Ini memberikan ruang untuk eksplorasi yang luas
dalam dunia akademik maupun profesional. Oleh karena itu, penguasaan
pemrograman tidak hanya memperkuat kemampuan analisis numerik,
tetapi juga membuka jalan untuk pengembangan solusi inovatif berbasis
komputasi dalam berbagai bidang ilmu dan teknologi.

2. Bahasa Pemrograman Populer untuk Komputasi Numerik

Di dunia komputasi numerik, pemilihan bahasa pemrograman
yang tepat sangat berpengaruh terhadap efisiensi, fleksibilitas, dan
keakuratan implementasi algoritma. Beberapa bahasa pemrograman
telah terbukti sangat efektif dalam menyelesaikan persoalan numerik
karena menyediakan pustaka khusus, kemampuan pemrosesan numerik
tinggi, serta kemudahan dalam manipulasi data dan visualisasi. Di antara
bahasa yang paling populer digunakan adalah Python, MATLAB,

C/C++, dan Fortran.
16 Pemrograman dan Komputasi Numerik

Python telah menjadi pilihan utama dalam berbagai komunitas
ilmiah dan teknik karena sintaksisnya yang sederhana serta dukungan
pustaka numerik yang sangat luas. Pustaka sepertt NumPy dan SciPy
menyediakan fungsi-fungsi penting untuk aljabar linier, kalkulus
numerik, statistik, dan integrasi diferensial, yang membuat implementasi
algoritma numerik menjadi lebih mudah dan efisien. Python juga
mendukung visualisasi hasil perhitungan melalui Matplotlib atau
Seaborn, serta terintegrasi dengan pustaka lain seperti Pandas untuk
analisis data dan SymPy untuk komputasi simbolik. Kelebihan utama
Python adalah kemampuannya untuk beradaptasi lintas disiplin, mulai
dari teknik hingga sains data.

MATLAB merupakan bahasa yang secara khusus dirancang
untuk perhitungan matriks dan analisis numerik. Dengan lingkungan
interaktifnya yang kuat, MATLAB memudahkan pengguna untuk
menulis skrip, menguji algoritma numerik, dan memvisualisasikan hasil
dalam bentuk grafik atau animasi. MATLAB sangat populer di
lingkungan akademik dan industri teknik, khususnya dalam simulasi
kontrol, sistem dinamis, dan pemrosesan sinyal.

C dan C++ digunakan ketika performa dan kecepatan eksekusi
menjadi prioritas utama, seperti dalam simulasi numerik berskala besar
atau real-time. Bahasa ini memungkinkan akses langsung ke memori dan
prosesor, serta kompatibel dengan pustaka numerik seperti BLAS dan
LAPACK yang mendukung operasi numerik tingkat lanjut. Untuk
aplikasi besar dan kompleks, C++ sering dikombinasikan dengan Python
(melalui bindings) agar memperoleh keseimbangan antara performa dan
kemudahan coding.

Fortran, meskipun tergolong bahasa lama, masih banyak
digunakan dalam komputasi ilmiah, khususnya dalam pemodelan fisik
dan simulasi cuaca. Bahasa ini dirancang untuk efisiensi dalam
pemrosesan numerik dan masih menjadi tulang punggung banyak sistem
legacy yang digunakan di institusi riset dan badan antariksa. Setiap
bahasa memiliki keunggulan dan kekhususannya, sehingga pemilihan
bahasa pemrograman dalam komputasi numerik sangat tergantung pada
kebutuhan aplikasi, skala data, serta tingkat kompleksitas algoritma yang
akan digunakan.

Buku Referensi 17

3. Automasi dan Reproduksibilitas Proses Numerik

Automasi dan reproduksibilitas merupakan dua aspek penting
dalam komputasi numerik modern yang sangat dipengaruhi oleh
kemampuan pemrograman. Automasi merujuk pada proses menjalankan
algoritma numerik secara otomatis tanpa campur tangan manual yang
terus-menerus, sedangkan reproduksibilitas mengacu pada kemampuan
untuk mengulangi proses komputasi dengan hasil yang konsisten ketika
menggunakan data dan parameter yang sama. Dalam konteks pemecahan
masalah numerik yang kompleks, kedua aspek ini sangat krusial untuk
menjamin efisiensi kerja, keakuratan hasil, dan integritas ilmiah.

Dengan menggunakan bahasa pemrograman seperti Python,
MATLAB, atau R, para peneliti dan praktisi dapat mengotomatisasi
seluruh rangkaian proses numerik, mulai dari input data, eksekusi
algoritma, hingga analisis dan visualisasi hasil. Contohnya, dalam proses
simulasi numerik untuk penyelesaian persamaan diferensial parsial
(PDE), pengguna bisa menulis skrip yang secara otomatis membaca
parameter dari file konfigurasi, menjalankan iterasi hingga konvergensi
tercapai, dan menyimpan hasil dalam bentuk grafik atau file data. Ini
tidak hanya menghemat waktu, tetapi juga mengurangi risiko kesalahan
manusia dalam penginputan data atau pengoperasian perangkat lunak
secara manual.

Automasi juga memungkinkan dilakukannya eksperimen
numerik berskala besar, seperti studi sensitivitas parameter atau
optimisasi multi-variasi, yang akan sangat memakan waktu jika
dilakukan secara manual. Dengan pendekatan berbasis kode, ribuan
simulasi dapat dijalankan dalam sekali waktu, baik secara berurutan
maupun paralel, sehingga mempercepat proses pengambilan keputusan
berbasis data.

Reproduksibilitas merupakan fondasi penting dalam dunia
akademik dan riset. Ketika proses numerik dituangkan dalam skrip yang
terdokumentasi dan terdigitalisasi, siapa pun dapat mengeksekusi ulang
perhitungan tersebut dengan hasil identik selama parameter dan
lingkungan eksekusinya sama. Hal ini penting untuk validasi, peer
review, dan pengembangan lebih lanjut dari penelitian yang sudah ada.
Bahkan dalam industri, reproduksibilitas mendukung kontrol kualitas
dan pemeliharaan sistem numerik jangka panjang. Dengan demikian,
pemrograman tidak hanya menjadi alat bantu teknis, tetapi juga penjamin

keberlanjutan, konsistensi, dan kredibilitas proses numerik, baik dalam
18 Pemrograman dan Komputasi Numerik

skala akademik, industri, maupun kebijakan publik yang berbasis model
numerik.

4. Pemrograman untuk Visualisasi dan Analisis Hasil

Pada komputasi numerik, hasil perhitungan sering kali berupa
deretan angka atau matriks yang sulit diinterpretasikan secara langsung
tanpa bantuan visualisasi. Oleh karena itu, pemrograman berperan
penting dalam mentransformasikan hasil numerik menjadi representasi
visual yang lebih informatif dan mudah dianalisis. Visualisasi tidak
hanya berfungsi sebagai alat bantu presentasi, tetapi juga menjadi sarana
eksploratif untuk memahami perilaku sistem, mengidentifikasi pola,
menganalisis tren, serta mendeteksi anomali atau kesalahan numerik
sejak dini.

Bahasa pemrograman seperti Python, MATLAB, dan R
menyediakan pustaka dan fungsi khusus untuk visualisasi data numerik.
Di Python, pustaka seperti Matplotlib, Seaborn, dan Plotly
memungkinkan pengguna membuat grafik 2D dan 3D, peta kontur,
diagram permukaan, hingga animasi dinamis. Misalnya, dalam
penyelesaian numerik persamaan diferensial, pengguna dapat memplot
solusi terhadap waktu untuk memantau stabilitas dan konvergensi
algoritma. Jika solusi tampak mengalami osilasi atau divergensi, maka
pengaturan ulang parameter numerik bisa dilakukan sebelum berlanjut
ke langkah berikutnya. Dengan demikian, visualisasi berfungsi juga
sebagai alat diagnosis numerik.

Analisis hasil numerik juga dapat diotomatisasi melalui
pemrograman. Ini mencakup perhitungan galat (error), evaluasi
konvergensi, perbandingan metode numerik, serta estimasi performa
algoritma berdasarkan waktu eksekusi atau jumlah iterasi. Sebagai
contoh, dalam komputasi metode Runge-Kutta untuk ODE, kita bisa
membuat skrip yang otomatis membandingkan hasil numerik dengan
solusi analitik dan menghitung galat relatif di setiap titik.

Visualisasi yang dihasilkan dari pemrograman juga berperan
besar dalam komunikasi ilmiah. Grafik yang jelas dan interaktif
membantu menyampaikan temuan kepada audiens teknis maupun non-
teknis, termasuk dalam laporan penelitian, presentasi, atau publikasi.
Dengan mengintegrasikan hasil komputasi, analisis, dan visualisasi
dalam satu alur kerja berbasis kode, pemrograman tidak hanya

memperkuat pemahaman hasil, tetapi juga mendorong efisiensi,
Buku Referensi 19

transparansi, dan dokumentasi yang baik dalam proses ilmiah dan
rekayasa berbasis numerik.

20 Pemrograman dan Komputasi Numerik

BAHASA PEMROGRAMAN
UNTUK KOMPUTASI

Di era digital yang serba cepat dan berbasis data, penguasaan
bahasa pemrograman menjadi fondasi utama bagi siapa pun yang ingin
mengembangkan solusi komputasional terhadap persoalan matematika
dan ilmiah yang kompleks. Pemilihan bahasa pemrograman yang tepat
tidak hanya berdampak pada efisiensi proses komputasi, tetapi juga pada
akurasi, skalabilitas, dan kemudahan integrasi dengan berbagai sistem
analitik. Oleh karena itu, bab ini membahas berbagai bahasa
pemrograman populer seperti Python, MATLAB, Julia, Fortran, dan
C++, serta membahas karakteristik, kelebihan, dan kelemahannya
masing-masing dalam konteks numerik. Lebih lanjut, bab ini membahas
bagaimana struktur sintaksis, paradigma pemrograman, serta pustaka
atau modul yang tersedia dapat memengaruhi kinerja dan efektivitas
solusi numerik yang dibangun.

A. Pemilihan Bahasa: Python, MATLAB, atau C++

Pemrograman untuk komputasi numerik menuntut efisiensi,
fleksibilitas, dan akurasi dalam menangani data serta proses perhitungan
kompleks. Tiga bahasa yang umum digunakan dalam bidang ini adalah
Python, MATLAB, dan C++. Setiap bahasa memiliki kekuatan dan
kelemahan tersendiri, bergantung pada konteks penggunaannya. Oleh
karena itu, pemilihan bahasa pemrograman yang tepat sangat penting
dalam menentukan keberhasilan proyek numerik dan ilmiah.

Buku Referensi 21

1. Python

Python adalah salah satu bahasa pemrograman paling populer
dan serbaguna di era modern, terutama dalam bidang komputasi
numerik, data science, kecerdasan buatan, dan pengembangan aplikasi
ilmiah. Dikembangkan pertama kali oleh Guido van Rossum pada tahun
1991, Python dirancang dengan filosofi kesederhanaan sintaks dan
keterbacaan kode yang tinggi, menjadikannya sangat mudah diakses oleh
pemula tanpa mengorbankan kekuatan dan fleksibilitas untuk pengguna
tingkat lanjut. Python merupakan bahasa pemrograman tingkat tinggi
yang bersifat open-source, lintas platform, dan berparadigma multipel
mendukung pemrograman prosedural, berorientasi objek, maupun
fungsional.

Pada konteks komputasi numerik, Python menonjol karena
ketersediaan pustaka (/ibrary) yang sangat kaya dan kuat. Salah satu
pustaka paling fundamental adalah NumPy (Numerical Python), yang
memungkinkan manipulasi array multidimensi, operasi vektor-matriks,
transformasi linier, dan berbagai fungsi matematika tingkat lanjut.
NumPy menjadi dasar bagi banyak pustaka numerik lainnya dan
memberikan efisiensi komputasi tinggi karena ditulis sebagian besar
dalam C, yang membuat Python tetap kompetitif dari sisi performa.
Selain itu, SciPy memperluas kemampuan ini dengan menyediakan
fungsi-fungsi ilmiah seperti integrasi numerik, optimasi, aljabar linear
lanjutan, statistik, dan pemrosesan sinyal.

Python juga sangat unggul dalam bidang visualisasi data. Pustaka
seperti Matplotlib memungkinkan pembuatan grafik dua dan tiga
dimensi, sedangkan Seaborn dan Plotly menawarkan kemampuan
visualisasi statistik dan interaktif yang lebih modern dan estetik. Hal ini
sangat penting dalam komputasi numerik karena memungkinkan
pengguna tidak hanya menghitung data, tetapi juga
memvisualisasikannya untuk pemahaman yang lebih baik dan penyajian
hasil yang informatif.

Kelebihan Python tidak berhenti di sana. Dalam praktik
pengembangan sistem komputasi yang lebih kompleks, Python dapat
diintegrasikan dengan bahasa lain seperti C/C++ menggunakan Cython
atau ctypes, serta dengan Fortran melalui f2py, sehingga memungkinkan
penggabungan antara kemudahan pemrograman Python dan kecepatan
eksekusi dari bahasa compiled. Python juga memiliki kerangka kerja

Jupyter Notebook, yang sangat populer di kalangan ilmuwan data dan
22 Pemrograman dan Komputasi Numerik

akademisi karena memungkinkan kombinasi antara kode, grafik, dan
dokumentasi dalam satu antarmuka interaktif.

Ketersediaan komunitas global yang sangat besar, dokumentasi
luas, dan pembaruan yang aktif menjadikan Python sangat adaptif
terhadap kebutuhan zaman. Tidak heran jika Python kini menjadi bahasa
utama dalam banyak bidang dari pengolahan citra, pemodelan keuangan,
bioinformatika, hingga komputasi kuantum. Bahkan, banyak lembaga
pendidikan dan universitas menggantikan MATLAB atau Java dengan
Python dalam pengajaran pemrograman dan matematika komputasi.
Namun Python, sebagai bahasa interpreted, memiliki kelemahan dalam
hal kecepatan eksekusi murni dibandingkan bahasa compiled seperti
C++. Untuk komputasi skala besar atau real-time, optimalisasi kode dan
penggunaan pustaka eksternal sering kali dibutuhkan agar performa tetap
optimal. Meski demikian, karena kemudahan penggunaan dan
skalabilitasnya, Python tetap menjadi pilihan utama bagi banyak praktisi
komputasi numerik masa kini.

2. MATLAB

MATLAB, singkatan dari Matrix Laboratory, adalah lingkungan
komputasi numerik dan bahasa pemrograman tingkat tinggi yang
dikembangkan oleh MathWorks. Sejak diperkenalkan pada awal 1980-
an oleh Cleve Moler, MATLAB telah menjadi standar industri dan
akademik dalam bidang teknik, matematika terapan, dan sains komputer.
Fokus utama MATLAB adalah manipulasi matriks, pengembangan
algoritma, pemodelan sistem, serta visualisasi dan analisis data. Dengan
basis desain yang sangat berorientasi pada komputasi matriks, MATLAB
sangat efisien dalam menangani perhitungan numerik, aljabar linear, dan
simulasi sistem kompleks yang menjadi tulang punggung di banyak
bidang teknik.

Salah satu keunggulan utama MATLAB adalah lingkungan
pengembangan terintegrasi (IDE) yang sangat ramah pengguna.
Pengguna dapat menulis kode, menjalankan perintah secara interaktif,
memvisualisasikan hasil, serta membuat grafik 2D dan 3D dengan sangat
mudah. Sintaks MATLAB sangat mirip dengan notasi matematika
konvensional, sehingga memudahkan pengguna dari latar belakang non-
informatika untuk mengimplementasikan rumus dan algoritma secara
langsung tanpa perlu memahami konsep pemrograman tingkat rendah

seperti manajemen memori atau pointer. Misalnya, penjumlahan dua
Buku Referensi 23

matriks, solusi sistem persamaan linear, atau plotting fungsi bisa
dilakukan hanya dengan beberapa baris kode.

MATLAB juga dikenal karena kekayaan toolbox, modul
tambahan khusus yang menyediakan fungsi-fungsi siap pakai untuk
berbagai disiplin ilmu. Beberapa toolbox populer antara lain Signal
Processing Toolbox, Image Processing Toolbox, Control System
Toolbox, dan Optimization Toolbox. Kemampuan ini menjadikan
MATLAB sangat disukai dalam lingkungan penelitian dan pengajaran
karena memungkinkan eksplorasi dan eksperimen cepat tanpa harus
membangun algoritma dari nol. Selain itu, Simulink, sebagai bagian dari
MATLAB, merupakan platform pemodelan dan simulasi sistem dinamis
berbasis blok diagram yang banyak digunakan di industri otomotif,
dirgantara, dan elektronik untuk desain sistem kendali dan sistem
embedded.

Pada konteks komputasi numerik tingkat lanjut, MATLAB
menyediakan fungsi-fungsi numerik yang sangat stabil dan telah teruji
secara luas, seperti metode numerik untuk penyelesaian persamaan
diferensial, integrasi numerik, interpolasi, optimasi, dan dekomposisi
matriks. Fungsi-fungsi ini dirancang dengan mempertimbangkan
kestabilan numerik, efisiensi komputasi, dan kemudahan penggunaan.
Selain itu, MATLAB mendukung paralelisasi komputasi dan komputasi
GPU melalui Parallel Computing Toolbox, memungkinkan eksekusi
program besar atau intensif data secara efisien pada kluster komputer
atau perangkat keras modern.

Kelemahan utama MATLAB terletak pada model lisensinya
yang komersial dan mahal, baik untuk lisensi individu, institusi, maupun
toolbox tambahan. Ini menjadi kendala serius bagi pelajar, institusi kecil,
atau proyek open-source yang mengandalkan akses bebas. Selain itu,
MATLAB bukanlah bahasa open-source, sehingga pengembangan atau
integrasi lintas sistem sering kali tidak sefleksibel bahasa lain seperti
Python. Meskipun demikian, untuk proyek-proyek teknik formal dan
kebutuhan industri yang menuntut presisi tinggi, dokumentasi kuat, serta
dukungan teknis resmi, MATLAB tetap menjadi pilihan unggulan.

3. C++
C++ adalah bahasa pemrograman yang dirancang untuk
memberikan kekuatan performa, fleksibilitas, dan kontrol rendah

terhadap perangkat keras, menjadikannya sangat ideal untuk
24 Pemrograman dan Komputasi Numerik

pengembangan aplikasi komputasi numerik berskala besar dan sistem
yang memerlukan efisiensi tinggi. Diperkenalkan oleh Bjarne Stroustrup
pada awal 1980-an sebagai ekstensi dari bahasa C, C++ menggabungkan
paradigma pemrograman prosedural dengan kemampuan berorientasi
objek, sekaligus mendukung paradigma generik dan fungsional.
Kombinasi ini memberikan kemampuan luar biasa dalam mendesain
struktur data kompleks, mengelola memori secara eksplisit, serta
menyusun sistem modular dan skalabel, semua sangat penting dalam
aplikasi komputasi ilmiah dan teknik.

Pada konteks komputasi numerik, C++ unggul dalam hal
kecepatan eksekusi karena merupakan bahasa compiled, kode
sumbernya dikompilasi langsung menjadi kode mesin sebelum
dijalankan. Hal ini memberikan keunggulan signifikan dibanding bahasa
interpreted seperti Python atau MATLAB, terutama dalam tugas-tugas
intensif seperti simulasi numerik skala besar, pemodelan dinamika
fluida, perhitungan finite element, atau pemrosesan data waktu nyata.
Selain itu, C++ mendukung pengelolaan memori manual, yang
memungkinkan pengguna mengoptimalkan penggunaan RAM dan
menghindari overhead dari garbage collection, meskipun hal ini juga
menuntut kehati-hatian tinggi agar tidak menyebabkan kebocoran
memori (memory leak) atau crash.

C++ memiliki ekosistem pustaka numerik yang luas dan kuat. Di
antaranya adalah Eigen, sebuah pustaka template untuk aljabar linear,
dekomposisi matriks, dan analisis eigenvalue yang sangat efisien dan
banyak digunakan dalam pemrosesan citra serta machine learning. Ada
juga Armadillo, yang menyederhanakan sintaks komputasi numerik
dengan performa mendekati Fortran. Boost, salah satu pustaka
terlengkap dalam komunitas C++, menyediakan algoritma numerik,
struktur data kompleks, dan utilitas lain yang berguna dalam
pengembangan aplikasi ilmiah. Pustaka-pustaka ini menjadikan C++
sangat kompetitif dalam membangun sistem komputasi modern yang
membutuhkan kombinasi kecepatan dan akurasi.

C++ juga digunakan secara luas dalam pengembangan software
sistem dan perangkat keras tertanam (embedded systems), seperti
firmware, sistem kendali robotik, simulasi fisika, dan grafika komputer.
Banyak aplikasi ilmiah dan industri skala besar, seperti OpenFOAM
(simulasi fluida), ANSYS (analisis teknik), atau Blender (grafik 3D),

menggunakan C++ sebagai bahasa inti karena keunggulannya dalam
Buku Referensi 25

menangani perhitungan besar secara efisien dan andal. Namun,
kompleksitas sintaks dan kurva pembelajaran yang relatif tinggi menjadi
tantangan utama bagi pengguna baru. Penulisan kode yang optimal
memerlukan pemahaman mendalam tentang manajemen memori,
struktur data, dan prinsip-prinsip pemrograman yang baik. Kesalahan
kecil seperti dereferensi pointer yang salah atau buffer overflow bisa
berakibat fatal pada program. Oleh karena itu, C++ lebih cocok
digunakan oleh pengembang yang memiliki pengalaman cukup atau
untuk proyek-proyek yang benar-benar membutuhkan efisiensi
maksimal.

B. Struktur Dasar Pemrograman: Variabel, Tipe Data, dan

Struktur Kontrol

Di dunia pemrograman, memahami struktur dasar adalah fondasi
yang sangat penting sebelum seseorang dapat mengembangkan
algoritma atau membangun aplikasi yang kompleks. Struktur dasar
pemrograman mencakup tiga komponen utama: variabel, tipe data, dan
struktur kontrol. Ketiganya membentuk kerangka logika dan operasional
dari sebuah program komputer. Tanpa pemahaman yang baik tentang
konsep ini, akan sangat sulit untuk membuat program yang efektif,
efisien, dan bebas dari kesalahan.

1. Variabel

Variabel merupakan salah satu konsep paling fundamental dalam
pemrograman yang berfungsi sebagai penampung data sementara di
dalam memori komputer. Dalam istilah sederhana, variabel dapat
dianalogikan sebagai "wadah" yang diberi nama tertentu, di mana kita
dapat menyimpan nilai, mengubah nilainya, dan menggunakannya
kembali dalam berbagai operasi. Variabel memungkinkan suatu program
menyimpan informasi secara dinamis selama proses eksekusi
berlangsung. Tanpa variabel, program tidak akan mampu menyimpan
hasil perhitungan, menampung input pengguna, atau mengatur alur
logika berdasarkan data yang berubah-ubah.

Setiap variabel memiliki nama, tipe data, dan nilai. Nama
variabel adalah identitas unik yang digunakan untuk merujuk ke nilai
yang disimpan. Penamaan variabel biasanya mengikuti aturan sintaks

tertentu tergantung bahasa pemrograman yang digunakan, misalnya
26 Pemrograman dan Komputasi Numerik

harus diawali dengan huruf atau garis bawah (), tidak mengandung
spasi, dan tidak menggunakan kata kunci bawaan bahasa. Pemilihan
nama variabel yang baik dan deskriptif, seperti total nilai, nama
pengguna, atau kecepatan mobil, sangat dianjurkan untuk meningkatkan
keterbacaan dan pemeliharaan kode.

Tipe data yang terkait dengan variabel menentukan jenis nilai
yang dapat disimpan di dalamnya, seperti bilangan bulat (integer),
bilangan desimal (float atau double), karakter tunggal (char), atau
kumpulan karakter (string). Dalam bahasa pemrograman seperti C++,
tipe data variabel harus dideklarasikan secara eksplisit. Contoh:

pp

int umur = 25;
float tinggi = 172.5;

char huruf = "A";

Sementara dalam bahasa seperti Python, penetapan tipe data
dilakukan secara implisit oleh interpreter berdasarkan nilai yang
diberikan, karena Python merupakan bahasa bertipe dinamis. Contoh:

python

umur = 25
nama = "Andi’

Variabel dalam pemrograman juga memiliki ruang lingkup
(scope) dan masa hidup (/ifetime). Ruang lingkup menunjukkan di
bagian mana dari kode program variabel tersebut dapat diakses. Variabel
lokal hanya dapat diakses dalam fungsi atau blok tempat ia
dideklarasikan, sedangkan variabel global dapat diakses dari seluruh
bagian program. Masa hidup variabel berkaitan dengan berapa lama
variabel akan "hidup" di dalam memori, biasanya tergantung pada
tempat deklarasinya, variabel lokal akan hilang setelah blok program
selesai dijalankan, sedangkan variabel global tetap ada sepanjang
eksekusi program.

Fungsi utama variabel dalam program adalah untuk menyimpan
input, menyimpan hasil perhitungan, mengontrol struktur alur program,
dan menyederhanakan penulisan kode. Misalnya, hasil penjumlahan dua
angka dapat disimpan dalam variabel hasil, lalu digunakan kembali

Buku Referensi 27

dalam operasi atau kondisi berikutnya. Tanpa variabel, setiap nilai harus
dihitung dan dituliskan ulang secara manual, yang tidak efisien dan
rawan kesalahan.

2. Tipe Data

Tipe data (data type) adalah salah satu konsep paling penting
dalam pemrograman yang menentukan jenis nilai apa yang dapat
disimpan dalam sebuah variabel, serta operasi apa yang sah untuk
dilakukan terhadap nilai tersebut. Tipe data mendefinisikan bagaimana
data direpresentasikan di dalam memori komputer dan bagaimana
bahasa pemrograman memperlakukannya dalam berbagai ekspresi dan
fungsi. Tanpa sistem tipe data yang jelas, pengolahan data dalam
pemrograman akan menjadi tidak terstruktur dan rentan terhadap
kesalahan logika atau sintaks.

Secara umum, tipe data dibedakan menjadi dua kategori besar:
tipe data primitif dan tipe data non-primitif (kompleks). Tipe data primitif
mencakup jenis-jenis data paling dasar seperti bilangan bulat (integer),
bilangan desimal (float atau double), karakter (char), dan nilai logika
(boolean). Misalnya, int digunakan untuk menyimpan angka bulat
seperti 100, sedangkan float digunakan untuk menyimpan angka pecahan
seperti 3.14. Tipe char menyimpan satu karakter tunggal, seperti 'A’, dan
boolean menyimpan nilai logika true atau false, yang sangat berguna
dalam struktur kontrol seperti pernyataan if dan while.

Tipe data non-primitif, di sisi lain, mencakup struktur yang lebih
kompleks dan terdiri dari beberapa nilai, seperti string, array, list, tuple,
set, dictionary, dan objek. Misalnya, string adalah kumpulan karakter
yang membentuk teks seperti "Halo Dunia", sedangkan array
menyimpan kumpulan elemen yang sejenis dalam urutan tertentu. Dalam
Python, /ist digunakan untuk menyimpan sekumpulan nilai yang dapat
terdiri dari berbagai tipe data, dan dictionary digunakan untuk
menyimpan pasangan kunci-nilai. Sementara dalam bahasa C++,
struktur seperti struct dan class memungkinkan programmer untuk
mendefinisikan tipe data kustom yang sesuai dengan kebutuhan logika
bisnis atau representasi objek dalam dunia nyata.

Setiap bahasa pemrograman memiliki cara tersendiri dalam
menangani tipe data. Bahasa seperti C dan C++ bersifat statically typed,
artinya tipe data harus ditentukan secara eksplisit saat mendeklarasikan

variabel. Ini membantu program mendeteksi kesalahan tipe data sejak
28 Pemrograman dan Komputasi Numerik

proses kompilasi. Sebaliknya, bahasa seperti Python dan JavaScript
bersifat dynamically typed, yang berarti tipe data ditentukan secara
otomatis saat program dijalankan, memberikan fleksibilitas lebih tetapi
berisiko menimbulkan kesalahan runtime jika tidak ditangani dengan
hati-hati.

Banyak bahasa pemrograman modern mendukung konversi tipe
data (¢type casting), yang memungkinkan perubahan tipe data dari satu
bentuk ke bentuk lain, seperti dari int ke float, atau dari string ke int.
Namun, konversi ini harus dilakukan dengan hati-hati karena berpotensi
menyebabkan kehilangan data atau kesalahan logika jika tidak sesuai.
Pemilihan tipe data yang tepat sangat penting dalam pengembangan
perangkat lunak. Misalnya, menggunakan float untuk perhitungan
keuangan dapat menyebabkan ketidakakuratan karena representasi biner
angka desimal, sehingga disarankan menggunakan tipe data khusus
seperti Decimal dalam Python atau BigDecimal dalam Java. Di sisi lain,
penggunaan boolean memungkinkan logika kontrol program menjadi
lebih eksplisit dan mudah dimengerti.

3. Struktur Kontrol

Struktur kontrol adalah komponen penting dalam pemrograman
yang memungkinkan program untuk mengatur alur eksekusi instruksi
berdasarkan kondisi tertentu atau pengulangan perintah. Tanpa struktur
kontrol, program hanya akan mengeksekusi perintah secara linear dari
atas ke bawah, tanpa kemampuan untuk membuat keputusan atau
melakukan iterasi. Struktur kontrol memberikan kemampuan kepada
program untuk menjadi dinamis, fleksibel, dan cerdas dalam merespons
data atau input yang berubah-ubah. Secara umum, struktur kontrol
terbagi menjadi tiga kategori utama: percabangan
(conditional/selection), perulangan (looping/iteration), dan transfer
kontrol. Masing-masing kategori memiliki peran yang berbeda namun
saling melengkapi dalam menyusun logika program.

Pertama, struktur percabangan memungkinkan program untuk
memilih satu dari beberapa jalur eksekusi berdasarkan kondisi tertentu.
Dalam banyak bahasa pemrograman seperti Python, C++, dan Java,
bentuk umum dari struktur ini adalah if, else if (elif di Python), dan else.
Misalnya, jika sebuah nilai memenubhi syarat tertentu (seperti nilai ujian
> 75), maka program akan menampilkan "Lulus"; jika tidak, maka akan

menampilkan "Tidak Lulus". Selain if-else, ada juga switch-case dalam
Buku Referensi 29

bahasa seperti C++ dan Java yang digunakan untuk menangani banyak
kondisi secara lebih terstruktur. Percabangan sangat penting dalam
pengambilan keputusan logis, misalnya dalam sistem login, verifikasi
data, atau pengkategorian nilai.

Kedua, struktur perulangan (looping) digunakan untuk
mengeksekusi blok kode secara berulang selama kondisi tertentu masih
terpenuhi. Dua bentuk perulangan yang paling umum adalah for dan
while. For biasanya digunakan ketika jumlah iterasi sudah diketahui
sebelumnya, sedangkan while digunakan untuk perulangan yang
bergantung pada kondisi yang bersifat dinamis. Contohnya, for i in range
(10) di Python akan mencetak angka dari 0 hingga 9, sedangkan while
saldo > 0 bisa digunakan untuk terus mengurangi saldo hingga mencapai
nol. Looping sangat berguna dalam pemrosesan data, penghitungan
matematis berulang, atau pengolahan array dan daftar panjang.

Ketiga, ada transfer kontrol, yaitu perintah khusus yang
mengalihkan alur eksekusi program di luar jalur normal. Instruksi seperti
break, continue, dan return termasuk dalam kategori ini. Break
digunakan untuk keluar dari loop sebelum kondisi selesai, continue
untuk melewati satu iterasi dan langsung lanjut ke iterasi berikutnya,
sedangkan return digunakan dalam fungsi untuk mengembalikan nilai
sekaligus mengakhiri eksekusi fungsi tersebut. Struktur transfer ini
memperkaya fleksibilitas program dalam mengatur alur logikanya secara
lebih presisi.

Gambar 2. Kecerdasan Buatan

f}?ﬁ‘ o © G
Nl f[?\ N o%g ; Machine Learning
N N3
N

Sumber: Codepolitan

30 Pemrograman dan Komputasi Numerik

Struktur kontrol juga erat kaitannya dengan pengendalian alur
logika algoritmik. Dalam pemrograman tingkat lanjut seperti rekursi,
struktur kontrol menjadi instrumen utama dalam mengatur pemanggilan
fungsi berulang. Begitu pula dalam pengembangan antarmuka grafis,
kecerdasan buatan, dan simulasi fisika komputasional, struktur kontrol
berperan sentral dalam membangun perilaku sistem yang adaptif.

C. Fungsi dan Modularisasi Program

Di dunia pemrograman modern, membangun program yang baik
bukan hanya soal menghasilkan keluaran yang benar, tetapi juga tentang
bagaimana program tersebut disusun secara terstruktur, mudah dibaca,
efisien, dan mudah dikelola dalam jangka panjang. Fungsi (function) dan
modularisasi program merupakan dua konsep penting yang menjadi
landasan dalam pencapaian tujuan tersebut. Fungsi memungkinkan
programmer memecah program menjadi bagian-bagian kecil yang dapat
digunakan kembali, sementara modularisasi menciptakan arsitektur
sistem yang lebih tertata dan fleksibel. Keduanya merupakan prinsip
utama dalam rekayasa perangkat lunak berbasis praktik terbaik dan
sangat penting dalam pengembangan perangkat lunak skala besar.

Menurut Kernighan dan Ritchie (1988) dalam The C
Programming Language, fungsi adalah blok kode mandiri yang
dirancang untuk melakukan tugas tertentu dan dapat dipanggil berulang
kali dari bagian lain dalam program (Kernighan & Ritchie, 1988).
Dengan kata lain, fungsi bertindak seperti "mesin kecil" yang menerima
input (parameter), memprosesnya, dan mengembalikan hasil (return
value) tanpa harus menulis ulang kode yang sama di berbagai tempat.
Contoh sederhana fungsi dalam Python dan C++:

python

o N . -
def hitung luas persegi(sisi):

return sisi * sisi

int hitungluasPersegi(int sisi) {

return sisi * sisi;

Buku Referensi 31

Kedua contoh di atas menunjukkan bagaimana logika
perhitungan dapat dibungkus ke dalam satu fungsi yang bisa digunakan
berulang kali, cukup dengan memanggil nama fungsinya dan
memberikan parameter yang sesuai.

1. Manfaat Fungsi

Fungsi merupakan salah satu komponen kunci dalam
pemrograman modern yang memberikan berbagai manfaat penting
dalam menyusun kode yang efisien, terstruktur, dan mudah dikelola.
Fungsi adalah blok kode mandiri yang dirancang untuk melakukan tugas
tertentu. Dengan memisahkan logika program ke dalam fungsi-fungsi
kecil, seorang programmer dapat menciptakan sistem yang lebih
modular, mudah dipahami, dan dapat digunakan kembali. Salah satu
manfaat utama dari penggunaan fungsi adalah reusabilitas, yakni
kemampuan untuk menggunakan ulang potongan kode yang sama
berkali-kali tanpa harus menuliskannya dari awal. Ini tidak hanya
menghemat waktu, tetapi juga mengurangi kemungkinan terjadinya
kesalahan penulisan (human error) akibat duplikasi kode.

Fungsi juga meningkatkan keterbacaan (readability) dan
kejelasan struktur program. Ketika program dibagi ke dalam fungsi-
fungsi yang memiliki nama deskriptif, seperti hitung gaji, cek login, atau
tampilkan menu, pembaca kode akan lebih mudah memahami alur
program secara keseluruhan tanpa harus menelusuri seluruh detail
implementasi di setiap bagian. Ini sangat membantu dalam tim
pengembangan perangkat lunak, di mana kolaborasi antarprogrammer
menjadi lebih efektif karena pembagian tugas dapat dilakukan
berdasarkan fungsi.

Fungsi memungkinkan isolasi logika, yang berarti setiap bagian
program dapat diuji, diperbaiki, atau dimodifikasi tanpa memengaruhi
bagian lain. Pendekatan ini mendukung prinsip separation of concerns
dalam rekayasa perangkat lunak, yaitu memisahkan tanggung jawab
logika program ke dalam unit-unit kecil yang fokus pada satu tugas.
Dengan cara ini, pemeliharaan program (maintenance) menjadi lebih
mudah karena bug dapat dilokalisasi di dalam fungsi tertentu tanpa
menelusuri keseluruhan sistem. Lebih jauh, fungsi juga mendukung
pengembangan bertahap dan uji unit (unit testing). Karena setiap fungsi
dapat dieksekusi secara independen, pengembang dapat menguji satu per

satu fungsi secara terpisah sebelum mengintegrasikannya ke dalam
32 Pemrograman dan Komputasi Numerik

sistem utama. Ini mempercepat proses debugging dan meningkatkan
keandalan program.

2. Parameter, Return, dan Scope

Pada pemrograman, ketika kita menggunakan fungsi, tiga konsep
penting yang perlu dipahami dengan baik adalah parameter, return, dan
scope. Ketiganya berkaitan erat dengan bagaimana fungsi
berkomunikasi dengan bagian lain dari program serta bagaimana data
dikirim, diproses, dan dikembalikan dalam alur eksekusi. Parameter
adalah nilai yang dikirimkan ke dalam fungsi saat fungsi dipanggil.
Parameter memungkinkan fungsi bekerja secara fleksibel terhadap
berbagai input tanpa harus menulis ulang logika kode. Misalnya, fungsi
hitung luas (sisi) menerima satu parameter sisi yang dapat bernilai apa
saja, sehingga fungsinya bisa digunakan untuk menghitung luas dari
berbagai ukuran persegi. Ada dua jenis parameter utama: parameter
formal, yaitu yang dideklarasikan dalam definisi fungsi, dan parameter
aktual (argumen), yaitu nilai yang diberikan saat fungsi dipanggil.

Return adalah nilai yang dikembalikan oleh fungsi kepada
pemanggilnya setelah fungsi selesai diproses. Return memungkinkan
hasil dari suatu perhitungan atau proses dalam fungsi digunakan kembali
di bagian lain program. Misalnya, return sisi-sisi akan mengembalikan
nilai luas ke pemanggilnya, yang bisa disimpan dalam variabel lain atau
langsung ditampilkan. Sementara itu, scope atau ruang lingkup,
mengatur di mana variabel dapat diakses dalam program. Variabel yang
dideklarasikan di dalam fungsi hanya berlaku di dalam fungsi itu saja
dan disebut variabel lokal. Sebaliknya, variabel global dideklarasikan di
luar fungsi dan bisa diakses dari manapun dalam program. Memahami
scope penting untuk mencegah konflik antarvariabel dan menjaga agar
data dalam fungsi tidak "bocor" ke luar, yang dapat menyebabkan
kesalahan logika.

3. Modularisasi Program

Modularisasi program adalah pendekatan dalam pemrograman
yang bertujuan untuk memecah sistem atau program besar menjadi
bagian-bagian kecil yang disebut modul, di mana masing-masing modul
memiliki tanggung jawab khusus dan independen. Pendekatan ini sangat
penting dalam pengembangan perangkat lunak karena mempermudah

manajemen kompleksitas, meningkatkan keterbacaan kode, serta
Buku Referensi 33

memfasilitasi pemeliharaan dan pengembangan berkelanjutan.
Modularisasi mendukung prinsip desain perangkat lunak seperti
separation of concerns dan single responsibility, yang menekankan
bahwa setiap bagian dari program sebaiknya hanya melakukan satu tugas
tertentu.

Setiap modul dalam program bisa berupa fungsi, kelas, atau
bahkan file terpisah yang memiliki logika tertentu, dan biasanya dapat
dipanggil dari bagian program lain melalui antarmuka (interface) yang
jelas. Misalnya, dalam sebuah aplikasi sistem kasir, modul-modul yang
umum digunakan meliputi modul input transaksi, modul hitung diskon,
modul cetak struk, dan modul laporan harian. Setiap modul ini bisa
dikembangkan, diuji, dan dimodifikasi secara terpisah tanpa
mengganggu modul lain. Hal ini memberikan keuntungan besar dalam
pengembangan tim, karena beberapa programmer bisa bekerja secara
paralel pada modul berbeda.

Salah satu manfaat utama dari modularisasi adalah reusabilitas
kode. Modul yang dirancang dengan baik dapat digunakan kembali di
berbagai proyek atau bagian lain dari sistem tanpa perlu menyalin ulang
kode. Selain itu, modularisasi meningkatkan kemudahan pengujian
(testability), karena setiap modul bisa diuji secara terpisah melalui teknik
unit testing, sehingga memudahkan deteksi dan perbaikan bug secara
lebih cepat dan akurat.

Modularisasi juga berkontribusi pada efisiensi pengembangan
dan perawatan sistem jangka panjang. Dalam sistem besar yang terus
berkembang, kebutuhan akan pembaruan, penggantian logika bisnis,
atau penambahan fitur baru sangat tinggi. Dengan struktur modular,
pengembang dapat fokus pada bagian tertentu tanpa harus memahami
seluruh program secara keseluruhan. Ini sangat krusial untuk
memastikan keberlanjutan sistem dalam jangka waktu yang lama,
terutama ketika terjadi pergantian tim pengembang.

Di sisi teknis, modularisasi juga mendukung penggunaan
kembali pustaka eksternal (/ibrary) dan pemanfaatan framework modern
yang berbasis arsitektur modular, seperti penggunaan modul dalam
Python (dengan import), file header dan source terpisah di C++, atau
modul service dalam arsitektur berbasis microservices. Dengan
demikian, modularisasi bukan sekadar praktik struktural, tetapi
merupakan strategi penting dalam menyusun program yang fleksibel,

scalable, dan maintainable. Kemampuan untuk memecah permasalahan
34 Pemrograman dan Komputasi Numerik

besar menjadi bagian-bagian kecil yang bisa dikelola secara terpisah
adalah ciri utama dari pengembang perangkat lunak yang profesional.
Oleh karena itu, modularisasi program menjadi prinsip mendasar yang
wajib dikuasai dalam dunia pemrograman modern.

D. Visualisasi Data Numerik (Plotting dan Grafik)

Di era informasi yang didominasi oleh data, visualisasi data
numerik menjadi salah satu alat paling penting untuk membantu
pengguna memahami pola, tren, dan anomali dalam kumpulan data yang
kompleks. Visualisasi data, khususnya dalam bentuk plotting dan grafik,
merupakan proses transformasi angka-angka mentah menjadi
representasi visual yang lebih mudah dipahami dan dianalisis. Terutama
dalam bidang komputasi numerik, sains data, dan teknik, visualisasi
bukan hanya alat bantu tambahan, melainkan bagian esensial dari proses
eksplorasi, analisis, dan komunikasi hasil.

Menurut Ware (2012) dalam [Information Visualization:
Perception for Design, representasi visual membantu otak manusia
memproses informasi secara lebih efisien dibandingkan dengan teks atau
angka mentah, karena visualisasi mampu memanfaatkan kekuatan
persepsi spasial dan pengenalan pola visual secara alami (Ware, C.,
2012). Dalam konteks data numerik, ini sangat relevan karena sebagian
besar data yang diolah berupa angka dalam jumlah besar, yang sulit
ditafsirkan secara langsung tanpa representasi visual.

1. Jenis-Jenis Grafik dalam Visualisasi Numerik

Pada visualisasi data numerik, pemilihan jenis grafik yang tepat
sangat penting untuk menyampaikan informasi dengan jelas dan akurat.
Berbagai jenis grafik dirancang untuk membahas aspek yang berbeda
dari data, seperti distribusi, hubungan antar variabel, komparasi antar
kategori, maupun tren terhadap waktu. Setiap jenis grafik memiliki
kekuatan tersendiri dalam mengungkapkan pola-pola tersembunyi dalam
angka-angka mentah. Grafik garis (/ine chart) adalah salah satu jenis
grafik paling umum dalam visualisasi numerik. Grafik ini digunakan
untuk menampilkan perubahan nilai dari waktu ke waktu, seperti
pertumbuhan populasi, harga saham, atau suhu harian. Karena
kemampuannya menunjukkan arah tren secara halus, grafik garis sangat

efektif dalam mengilustrasikan dinamika temporal dari data kontinu.
Buku Referensi 35

Grafik batang (bar chart) digunakan untuk membandingkan nilai
antar kategori diskrit. Misalnya, perbandingan hasil penjualan antar
produk, jumlah siswa per jurusan, atau pengeluaran tahunan berdasarkan
sektor. Bar chart memudahkan pengguna melihat kategori mana yang
paling dominan atau paling rendah, terutama dalam kasus data
terklasifikasi. Histogram, meskipun tampak mirip dengan bar chart,
berfungsi untuk menunjukkan distribusi frekuensi dari data numerik
yang dibagi dalam rentang interval. Histogram sangat berguna untuk
mengetahui sebaran nilai, seperti dalam pengukuran statistik tinggi
badan, waktu proses, atau nilai ujian.

Scatter plot (diagram sebar) memvisualisasikan hubungan antara
dua variabel numerik. Ini sangat penting dalam analisis korelasi dan
regresi, di mana kita ingin tahu apakah perubahan satu variabel berkaitan
dengan perubahan variabel lain. Scatter plot juga berguna untuk
mendeteksi outlier. Box plot menampilkan ringkasan statistik dari data,
termasuk median, kuartil, dan pencilan (outlier). Grafik ini sangat
berguna dalam analisis komparatif antar kelompok, misalnya
membandingkan nilai ujian antar kelas atau distribusi pendapatan antar
wilayah. Jenis lainnya termasuk pie chart untuk proporsi, heatmap untuk
korelasi, serta surface plot dan contour plot dalam visualisasi tiga
dimensi atau data spasial. Pemilihan jenis grafik harus
mempertimbangkan jenis data, tujuan analisis, dan target audiens agar
informasi yang ditampilkan benar-benar membantu pemahaman dan
pengambilan keputusan.

2. Tools dan Library untuk Plotting Data

Di dunia komputasi numerik dan analisis data, keberadaan tools
dan library untuk plotting data sangat penting dalam mendukung
visualisasi yang efektif. Alat-alat ini memungkinkan pengguna untuk
mengubah data numerik menjadi representasi grafis yang intuitif, seperti
grafik garis, batang, scatter, dan histogram. Berbagai bahasa
pemrograman populer seperti Python, MATLAB, R, dan platform
visualisasi modern menyediakan beragam pustaka dan antarmuka visual
yang memudahkan proses ini, mulai dari eksplorasi data awal hingga
presentasi akhir.

Python merupakan salah satu bahasa pemrograman yang paling
banyak digunakan dalam sains data dan visualisasi, karena memiliki

ekosistem pustaka yang kuat dan fleksibel. Matplotlib, pustaka plotting
36 Pemrograman dan Komputasi Numerik

dasar di Python, memungkinkan pembuatan grafik 2D dengan kontrol
penuh terhadap setiap elemen visual, seperti judul, label sumbu, warna,
dan gaya garis. Untuk visualisasi statistik yang lebih estetis dan cepat,
Seaborn menjadi pilihan favorit, karena dibangun di atas Matplotlib dan
mampu membuat grafik seperti boxplot, heatmap, dan violin plot dengan
sintaks yang ringkas. Selain itu, Plotly dan Bokeh digunakan untuk
membuat grafik interaktif berbasis web yang sangat cocok untuk
dashboard dan aplikasi visualisasi data real-time.

MATLAB adalah tool proprietary yang sangat populer di bidang
teknik dan komputasi ilmiah. MATLAB menyediakan fungsi plotting
seperti plot, bar, surf, dan contour, yang sangat ideal untuk menampilkan
hasil komputasi numerik, simulasi, atau visualisasi fungsi matematis
dalam bentuk 2D maupun 3D. MATLAB dikenal karena kemudahan
penggunaannya serta kualitas grafik yang tinggi dan dapat dikustomisasi.
Untuk kebutuhan visualisasi tanpa kode, tersedia alat seperti Microsoft
Excel, Google Sheets, dan Tableau. Excel dan Google Sheets cocok
untuk visualisasi sederhana berbasis spreadsheet, seperti grafik batang
dan pie chart. Sedangkan Tableau menawarkan antarmuka drag-and-
drop untuk membuat visualisasi interaktif kompleks yang terhubung ke
berbagai sumber data.

3. Visualisasi dalam Proses Analisis dan Komputasi

Di dunia analisis data dan komputasi numerik, visualisasi bukan
hanya alat presentasi akhir, tetapi bagian penting dari keseluruhan proses
analisis yang membantu pengguna memahami, memverifikasi, dan
mengkomunikasikan hasil dengan lebih baik. Visualisasi berperan sejak
tahap eksplorasi awal data (exploratory data analysis/EDA), hingga
validasi model dan pelaporan hasil. Dengan mengubah angka-angka
menjadi bentuk grafis yang dapat dilihat secara intuitif, visualisasi
memungkinkan deteksi pola, anomali, atau kesalahan yang mungkin
tidak terlihat hanya melalui tabel data.

Pada tahap eksplorasi data, visualisasi membantu pengguna
mengenali distribusi, tren waktu, atau hubungan antar variabel.
Misalnya, dalam pemodelan statistik atau machine learning, scatter plot
dapat digunakan untuk melihat korelasi antara dua variabel numerik
sebelum diterapkan regresi. Demikian juga, histogram atau box plot
berguna untuk mengevaluasi persebaran dan outlier, yang sangat penting

untuk menjaga integritas model komputasi. Pada konteks komputasi
Buku Referensi 37

numerik, visualisasi berperan penting dalam memantau proses iteratif
atau solutif, seperti penyelesaian persamaan diferensial numerik,
simulasi fluida (CFD), atau optimasi non-linear. Sebagai contoh, dalam
metode Euler atau Runge-Kutta, grafik solusi terhadap waktu membantu
mengevaluasi stabilitas dan akurasi pendekatan numerik yang
digunakan. Tanpa visualisasi, peneliti hanya akan melihat deretan angka
yang sulit dievaluasi secara intuitif.

Visualisasi berperan dalam verifikasi dan validasi model
komputasi. Hasil simulasi atau prediksi dapat dibandingkan dengan data
aktual melalui grafik overlay, sehingga memudahkan penilaian terhadap
tingkat kesesuaian model. Bahkan dalam pengembangan sistem berbasis
kecerdasan buatan, seperti neural network, visualisasi dari loss function
atau akurasi terhadap epoch sangat penting dalam menentukan
keberhasilan proses pelatihan. Akhirnya, dalam pelaporan dan
komunikasi hasil analisis, visualisasi mempermudah penyampaian
informasi kepada pihak yang tidak teknis. Grafik yang tepat dapat
menjembatani pemahaman antara analis dan pengambil keputusan. Oleh
karena itu, integrasi visualisasi dalam setiap tahap analisis dan komputasi
adalah praktik terbaik yang wajib diterapkan dalam pengolahan data
modern.

38 Pemrograman dan Komputasi Numerik

REPRESEN'I'ASI
BILANGAN DAN
ARITMETIKA KOMPUTASI

Representasi bilangan dan aritmetika komputasi merupakan
fondasi utama dalam memahami cara kerja sistem komputasi modern.
Dalam dunia digital, bilangan tidak disimpan sebagaimana manusia
memahaminya dalam bentuk desimal, melainkan dalam representasi
biner, oktal, atau heksadesimal yang lebih sesuai dengan arsitektur
perangkat keras. Pemahaman mengenai bagaimana bilangan bulat,
bilangan pecahan, maupun bilangan floating-point direpresentasikan
dalam komputer sangat penting untuk menghindari kesalahan komputasi
yang tampak sepele namun berdampak besar, seperti pembulatan atau
underflow dan overflow. Aritmetika komputasi juga menyangkut
operasi-operasi dasar seperti penjumlahan, pengurangan, perkalian, dan
pembagian yang dilakukan dalam format terbatas dan presisi tertentu.
Dalam bab ini, membahas bagaimana komputer menangani bilangan
secara internal, termasuk struktur IEEE 754 untuk floating-point, serta
bagaimana kesalahan numerik dapat muncul dan dikendalikan.

A. Representasi Bilangan Floating point dan Biner

Di dunia komputasi modern, representasi data numerik berperan
yang sangat penting. Komputer tidak bekerja dengan angka sebagaimana
manusia melakukannya; melainkan, semua bentuk data, termasuk angka,
dikodekan dalam format biner. Salah satu format paling umum untuk
merepresentasikan angka pecahan dalam komputer adalah floating point.
Representasi ini memungkinkan komputer menangani berbagai angka

Buku Referensi 39

dengan rentang yang luas, baik sangat besar maupun sangat kecil, dengan
tingkat presisi yang terkontrol.

1. Representasi Biner

Representasi biner adalah sistem bilangan yang hanya
menggunakan dua simbol, yaitu 0 dan 1, untuk menyatakan semua jenis
data dalam komputer. Sistem ini menjadi dasar dalam dunia komputasi
karena perangkat keras komputer seperti transistor dan sirkuit digital
hanya mengenali dua keadaan logika: on (1) dan off (0). Dengan
menggunakan kombinasi bit-bit ini, komputer dapat merepresentasikan
angka, karakter, instruksi, hingga gambar dalam bentuk yang dapat
diolah secara elektronik.

Pada konteks bilangan bulat, representasi biner bekerja
berdasarkan posisi bit yang merepresentasikan pangkat dua. Sebagai
contoh, bilangan desimal 13 ditulis sebagai 1101 dalam biner, yang
berarti:

Ix2)+(1x2)+(0x2)+(1x2")=8+4+0+1=13

Untuk bilangan negatif, digunakan metode komplemen dua
(two’s complement) agar perhitungan aritmetika tetap efisien dalam
operasi logika. Misalnya, -5 dalam 8-bit two’s complement ditulis
sebagai 11111011.

Bilangan pecahan atau angka desimal dalam biner
direpresentasikan dengan memperluas sistem posisi ke bagian kanan titik
biner (binary point), menggunakan nilai-nilai seperti 271272, dan
seterusnya. Contohnya, bilangan 0.625 dalam biner adalah 0.101,
karena:

(Ix2H+0x2H+(1x2H=05+0+0.125 = 0.625

Meskipun efisien, sistem biner memiliki keterbatasan dalam
merepresentasikan beberapa bilangan desimal secara eksak. Sebagai
contoh, bilangan 0.1 tidak dapat direpresentasikan secara tepat dalam
bentuk biner terbatas, menyebabkan kesalahan pembulatan dalam
komputasi. Oleh karena itu, pemahaman tentang representasi biner
menjadi krusial bagi siapa pun yang bekerja di bidang komputasi, teknik,
maupun sains data untuk memastikan hasil perhitungan yang akurat dan
dapat dipertanggungjawabkan.

40 Pemrograman dan Komputasi Numerik

2. Floating Point

Floating point adalah format representasi bilangan dalam
komputer yang dirancang untuk menyatakan angka-angka real, baik
sangat besar maupun sangat kecil, dengan efisien dan presisi terbatas.
Berbeda dengan bilangan bulat (infeger) yang memiliki nilai tetap dalam
rentang tertentu, bilangan floating point memungkinkan adanya
eksponen untuk memperluas cakupan nilai yang bisa direpresentasikan.
Konsep floating point dapat dianalogikan seperti notasi ilmiah dalam
matematika. Format floating point yang paling umum digunakan di
seluruh sistem komputasi modern adalah standar IEEE 754, yang
menetapkan aturan representasi 32-bit (single precision) dan 64-bit
(double precision).

Pada struktur IEEE 754, satu angka floating point terdiri atas tiga
bagian utama: bit tanda (sign bif), eksponen, dan mantissa. Misalnya,
dalam format 32-bit: 1 bit digunakan untuk tanda (positif atau negatif),
8 bit untuk eksponen (dengan bias 127), dan 23 bit untuk mantissa. Nilai
aktual bilangan dihitung dengan rumus:

(—1)* % Lan x 2l basl

Keunggulan utama floating point adalah kemampuannya
merepresentasikan nilai sangat besar seperti 1038 dan nilai sangat kecil
seperti 10-38, yang penting dalam aplikasi ilmiah seperti simulasi fisika,
pemodelan keuangan, dan machine learning. Namun, karena hanya
sejumlah bit yang tersedia untuk menyimpan mantissa dan eksponen,
representasi ini rawan terhadap kesalahan pembulatan, overflow, dan
underflow. Akibatnya, programmer harus waspada terhadap
keterbatasan presisi dan efek numerik yang mungkin terjadi dalam
perhitungan. Oleh karena itu, floating point bukan hanya solusi teknis,
melainkan juga tantangan logika dan presisi dalam komputasi numerik.

3. Perbandingan

Di dunia komputasi numerik, representasi bilangan dapat
dibedakan menjadi dua kategori utama: floating point dan fixed point
(representasi tetap). Keduanya memiliki fungsi yang sama, yaitu
menyimpan dan memproses angka pecahan atau bilangan real, namun
dengan pendekatan dan karakteristik teknis yang sangat berbeda.
Floating point, seperti yang diatur oleh standar IEEE 754,
Buku Referensi 41

memungkinkan representasi angka dalam rentang yang sangat luas
melalui penggunaan eksponen berbasis dua. Format ini sangat ideal
untuk aplikasi yang memerlukan skala angka yang besar atau kecil
seperti simulasi ilmiah, grafik komputer, dan analisis statistik karena
dapat secara fleksibel menyesuaikan posisi titik desimal (floating)
tergantung besar kecilnya angka.

Representasi tetap (fixed point) menetapkan posisi titik desimal
pada tempat yang konstan. Hal ini menjadikannya lebih sederhana secara
implementasi dan efisien dalam hal penggunaan memori serta kecepatan
eksekusi, terutama pada sistem tertanam (embedded systems) seperti
mikrokontroler dan perangkat IoT. Namun, fixed point memiliki
keterbatasan rentang nilai dan presisi karena tidak mendukung eksponen.
Akibatnya, angka yang terlalu besar atau kecil dapat dengan mudah
mengalami overflow atau truncation.

Perbandingan keduanya menunjukkan adanya trade-off antara
fleksibilitas dan efisiensi. Floating point unggul dalam hal presisi
dinamis dan cakupan nilai, tetapi membutuhkan perangkat keras yang
lebih kompleks dan mahal. Fixed point lebih hemat sumber daya dan
cocok untuk aplikasi real-time dengan batas presisi yang dapat dikontrol.
Dalam praktiknya, pemilihan antara keduanya sangat tergantung pada
kebutuhan aplikasi: floating point untuk komputasi ilmiah berskala
besar, dan fixed point untuk sistem dengan keterbatasan sumber daya
namun memerlukan performa tinggi dan prediktabilitas.

B. Stabilitas dan Propagasi Kesalahan

Pada komputasi numerik, setiap perhitungan yang dilakukan oleh
komputer tidak lepas dari kemungkinan kesalahan. Hal ini disebabkan
oleh keterbatasan representasi bilangan dalam format biner dan floating
point, serta akumulasi kesalahan selama proses komputasi berlangsung.
Dua konsep kunci yang sangat penting dalam menganalisis dan
mengendalikan akurasi perhitungan numerik adalah stabilitas algoritma
dan propagasi kesalahan (error propagation). Memahami keduanya
sangat penting untuk menghindari hasil perhitungan yang tidak akurat
atau bahkan menyesatkan dalam aplikasi sains, teknik, maupun
keuangan.

42 Pemrograman dan Komputasi Numerik

1. Jenis-Jenis Kesalahan dalam Komputasi

Pada komputasi numerik, setiap proses perhitungan tidak terlepas
dari berbagai bentuk kesalahan (error) yang dapat memengaruhi akurasi
hasil. Pemahaman terhadap jenis-jenis kesalahan ini sangat penting agar
pengembang algoritma dan praktisi komputasi dapat mengambil
langkah-langkah korektif untuk meminimalkan dampaknya. Secara
umum, kesalahan dalam komputasi terbagi menjadi tiga kategori utama:
kesalahan pembulatan (round-off error), kesalahan pemotongan
(truncation error), dan kesalahan input atau data (input error).

Kesalahan pembulatan terjadi karena keterbatasan representasi
angka dalam komputer. Komputer menggunakan sistem floating point
dengan jumlah bit terbatas, sehingga tidak semua bilangan desimal dapat
direpresentasikan secara eksak. Misalnya, angka 0.1 dalam sistem
desimal tidak dapat ditulis secara tepat dalam biner, sehingga terjadi
pembulatan ke angka terdekat. Ketika perhitungan dilakukan berulang-
ulang, kesalahan kecil ini bisa terakumulasi dan memengaruhi hasil
akhir, terutama pada algoritma yang sensitif secara numerik.

Kesalahan pemotongan muncul ketika pendekatan matematis
digunakan untuk menyelesaikan permasalahan yang tidak bisa dihitung
secara eksak. Contohnya adalah penggunaan metode numerik seperti
deret Taylor, metode Euler, atau integrasi numerik. Dalam metode ini,
hanya sebagian dari istilah yang dihitung, sementara sisanya dipotong
(truncated), sehingga menghasilkan deviasi dari nilai sebenarnya.
Sementara itu, kesalahan input atau kesalahan data timbul dari
ketidaktepatan data awal yang dimasukkan ke dalam sistem, misalnya
hasil pengukuran yang tidak akurat atau data yang sudah mengalami
proses konversi. Kesalahan jenis ini sangat bergantung pada konteks
aplikasi, tetapi tetap dapat merambat melalui algoritma dan
menyebabkan hasil akhir yang menyesatkan jika tidak dikendalikan.

2. Propagasi Kesalahan

Propagasi kesalahan adalah fenomena penting dalam komputasi
numerik yang menggambarkan bagaimana kesalahan kecil pada data
awal atau hasil perhitungan dapat menyebar dan membesar seiring
berjalannya proses komputasi. Dalam praktiknya, hampir semua
perhitungan dalam komputer melibatkan kesalahan pembulatan (round-
off) akibat representasi floating point yang terbatas, serta kesalahan

pemotongan (truncation) dalam penggunaan metode numerik. Propagasi
Buku Referensi 43

kesalahan menjadi krusial karena akumulasi dari kesalahan-kesalahan
kecil ini dapat menyebabkan hasil akhir yang jauh menyimpang dari nilai
yang seharusnya, terutama pada algoritma yang bersifat numerik tidak
stabil.

Fenomena ini sering terjadi dalam operasi matematika yang
melibatkan angka-angka dengan nilai yang sangat berdekatan, seperti
dalam kasus pengurangan dua bilangan hampir sama. Salah satu contoh

klasik adalah perhitungan vx? + 1 — 1 untuk nilai x yang sangat kecil.
Proses pengurangan ini dapat menghilangkan informasi penting dari
angka yang tersimpan, fenomena ini dikenal sebagai catastrophic
cancellation.

Propagasi kesalahan juga terjadi dalam metode iteratif seperti
pada penyelesaian sistem persamaan linear, persamaan diferensial, atau
perhitungan akar fungsi. Jika algoritma yang digunakan tidak stabil,
maka kesalahan pada satu iterasi dapat diperkuat pada iterasi berikutnya,
sehingga kesalahan total menjadi tidak terkendali. Hal ini diperparah jika
masalah yang diselesaikan bersifat ill-conditioned, yaitu masalah di
mana sedikit perubahan pada input menghasilkan perubahan besar pada
output. Untuk mengatasi propagasi kesalahan, strategi numerik seperti
normalisasi data, penggunaan metode numerik stabil, transformasi
aljabar untuk menghindari pengurangan kritis, serta penggunaan kendali
kesalahan (error control) dalam metode iteratif sering digunakan.
Pemahaman tentang bagaimana dan kapan kesalahan tersebar adalah
kunci dalam merancang algoritma yang handal dan memastikan akurasi
hasil dalam aplikasi sains, teknik, maupun keuangan.

3. Stabilitas Algoritma

Stabilitas algoritma adalah konsep penting dalam komputasi
numerik yang mengacu pada sejauh mana suatu algoritma dapat
mengendalikan atau membatasi dampak kesalahan kecil selama proses
perhitungan. Dalam konteks ini, kesalahan yang dimaksud bisa berasal
dari pembulatan angka akibat keterbatasan representasi floating point,
kesalahan pemotongan dalam metode numerik, maupun kesalahan input
dari data yang tidak presisi. Algoritma yang stabil adalah algoritma yang
mampu menghasilkan hasil akhir yang mendekati solusi sebenarnya
meskipun terdapat gangguan kecil atau kesalahan pada data atau selama
perhitungan berlangsung. Sebaliknya, algoritma yang tidak stabil akan

44 Pemrograman dan Komputasi Numerik

memperbesar kesalahan ini sehingga hasil akhirnya menjadi tidak dapat
dipercaya.

Stabilitas sangat berkaitan dengan bagaimana kesalahan
terpropagasi atau menyebar selama serangkaian langkah perhitungan.
Sebagai contoh, dalam metode eliminasi Gauss untuk menyelesaikan
sistem persamaan linear, pembagian oleh angka yang sangat kecil dapat
menyebabkan hasil yang sangat melenceng karena pembulatan yang
ekstrem. Tanpa teknik stabilisasi seperti pivoting (penukaran baris untuk
memaksimalkan elemen pivot), metode ini menjadi tidak stabil secara
numerik. Inilah sebabnya metode partial pivoting atau scaled partial
pivoting banyak digunakan dalam praktik untuk menjaga kestabilan
hasil.

Stabilitas juga menjadi isu kritis dalam metode numerik yang
digunakan untuk menyelesaikan persamaan diferensial, seperti metode
Euler atau Runge-Kutta. Sebagai contoh, metode Euler eksplisit
cenderung tidak stabil jika digunakan pada sistem dengan dinamika
cepat atau dengan langkah waktu (step size) yang besar. Ketidakstabilan
ini menyebabkan nilai solusi menyimpang jauh dari solusi eksak, bahkan
bisa menjadi tak hingga. Oleh karena itu, penting dilakukan analisis
stabilitas terhadap metode numerik, termasuk dengan mengevaluasi
region of stability atau batas nilai langkah yang masih menghasilkan
solusi stabil.

C. Operasi Aritmetika dan Pembulatan dalam Mesin

Pada sistem komputasi modern, semua operasi numerik yang
dilakukan komputer seperti penjumlahan, pengurangan, perkalian, dan
pembagian dijalankan oleh unit pemroses (CPU) dalam bentuk operasi
aritmetika biner. Namun, keterbatasan dalam representasi angka,
khususnya angka real (pecahan), membuat hasil dari operasi ini sering
kali tidak presisi sempurna. Oleh karena itu, penting untuk memahami
operasi aritmetika dalam mesin dan bagaimana pembulatan (rounding)
diterapkan sebagai bagian dari proses ini.

1. Representasi Bilangan Floating point
Representasi bilangan floating point merupakan cara standar
yang digunakan komputer untuk menyimpan dan memanipulasi bilangan

real (pecahan), terutama bilangan yang sangat besar atau sangat kecil.
Buku Referensi 45

Sistem ini mengadopsi prinsip notasi ilmiah, di mana sebuah bilangan
dinyatakan dalam bentuk £mxb®, dengan mmm sebagai mantissa
(significand), bbb sebagai basis (biasanya 2 dalam sistem komputer), dan
eee sebagai eksponen. Untuk menjamin keseragaman dan
interoperabilitas antar sistem komputasi, representasi ini dikendalikan
oleh standar IEEE 754, yang paling umum digunakan di hampir semua
perangkat keras dan bahasa pemrograman saat ini.

Pada standar IEEE 754, terdapat dua format utama: single
precision (32-bit) dan double precision (64-bit). Untuk single precision,
satu bilangan floating point terdiri dari 1 bit tanda (sign bit), 8 bit
eksponen dengan bias 127, dan 23 bit mantissa. Sedangkan dalam double
precision, digunakan 1 bit tanda, 11 bit eksponen dengan bias 1023, dan
52 bit mantissa. Nilai eksponen yang disimpan sebenarnya adalah hasil
penjumlahan eksponen aktual dengan nilai bias, yang memungkinkan
penyimpanan bilangan positif dan negatif secara efisien.

Salah satu fitur penting dari sistem ini adalah normalisasi, di
mana angka disimpan dalam bentuk sedemikian rupa sehingga digit
paling signifikan dari mantissa adalah bukan nol (kecuali untuk nol atau
bilangan denormal). Proses normalisasi ini memastikan bahwa presisi
maksimum dimanfaatkan dalam keterbatasan bit yang tersedia. Namun
demikian, karena panjang mantissa terbatas, banyak bilangan desimal
yang tidak bisa direpresentasikan secara eksak (misalnya 0.1), sehingga
muncul kesalahan pembulatan (round-off error) dalam perhitungan.

Representasi floating point memungkinkan komputer untuk
menangani perhitungan ilmiah dengan skala luas, namun pengguna harus
berhati-hati terhadap akumulasi kesalahan, underflow, overflow, dan
fenomena seperti cancellation yang bisa muncul akibat keterbatasan
presisi. Oleh karena itu, pemahaman menyeluruh tentang representasi ini
menjadi fondasi penting dalam desain algoritma numerik yang akurat
dan stabil.

2. Operasi Aritmetika dalam Mesin

Operasi aritmetika dalam mesin merupakan proses dasar yang
dilakukan oleh unit pemroses (CPU atau FPU) untuk menyelesaikan
perhitungan matematis seperti penjumlahan, pengurangan, perkalian,
dan pembagian. Berbeda dengan operasi manual pada manusia,
komputer melakukan semua operasi tersebut dalam bentuk biner

menggunakan sistem representasi floating point, sebagaimana diatur
46 Pemrograman dan Komputasi Numerik

dalam standar IEEE 754. Proses ini sangat kompleks karena melibatkan
normalisasi, penyelarasan eksponen, manipulasi bit-bit mantissa, serta
pembulatan akhir agar hasil sesuai dengan kapasitas penyimpanan bit
yang tersedia.

Pada penjumlahan dan pengurangan floating point, langkah awal
yang dilakukan adalah penyamaan eksponen. Operand dengan eksponen
lebih kecil akan disesuaikan dengan menggeser mantissanya ke kanan,
sehingga eksponennya cocok dengan operand lain. Setelah eksponen
disamakan, barulah operasi mantissa dilakukan. Hasilnya kemudian
dinormalisasi jika hasil memiliki digit paling signifikan yang bukan di
posisi standar, maka mantissa digeser dan eksponen disesuaikan.
Terakhir, dilakukan pembulatan (rounding) ke dalam format bit mantissa
yang ditentukan (misalnya 23 bit untuk single precision), karena hasil
sebenarnya sering kali tidak bisa disimpan secara eksak.

Perkalian dan pembagian floating point memiliki mekanisme
berbeda. Eksponen operand dijumlahkan (untuk perkalian) atau
dikurangkan (untuk pembagian), sementara mantissa dikalikan atau
dibagi. Proses ini pun diakhiri dengan normalisasi dan pembulatan.
Seluruh langkah ini membuat operasi floating point lebih mahal secara
komputasi dibanding operasi integer, dan lebih rentan terhadap
kesalahan pembulatan (round-off error). Masalah juga bisa muncul jika
terjadi overflow (nilai melebihi batas maksimum eksponen) atau
underflow (nilai terlalu kecil untuk direpresentasikan). Karena sifat
aritmetika floating point yang tidak sepenuhnya asosiatif atau distributif,
hasil operasi bisa berbeda tergantung urutan kalkulasi. Oleh karena itu,
dalam pemrograman numerik, sangat penting untuk menyusun operasi
secara hati-hati dan memilih algoritma yang stabil secara numerik guna
meminimalkan akumulasi kesalahan dan menjamin keandalan hasil
perhitungan.

3. Pembulatan (Rounding)

Pembulatan (rounding) adalah proses penting dalam komputasi
numerik yang terjadi ketika suatu bilangan real tidak dapat
direpresentasikan secara eksak dalam format biner floating point,
sehingga harus disesuaikan ke nilai terdekat yang bisa diwakili oleh
komputer. Hal ini disebabkan oleh keterbatasan jumlah bit yang tersedia
untuk menyimpan angka, khususnya pada bagian mantissa. Sebagai

contoh, dalam format IEEE 754 single precision, hanya tersedia 23 bit
Buku Referensi 47

untuk mantissa, sehingga banyak bilangan desimal seperti 0.1 atau 1/3,
tidak dapat disimpan secara tepat. Akibatnya, proses pembulatan tidak
hanya tak terhindarkan, tetapi juga sangat berpengaruh terhadap akurasi
hasil perhitungan.

Menurut (Higham, 2002), pembulatan merupakan sumber utama
dari kesalahan pembulatan (round-off error), yaitu perbedaan antara nilai
aktual dan nilai yang disimpan atau dihitung oleh komputer. Dalam
standar IEEE 754, terdapat beberapa mode pembulatan yang
diimplementasikan untuk mengatur cara komputer menentukan nilai
terdekat, yaitu: round to nearest (default), round toward zero, round
toward +infinity, dan round toward —infinity. Mode round to nearest, ties
to even adalah yang paling umum, karena secara statistik dapat
meminimalkan akumulasi kesalahan dalam perhitungan berulang.

Proses pembulatan terjadi setiap kali hasil operasi aritmetika
tidak muat dalam mantissa yang tersedia. Misalnya, saat dua bilangan
dikalikan dan menghasilkan mantissa yang lebih panjang dari kapasitas,
komputer akan memotong digit-digit tak signifikan dan menyimpan hasil
yang dibulatkan. Jika proses ini terjadi secara berulang dalam algoritma
yang panjang atau iteratif, kesalahan pembulatan dapat terakumulasi dan
berdampak signifikan terhadap hasil akhir, terutama dalam algoritma
yang tidak stabil secara numerik. Untuk mengurangi efek negatif
pembulatan, praktisi komputasi numerik harus memahami sifat
pembulatan dalam mesin dan memilih strategi yang sesuai. Hal ini
termasuk menyusun ulang ekspresi matematis, menggunakan presisi
lebih tinggi jika diperlukan, serta menghindari operasi seperti
pengurangan dua angka yang hampir sama yang rentan terhadap
hilangnya digit signifikan akibat pembulatan.

D. Standard IEEE 754

Di dunia komputasi, angka real (pecahan) berperan an penting,
baik dalam aplikasi ilmiah, teknik, statistik, maupun grafika. Namun,
representasi angka-angka ini dalam komputer tidaklah sesederhana
penulisan desimal. Karena komputer hanya mengenal angka dalam
bentuk biner dan memiliki keterbatasan memori, dibutuhkan sistem
representasi numerik yang efisien, konsisten, dan mampu menangani
angka sangat besar maupun sangat kecil. Untuk menjawab kebutuhan

48 Pemrograman dan Komputasi Numerik

tersebut, diperkenalkanlah standar IEEE 754 yang hingga kini menjadi
patokan global dalam representasi dan perhitungan floating point.

Menurut (IEEE Standards Association, 2008), IEEE 754 adalah
standar yang dikembangkan oleh Institute of Electrical and Electronics
Engineers (IEEE) dan pertama kali diperkenalkan pada tahun 1985.
Standar ini mendefinisikan format penyimpanan, aturan pembulatan,
penanganan nilai khusus (seperti NaN dan Infinity), serta metode operasi
aritmetika floating point yang konsisten di seluruh arsitektur komputer
dan bahasa pemrograman. Sebelum adanya IEEE 754, produsen
perangkat keras memiliki implementasi floating point masing-masing
yang berbeda-beda, sehingga menyebabkan inkonsistensi hasil
perhitungan numerik antar sistem. IEEE 754 hadir untuk menyatukan
standar ini dan memastikan interoperabilitas serta akurasi komputasi di
berbagai platform dan aplikasi.

1. Struktur Representasi Floating point

Struktur representasi floating point dalam komputer adalah cara
menyimpan bilangan real menggunakan format biner dengan tiga
komponen utama: bit tanda (sign bit), eksponen (exponent), dan fraksi
atau mantissa (fraction/mantissa). Standar representasi yang digunakan
secara luas dalam industri dan akademik adalah IEEE 754, yang
menjamin konsistensi, efisiensi, dan interoperabilitas dalam perhitungan
numerik di berbagai sistem perangkat keras dan perangkat lunak.
Floating point digunakan karena mampu mewakili rentang angka yang
sangat luas, baik yang sangat kecil mendekati nol maupun yang sangat
besar, tanpa memerlukan format data yang terlalu besar secara fisik.

Pada format single precision (32 bit), bilangan floating point
terdiri dari 1 bit tanda, 8 bit eksponen, dan 23 bit mantissa. Bit tanda
menunjukkan apakah bilangan positif (0) atau negatif (1). Eksponen
digunakan untuk mengalikan basis dua sehingga bilangan bisa
dinormalisasi, dan disimpan dalam format “biased exponent” dengan
bias sebesar 127. Artinya, nilai eksponen aktual diperoleh dengan
mengurangkan nilai yang disimpan dengan 127. Sedangkan bagian
mantissa menyimpan angka-angka setelah titik desimal, dan dalam
representasi normalisasi selalu diasumsikan memiliki bit tersembunyi
(implicit bit) yaitu angka 1 di depan, sehingga bagian mantissa
sebenarnya adalah 1.x... dalam basis biner. Pada double precision (64

bit), strukturnya terdiri dari 1 bit tanda, 11 bit eksponen, dan 52 bit
Buku Referensi 49

mantissa, dengan bias eksponen sebesar 1023. Dengan kapasitas
mantissa yang lebih besar, double precision memungkinkan representasi
bilangan yang jauh lebih presisi dan mengurangi kemungkinan
kesalahan pembulatan (round-off error) dalam operasi aritmetika.

Salah satu keunggulan struktur floating point ini adalah
kemampuannya untuk menangani bilangan desimal sangat besar atau
sangat kecil secara efisien, yang tidak dapat dilakukan oleh representasi
integer biasa. Namun, struktur ini juga memperkenalkan tantangan,
seperti ketidakakuratan representasi bilangan desimal tertentu (misalnya
0.1) dan efek propagasi kesalahan dalam operasi berulang. Oleh karena
itu, pemahaman terhadap struktur ini sangat penting dalam merancang
algoritma numerik yang stabil dan efisien di berbagai aplikasi sains,
teknik, dan keuangan.

2. Nilai Khusus dalam IEEE 754

Pada standar IEEE 754 untuk representasi bilangan floating
point, tidak semua pola bit digunakan untuk menyatakan bilangan real
biasa. Sebagian pola disediakan untuk merepresentasikan nilai-nilai
khusus yang memiliki makna penting dalam komputasi numerik,
terutama dalam penanganan kondisi ekstrem seperti pembagian nol,
overflow, underflow, atau operasi tak terdefinisi. Nilai-nilai khusus ini
mencakup: Nol positif/negatif (+0), Tak hingga (+x), NaN (Not a
Number), dan bilangan denormal atau subnormal.

Pertama, +0 menunjukkan bahwa angka nol dapat disimpan
dengan tanda positif atau negatif. Meskipun secara matematis tidak
berbeda, dalam komputasi £0 digunakan untuk mempertahankan arah
pendekatan limit atau derivatif, yang penting dalam analisis numerik dan
kalkulus. Contohnya, hasil dari -1/00 dapat berupa -0, menunjukkan
bahwa pendekatan berasal dari arah negatif.

Kedua, tak hingga (positive/negative infinity) muncul saat hasil
perhitungan melebihi batas representasi eksponen tertinggi (overflow),
seperti ketika membagi angka besar dengan angka sangat kecil atau
pembagian angka bukan nol dengan nol. Dalam IEEE 754, ini diwakili
dengan eksponen maksimum (semua bit eksponen = 1) dan mantissa =
0. Hasil operasi terhadap tak hingga mengikuti aturan aljabar, misalnya
atoo=00, tetapi operasi seperti co—oco menghasilkan NaN.

50 Pemrograman dan Komputasi Numerik

Ketiga, NaN (Not a Number) digunakan untuk menunjukkan

hasil dari operasi yang tidak valid secara matematis, seperti /—1,0/0,
atau co—oo. NaN memiliki eksponen semua bit 1, seperti tak hingga, tetapi
mantissanya tidak nol. Terdapat dua jenis NaN: quiet NaN (qNaN) yang
terus propagasi dalam perhitungan, dan signaling NaN (sNaN) yang
dimaksudkan untuk menghasilkan error jika digunakan tanpa
penanganan.

Keempat, bilangan denormal (subnormal) digunakan saat hasil
bilangan sangat kecil sehingga tidak lagi bisa dinormalisasi dalam format
standar. Dalam kasus ini, angka disimpan dengan eksponen nol (bukan
eksponen bias), dan tanpa bit 1 tersembunyi pada mantissa. Nilai ini
memperluas rentang representasi menuju nol dan memungkinkan
graceful underflow, yakni hasil perhitungan tidak langsung menjadi nol,
melainkan bertahap mendekati nol.

3. Evolusi dan Versi Terbaru

Standar IEEE 754 telah mengalami beberapa kali evolusi sejak
pertama kali diperkenalkan pada tahun 1985, seiring dengan
berkembangnya kebutuhan komputasi numerik di berbagai bidang
seperti sains, teknik, keuangan, hingga kecerdasan buatan. Versi awal
IEEE 754-1985 berfokus pada definisi representasi floating point untuk
dua format utama: single precision (32-bit) dan double precision (64-
bit). Standar ini memperkenalkan konsep penting seperti pembulatan
standar (rounding modes), nilai khusus (NaN dan Infinity), serta
pengaturan overflow dan underflow, yang hingga kini menjadi dasar
utama komputasi numerik.

Seiring meningkatnya kompleksitas dan skala komputasi
modern, IEEE kemudian memperbarui standar ini melalui versi IEEE
754-2008. Versi ini membawa beberapa pembaruan signifikan, seperti
penambahan format baru, termasuk quadruple precision (128-bit) dan
decimal floating point, yang dirancang untuk aplikasi yang memerlukan
akurasi sangat tinggi atau manipulasi data desimal secara presisi, seperti
dalam sistem keuangan. Versi ini juga menetapkan operasi baru seperti
fused multiply-add (FMA) yang menggabungkan operasi perkalian dan
penjumlahan dalam satu langkah untuk mengurangi kesalahan
pembulatan, serta memperluas aturan konversi antar format dan
representasi bilangan kompleks.

Buku Referensi 51

Gambar 3. Cloud Computing

CLOUD
COMPUTING

= « J as
Server OJ é LO Database

Sumber: Btech

Terbaru, versi IEEE 754-2019 memperbaiki dan
menyempurnakan standar sebelumnya, dengan tujuan meningkatkan
kejelasan implementasi dan interoperabilitas. Beberapa perbaikan yang
dibawa termasuk definisi lebih eksplisit tentang perilaku nilai NaN,
pelabelan tipe minimal (minimal floating-point types) untuk perangkat
keras dengan sumber daya terbatas, serta penyempurnaan dokumentasi
operasi pembulatan, konversi, dan penanganan pengecualian. IEEE 754-
2019 juga menegaskan kembali pentingnya akurasi, determinisme, dan
portabilitas dalam lingkungan komputasi yang terus berubah, seperti
cloud computing dan komputasi paralel.

Evolusi standar IEEE 754 menunjukkan bagaimana komunitas
ilmiah dan teknis merespons tantangan komputasi numerik secara
progresif. Dengan menetapkan aturan yang konsisten untuk semua jenis
sistem dan platform, standar ini memungkinkan pengembang dan
peneliti untuk membangun algoritma yang stabil, dapat direproduksi,
dan andal, serta mampu menangani kompleksitas perhitungan skala
besar dengan keakuratan tinggi.

52 Pemrograman dan Komputasi Numerik

PENYELESAIAN
PERSAMAAN ALJABAR
LINEAR

Persamaan aljabar linear merupakan salah satu fondasi utama
dalam bidang matematika terapan dan komputasi numerik.
Penyelesaiannya tidak hanya penting dalam ranah teori, tetapi juga
memiliki aplikasi luas dalam berbagai disiplin ilmu, seperti fisika,
teknik, ekonomi, dan ilmu komputer. Dalam praktiknya, sistem
persamaan linear sering kali muncul dalam bentuk matriks dan vektor,
serta membutuhkan pendekatan numerik yang efisien untuk
mendapatkan solusi yang akurat, terutama ketika berhadapan dengan
sistem berskala besar atau yang tidak dapat diselesaikan secara analitik.
Buku atau materi ini disusun untuk memberikan pemahaman
menyeluruh tentang teknik penyelesaian sistem persamaan linear, mulai
dari metode eliminasi Gauss, dekomposisi matriks seperti LU
decomposition, hingga pendekatan iteratif seperti metode Jacobi dan
Gauss-Seidel. Di samping penjelasan teoritis, pembahasan juga
dilengkapi dengan implementasi algoritma menggunakan bahasa
pemrograman modern, sehingga pembaca dapat secara langsung
menerapkan konsep yang dipelajari dalam pemecahan masalah nyata.

A. Sistem Persamaan Linear dan Matriks Koefisien

Menurut Anton & Rorres (2010) dalam Elementary Linear
Algebra, sistem persamaan linear adalah sekumpulan persamaan linear

Buku Referensi 53

yang memiliki satu atau lebih variabel yang saling berkaitan. Dalam
bentuk umum, sistem ini dapat dituliskan sebagai berikut:

.,
Q1] + Qs + -+ AT, = 0

oL + Agay + -+ - + o, 2, = by

+
+

.._ﬂ'mli:l + Lo dia + -t R 'bm

Sistem seperti ini disebut sistem persamaan linear dengan m persamaan
dan n variabel. Koefisien aij menyatakan konstanta pengali variabel ke-j
dalam persamaan ke-i, sedangkan bi merupakan konstanta pada ruas
kanan.

1. Representasi Matriks Koefisien

Representasi matriks koefisien merupakan pendekatan sistematis
untuk menuliskan sistem persamaan linear dalam bentuk yang lebih
ringkas dan terstruktur. Dalam sistem persamaan linear, setiap
persamaan melibatkan sejumlah variabel dengan koefisien tertentu. Jika
sistem tersebut memiliki mmm persamaan dan nnn variabel, maka semua
koefisien dapat disusun dalam sebuah matriks berukuran mxn, yang
dikenal sebagai matriks koefisien. Misalnya, sistem tiga persamaan
dengan tiga variabel:

(&) + ayods + a3y = by
@21 + aoois + azzry = ba

a3 k] + zo®e + azars = b

dapat direpresentasikan menjadi:

Q. alr a] by
A= lan am ax|, x=|z201, b= |b
a3l azr a3 3 b

Sehingga, sistem tersebut ditulis sebagai Ax=b. Representasi ini
memiliki keunggulan dalam efisiensi notasi, kemudahan manipulasi
matematis, dan sangat sesuai untuk diimplementasikan secara

54 Pemrograman dan Komputasi Numerik

komputasi. Dalam konteks algoritma numerik, operasi terhadap sistem
linear seperti eliminasi Gauss, dekomposisi matriks, atau metode iteratif
dapat dilakukan dengan jauh lebih mudah menggunakan bentuk matriks
ini. Selain itu, dengan menambahkan vektor konstanta b sebagai kolom
terakhir dari matriks koefisien, diperoleh matriks augmented [A|b], yang
sangat bermanfaat dalam menyelesaikan sistem dengan metode operasi
baris elementer. Oleh karena itu, representasi matriks koefisien bukan
hanya alat bantu notasi, tetapi merupakan dasar penting dalam teori dan
aplikasi sistem persamaan linear.

2. Matriks Augmented dan Transformasi Baris

Matriks augmented adalah representasi matriks gabungan yang
menyatukan matriks koefisien dari sistem persamaan linear dengan
vektor konstanta di sisi kanan persamaan. Bentuk ini ditulis sebagai
[A|b], di mana A adalah matriks koefisien berukuran mxn dan b adalah
vektor kolom dari konstanta ruas kanan berukuran mx1. Tujuan dari
matriks augmented adalah untuk memfasilitasi penyelesaian sistem
linear melalui manipulasi baris secara langsung, tanpa perlu menuliskan
ulang seluruh sistem persamaan dalam bentuk aljabar konvensional.
Representasi ini sangat efektif dalam metode numerik seperti eliminasi
Gauss dan Gauss-Jordan.

Proses penyederhanaan matriks augmented dilakukan melalui
transformasi baris elementer, yang terdiri dari tiga jenis: (1) menukar dua
baris, (2) mengalikan suatu baris dengan skalar tak nol, dan (3)
menambahkan kelipatan suatu baris ke baris lainnya. Transformasi ini
bertujuan mengubah bentuk matriks augmented menjadi eselon baris
atau bahkan eselon baris tereduksi, sehingga solusi sistem dapat
diperoleh dengan mudah melalui substitusi mundur atau langsung
terbaca dari hasil akhir.

Sebagai contoh, sistem dua persamaan linear yang
direpresentasikan sebagai matriks augmented:

2 3 |8

4 1|2
dapat disederhanakan menggunakan operasi baris hingga mencapai
bentuk:

Buku Referensi 55

1 0=

0 1|y
yang secara langsung menyatakan solusi dari sistem. Menurut
Lay (2012), transformasi baris tidak mengubah solusi dari sistem,

sehingga semua bentuk yang ekuivalen baris tetap merepresentasikan
sistem persamaan yang sama. Oleh karena itu, penggunaan matriks
augmented dan transformasi baris menjadi pendekatan yang sangat kuat
dan fundamental dalam penyelesaian sistem linear secara manual
maupun komputasional.

3. Solusi Sistem Persamaan Linear

Solusi sistem persamaan linear merujuk pada himpunan nilai
variabel yang memenuhi semua persamaan dalam sistem secara
simultan. Menurut Strang (2016) dalam Introduction to Linear Algebra,
sistem linear dapat memiliki tiga kemungkinan solusi: (1) satu solusi
unik, (2) tak hingga banyak solusi, atau (3) tidak memiliki solusi sama
sekali. Jenis solusi yang mungkin sangat bergantung pada hubungan
antara jumlah persamaan, jumlah variabel, dan sifat dari matriks
koefisien.

Solusi unik terjadi apabila sistem terdiri dari nnn persamaan
independen dengan nnn variabel dan determinan matriks koefisien tidak
nol (dalam kasus matriks persegi). Solusi tak hingga muncul jika terdapat
redundansi atau ketergantungan linier antar persamaan, sehingga sistem
memiliki lebih sedikit persamaan efektif dibanding variabel umumnya
terjadi dalam sistem underdetermined. Sementara itu, sistem dikatakan
tidak konsisten atau tidak memiliki solusi jika terdapat kontradiksi antar
persamaan.

Untuk menentukan jenis solusi, konsep rank sangat penting.
Rank adalah jumlah maksimum baris atau kolom linear independen
dalam matriks. Berdasarkan Teorema Rouché—Capelli, solusi sistem
ditentukan dengan membandingkan rank matriks koefisien A dan rank
matriks augmented [A|b]. Jika rank-nya sama dan setara dengan jumlah
variabel, sistem memiliki solusi unik. Jika rank sama tetapi kurang dari
jumlah variabel, terdapat tak hingga solusi. Jika rank berbeda, sistem
tidak memiliki solusi.

56 Pemrograman dan Komputasi Numerik

Pemahaman tentang jenis solusi sangat penting dalam penerapan
praktis, seperti dalam analisis struktur teknik sipil, pemodelan ekonomi,
atau sistem pengendalian dalam teknik elektro. Tanpa mengetahui sifat
solusi, penggunaan algoritma komputasi bisa menghasilkan hasil yang
salah atau tidak bermakna.

4. Interpretasi Geometris

Interpretasi geometris dari sistem persamaan linear memberikan
pemahaman visual mengenai bagaimana solusi dari sistem tersebut
terbentuk. Menurut Anton & Rorres (2010) dalam Elementary Linear
Algebra, setiap persamaan linear dalam dua variabel dapat
direpresentasikan sebagai sebuah garis lurus di bidang dua dimensi (2D),
sementara dalam tiga variabel akan direpresentasikan sebagai bidang
dalam ruang tiga dimensi (3D). Titik perpotongan dari garis atau bidang
ini menjadi representasi dari solusi sistem.

Pada ruang dua dimensi, misalnya, sistem dua persamaan linear
dapat divisualisasikan sebagai dua garis. Jika garis-garis tersebut
berpotongan di satu titik, maka sistem memiliki satu solusi unik, yaitu
koordinat titik perpotongan tersebut. Jika kedua garis saling berimpit,
artinya merepresentasikan persamaan yang sama dan sistem memiliki
tak hingga banyak solusi. Namun, jika garis-garis tersebut sejajar namun
tidak berpotongan, maka sistem tidak memiliki solusi, yang menandakan
bahwa sistem tersebut inkonsisten.

Pada ruang tiga dimensi, setiap persamaan linear tiga variabel
mewakili sebuah bidang. Tiga bidang dapat berpotongan di satu titik
(solusi unik), sepanjang garis (tak hingga solusi), atau tidak berpotongan
sama sekali (tidak ada solusi). Misalnya, dua bidang yang sejajar atau
tiga bidang yang membentuk prisma tanpa titik temu merupakan sistem
yang tidak konsisten. Interpretasi ini juga berlaku di ruang berdimensi
lebih tinggi secara abstrak, meskipun tidak mudah divisualisasikan.
Konsep vektor, ruang vektor, dan subruang membantu memahami posisi
relatif antar persamaan dalam konteks geometris. Dengan demikian,
interpretasi geometris bukan hanya berguna untuk visualisasi, tetapi juga
memberikan intuisi mendalam tentang kondisi eksistensi dan keunikan
solusi, serta hubungan linier antar persamaan dalam sistem.

Buku Referensi 57

B. Eliminasi Gauss dan Pivoting

Menurut Burden dan Faires (2011) dalam Numerical Analysis,
metode eliminasi Gauss (Gaussian Elimination) adalah salah satu
algoritma dasar dalam penyelesaian sistem persamaan linear. Metode ini
bekerja dengan mengubah sistem persamaan menjadi bentuk segitiga
atas (upper triangular matrix) melalui operasi baris elementer. Dengan
bentuk ini, solusi sistem linear dapat diperoleh secara efisien melalui
teknik substitusi mundur (back substitution).

i
ATy + Apals + 0+ AT, = b

g) + Qaails + - -+ + Gy, = by

4
4

._En.lml =+ dpailia + -+ L bn

dapat direpresentasikan dalam bentuk matriks augmented [A|b].
Tujuan eliminasi Gauss adalah untuk menghilangkan elemen-elemen di
bawah diagonal utama agar sistem menjadi bentuk upper triangular, yaitu
hanya elemen diagonal dan elemen di atasnya yang bukan nol.

1. Operasi Baris Elementer

Operasi baris elementer adalah tiga jenis transformasi dasar yang
digunakan untuk memodifikasi baris-baris dalam sebuah matriks tanpa
mengubah solusi dari sistem persamaan linear yang
direpresentasikannya. Menurut Lay (2012) dalam Linear Algebra and Its
Applications, operasi baris elementer sangat penting dalam metode
penyelesaian sistem linear seperti eliminasi Gauss, Gauss-Jordan, dan
proses reduksi matriks ke bentuk eselon. Operasi ini memungkinkan kita
untuk menyederhanakan sistem persamaan linear menjadi bentuk yang
lebih mudah diselesaikan tanpa kehilangan karakteristik solusinya.

Tiga jenis operasi baris elementer adalah: (1) Pertukaran dua
baris (interchange), (2) Perkalian baris dengan skalar tak nol (scaling),
dan (3) Penjumlahan kelipatan suatu baris ke baris lain (replacement).
Setiap operasi ini memiliki peran unik dalam proses manipulasi matriks.

Pertama, pertukaran dua baris digunakan ketika elemen pivot
(elemen diagonal yang akan digunakan untuk mengeliminasi elemen di
58 Pemrograman dan Komputasi Numerik

bawahnya) adalah nol atau mendekati nol. Dalam kasus seperti itu, untuk
menghindari pembagian dengan nol atau angka sangat kecil yang dapat
menyebabkan ketidakstabilan numerik, baris tersebut ditukar dengan
baris lain yang memiliki elemen pivot lebih besar secara nilai mutlak.
Operasi ini sering digunakan dalam strategi partial pivoting, yang sangat
penting dalam komputasi numerik.

Kedua, perkalian baris dengan skalar tak nol berguna untuk
menyederhanakan elemen pivot menjadi satu (1), sehingga memudahkan
eliminasi elemen lainnya. Misalnya, jika elemen pivot adalah 4, maka

seluruh baris dapat dikalikan dengan i agar pivot menjadi 1. Ini juga

digunakan dalam metode Gauss-Jordan, di mana tujuan akhirnya adalah
mencapai bentuk eselon baris tereduksi (reduced row echelon form), di
mana semua elemen pivot bernilai 1 dan elemen-elemen di atas dan di
bawah pivot bernilai nol. Ketiga, penjumlahan kelipatan suatu baris ke
baris lain adalah operasi paling umum dalam proses eliminasi.
Tujuannya adalah menghilangkan elemen tertentu di bawah atau di atas
pivot agar tercapai struktur segitiga atas atau bentuk eselon. Proses ini
dilakukan berulang hingga semua elemen di bawah (atau di atas) pivot
menjadi nol.

Menurut Strang (2016) dalam Introduction to Linear Algebra,
ketiga operasi baris ini secara matematis bersifat reversible, artinya
setiap operasi memiliki operasi kebalikannya yang dapat
mengembalikan matriks ke bentuk semula. Hal ini memastikan bahwa
struktur sistem tetap terjaga dan solusi tetap valid. Karena itu, operasi
baris elementer digunakan tidak hanya dalam penyelesaian sistem
persamaan linear, tetapi juga dalam proses mencari invers matriks,
menghitung determinan (secara tidak langsung), dan menemukan rank
sebuah matriks.

Pada implementasi komputasi, operasi baris elementer
diaplikasikan secara sistematis dan efisien. Misalnya, dalam algoritma
eliminasi Gauss, baris pertama digunakan untuk menghilangkan elemen
di kolom pertama pada baris-baris di bawahnya, kemudian baris kedua
digunakan untuk mengeliminasi elemen di kolom kedua, dan seterusnya.
Operasi-operasi ini juga menjadi dasar dalam algoritma pustaka numerik
populer seperti LAPACK dan NumPy.

Buku Referensi 59

2. Pivoting

Pivoting adalah teknik penting dalam penyelesaian sistem
persamaan linear yang digunakan untuk meningkatkan stabilitas numerik
dan keakuratan hasil dalam metode eliminasi Gauss. Menurut Trefethen
dan Bau (1997) dalam Numerical Linear Algebra, pivoting dilakukan
dengan memilih elemen terbesar (secara nilai absolut) di kolom atau
seluruh submatriks sebagai elemen pivot, lalu menukar baris (dan kadang
kolom) untuk menempatkan elemen tersebut pada posisi utama diagonal.
Tujuannya adalah untuk menghindari pembagian dengan angka yang
sangat kecil atau nol, yang dapat menyebabkan kesalahan pembulatan
yang besar dalam perhitungan numerik.

Pada konteks metode eliminasi Gauss, setiap langkah
mengharuskan kita membagi elemen-elemen di bawah pivot dengan nilai
pivot itu sendiri. Jika nilai pivot sangat kecil, pembagian tersebut akan
menghasilkan bilangan besar yang rentan terhadap kesalahan
pembulatan. Di sinilah pivoting menjadi penting. Dengan memilih
elemen terbesar sebagai pivot, kita meminimalkan potensi kesalahan
akibat keterbatasan presisi dalam komputasi floating-point.

Ada tiga jenis pivoting yang umum digunakan: partial pivoting,
complete pivoting, dan scaled pivoting. Partial pivoting, yang paling
umum dan efisien, melibatkan pencarian elemen terbesar di kolom pivot
dan menukar baris yang bersangkutan ke posisi baris aktif saat ini.
Complete pivoting lebih ekstrem, di mana pencarian dilakukan di seluruh
submatriks dan baik baris maupun kolom dapat dipertukarkan.
Sementara itu, scaled pivoting mempertimbangkan rasio antara elemen
pivot dan elemen maksimum pada barisnya untuk mencegah kesalahan
akibat perbedaan skala antar baris. Sebagai contoh, perhatikan sistem:

0.0003x + 3.0000y = 2.0001
1.0000x + 1.0000y = 2.0000

Jika kita menggunakan baris pertama sebagai pivot tanpa
melakukan pivoting, maka kita akan membagi dengan angka 0.0003,
yang sangat kecil. Ini berpotensi menghasilkan kesalahan pembulatan
besar. Namun, jika kita menerapkan partial pivoting dan menukar baris
pertama dengan baris kedua, kita akan menggunakan 1.0000 sebagai
pivot, sehingga perhitungan menjadi jauh lebih stabil dan akurat.

Menurut Golub dan Van Loan (2013) dalam Matrix
Computations, penggunaan pivoting khususnya partial pivoting telah
60 Pemrograman dan Komputasi Numerik

menjadi standar dalam hampir semua implementasi algoritma
penyelesaian sistem linear pada perangkat lunak numerik modern seperti
MATLAB, LAPACK, dan NumPy. Hal ini karena partial pivoting
menyediakan keseimbangan antara kestabilan numerik dan efisiensi
komputasi. Dalam dunia nyata, stabilitas hasil perhitungan sangat
penting, terutama dalam aplikasi teknik, simulasi ilmiah, dan
pemrosesan data berskala besar. Tanpa pivoting, metode eliminasi Gauss
dapat menghasilkan hasil yang sangat tidak akurat atau bahkan gagal
menyelesaikan sistem. Oleh karena itu, pemahaman dan penerapan
pivoting adalah aspek krusial dalam komputasi numerik modern.

C. Metode Iteratif: Jacobi dan Gauss-Seidel

Menurut Burden dan Faires (2011) dalam Numerical Analysis,
metode iteratif merupakan pendekatan yang digunakan untuk
menyelesaikan sistem persamaan linear, khususnya ketika sistem
tersebut sangat besar atau memiliki struktur matriks koefisien yang
jarang (sparse). Berbeda dengan metode langsung seperti eliminasi
Gauss yang mencari solusi dalam jumlah langkah terbatas, metode
iteratif menghasilkan serangkaian pendekatan yang mendekati solusi
sejati secara bertahap. Dua metode iteratif klasik yang paling dikenal
adalah metode Jacobi dan metode Gauss-Seidel, yang keduanya
memiliki prinsip kerja yang relatif sederhana namun efektif.

Saad (2003) dalam Iterative Methods for Sparse Linear Systems
menjelaskan bahwa dalam sistem berdimensi besar, metode langsung
sering kali tidak praktis karena kompleksitas komputasi dan kebutuhan
memori yang tinggi. Hal ini terutama berlaku pada sistem dengan
matriks berukuran ribuan hingga jutaan baris dan kolom, seperti dalam
simulasi numerik fluida atau analisis struktur teknik. Dalam konteks
inilah metode iteratif menjadi solusi ideal karena hemat memori, mampu
menangani matriks sparse, dan dapat dihentikan pada tingkat akurasi
yang diinginkan.

1. Prinsip Dasar Metode Iteratif

Prinsip dasar metode iteratif dalam penyelesaian sistem
persamaan linear adalah membentuk serangkaian pendekatan yang
secara bertahap mendekati solusi yang benar dari sistem tersebut.

Menurut Burden dan Faires (2011) dalam Numerical Analysis, metode
Buku Referensi 61

iteratif memulai prosesnya dengan sebuah tebakan awal terhadap nilai-
nilai variabel, lalu melalui rumus perbaikan tertentu, menghasilkan
solusi baru yang diharapkan semakin mendekati nilai sebenarnya. Proses
ini diulang terus-menerus sampai kriteria konvergensi terpenuhi
biasanya ditentukan oleh toleransi kesalahan yang sangat kecil atau
jumlah iterasi maksimum.

Secara matematis, sistem linear Ax = b akan diubah menjadi
bentuk rekursif X&D = Gx® + ¢, dimana X adalah pendekatan
solusi pada iterasi ke-k, G adalah matriks transformasi iteratif, dan c
adalah vektor tetap hasil transformasi dari A dan b. Tujuan dari iterasi
ini adalah agar X% konvergen terhadap solusi sebenarnya x, yaitu saat
limk — oo x(k) — x.

Keunggulan utama metode iteratif terletak pada efisiensinya
dalam menangani sistem besar dan sparse, karena tidak memerlukan
penyimpanan semua elemen matriks. Selain itu, pengguna memiliki
fleksibilitas dalam mengatur presisi solusi sesuai kebutuhan aplikasi.
Namun, konvergensi tidak selalu dijamin. Faktor seperti struktur
matriks, kondisi awal, dan nilai eigen dari matriks iterasi sangat
menentukan keberhasilan metode ini. Karena itu, analisis konvergensi
seperti dominansi diagonal atau sifat positif-definit dari matriks sangat
penting sebelum menerapkan metode iteratif secara praktis.

2. Metode Jacobi

Metode Jacobi adalah salah satu teknik iteratif paling dasar yang
digunakan untuk menyelesaikan sistem persamaan linear, khususnya
ketika sistem tersebut besar dan memiliki struktur matriks sparse.
Menurut Burden dan Faires (2011) dalam Numerical Analysis, metode
Jacobi bekerja dengan prinsip bahwa setiap variabel dalam sistem
diselesaikan secara terpisah menggunakan nilai-nilai dari iterasi
sebelumnya, tanpa segera memanfaatkan nilai yang baru dihitung dalam
iterasi yang sama. Ini membuat metode Jacobi bersifat paralel secara
alami, karena semua elemen solusi diperbarui secara bersamaan pada
akhir setiap iterasi.

iy _ Lo, L) L
T _a—ﬁ br_;ﬂuij , t=12,...,n
J T

62 Pemrograman dan Komputasi Numerik

Pada setiap iterasi ke-*"!, nilai variabel x; dihitung berdasarkan

nilai-nilai variabel lain pada iterasi sebelumnya ke-k. Syarat penting agar
metode Jacobi konvergen adalah matriks A harus dominan diagonal,
yaitu nilai absolut dari elemen diagonal setiap baris lebih besar daripada
jumlah absolut elemen-elemen lainnya dalam baris tersebut. Tanpa sifat
ini, iterasi dapat gagal mencapai solusi atau bahkan divergen.

Metode Jacobi sangat cocok untuk implementasi dalam sistem
komputasi paralel karena pembaruan setiap variabel tidak saling
tergantung selama iterasi berjalan. Namun, dibandingkan dengan metode
iteratif lainnya seperti Gauss-Seidel, metode Jacobi umumnya lebih
lambat konvergen karena tidak segera memanfaatkan hasil perhitungan
terbaru. Meski demikian, metode ini tetap penting secara konseptual dan
praktis dalam pengantar komputasi numerik.

Contoh Soal: Penyelesaian Sistem Linear Menggunakan Metode
Jacobi

Diketahui sistem persamaan linear berikut:

10z + 2y — z = 27
—3x — 6y + 2z = —61.5
r+y+5z=-215

1
x=—(27 — 2y + z)

10
1
Y = —F{—ﬁl.-ﬁ + 3z — 2z)
— D
1
z= E[—EI.E —x—y)

1
W — L7 o0y~ 0) = 2.7
2 = (27 2(0) + 0

1

— D

1
1 = g(—zl.ﬁ —0—0)=—4.3

Buku Referensi 63

1 1
2 = ﬁf27 —2(10.25) + (—4.3)) = (27 — 20.5 — 4.3) = 0.22

1 1
T —ﬁ[—ﬁl.ﬁ +3(2.7) —2(—4.3)) = _—ﬁ[—ﬁl.ﬁ +8.1+8.6)=—T7.8

1 1
23 = g(—21.5 —2.7—10.25) = E[—34.45} = —6.89

2@ =022, 4P =-78 = _689

3. Metode Gauss-Seidel

Metode Gauss-Seidel merupakan salah satu teknik iteratif yang
digunakan untuk menyelesaikan sistem persamaan linear, dan
merupakan pengembangan dari metode Jacobi. Menurut Strang (2016)
dalam Introduction to Linear Algebra, perbedaan utama antara metode
Gauss-Seidel dan Jacobi terletak pada pemanfaatan nilai-nilai variabel
yang baru dihitung. Jika metode Jacobi menggunakan nilai dari iterasi
sebelumnya untuk seluruh variabel, maka metode Gauss-Seidel langsung
menggunakan nilai terbaru dari iterasi saat ini segera setelah diperoleh.
Pendekatan ini umumnya mempercepat laju konvergensi, menjadikan
Gauss-Seidel lebih efisien dibanding Jacobi dalam banyak kasus.

; i1 i
ey 1 (k1) (k)

i=1 g=ill

Rumus ini menunjukkan bahwa untuk menghitung xi pada iterasi
ke-¥*, metode ini menggunakan nilai-nilai terbaru dari variabel-variabel

sebelumnya (x(*D, x| x%) dan nilai-nilai lama dari
variabel yang belum diperbarui (xfkﬂ),..., x,(Lk)). Pendekatan ini

menghasilkan proses konvergensi yang lebih efisien, terutama jika
matriks koefisien A bersifat symmetric positive definite atau dominan
diagonal.

Agar metode Gauss-Seidel konvergen, matriks A umumnya
harus memiliki sifat dominansi diagonal atau positif definit. Metode ini
sangat efisien untuk sistem sparse berdimensi besar yang muncul dalam
rekayasa struktur, simulasi fluida, dan pemodelan fisik lainnya. Meski
tidak sebaik Jacobi untuk paralelisasi, Gauss-Seidel lebih unggul dalam

64 Pemrograman dan Komputasi Numerik

kecepatan konvergensi. Oleh karena itu, metode ini menjadi salah satu
pendekatan iteratif yang paling banyak digunakan dalam praktik
komputasi numerik.

drt+y+2=7
r+dy+z=-—=8
r+y+hz=486
m:%[?—'y—z}
’u:%E—S—I—z}
1

Selanjutnya, kita gunakan tebakan awal x© = 0, y@ = 0, z® = 0. Dalam
metode Gauss-Seidel, setiap nilai variabel baru langsung digunakan
dalam perhitungan selanjutnya. Pada iterasi pertama, kita hitung:
1
W = L(T-0-0) =175
1 —9.75
y[ll = —(—8—-1.75-0)= —— = —3.25
3 3
1 1
2 = g[ﬁ —1.75 — (—3.25)) = E{T.ﬁ] =15

Untuk iterasi kedua, nilai-nilai baru dari iterasi pertama digunakan:

1 1
2l? = Z(7—(—3.25) — 1.5) = E{S'TE'} = 2.1875

4
1 —11.687
¥ = 1(~8- 21875~ 15) = —T7° — 38058

1 1
22— 5 (6 —2.1875 — (~3.8058)) = (7.7083) = 1.5417

D. Implementasi dalam Python/MATLAB

Menurut Burden dan Faires (2011) dalam Numerical Analysis,
metode numerik untuk menyelesaikan sistem persamaan linear terutama
metode iteratif seperti Jacobi dan Gauss-Seidel sangat berguna ketika
diterapkan menggunakan perangkat lunak komputasi modern. Di antara

Buku Referensi 65

banyak platform yang tersedia, Python dan MATLAB merupakan dua
lingkungan paling populer dan kuat untuk pemrograman ilmiah dan
teknik. Kedua bahasa ini menyediakan pustaka numerik dan struktur data
yang efisien untuk menangani sistem linier berskala besar dan kompleks.

1. Python

Python merupakan bahasa pemrograman tingkat tinggi yang
sangat populer di bidang komputasi ilmiah dan teknik karena sintaksnya
yang sederhana, fleksibel, dan didukung oleh berbagai pustaka numerik
yang kuat. Menurut Oliphant (2007) dalam Guide to NumPy, pustaka
NumPy menyediakan array multidimensi yang efisien dan mendukung
berbagai operasi aljabar linear, sedangkan SciPy memperluas
fungsionalitas ini dengan menyediakan alat numerik tingkat lanjut
termasuk solver untuk sistem persamaan linear, baik dengan metode
langsung maupun iteratif.

Pada konteks penyelesaian sistem persamaan linear, Python
menawarkan beberapa pendekatan. Untuk sistem berukuran kecil hingga
sedang, metode langsung seperti numpy.linalg.solve () sangat efisien.
Sebagai contoh, untuk menyelesaikan sistem Ax=b, pengguna cukup
menulis:

python

import numpy as np

I=
|

= np.array([

» 10]], dtype=float)
b = np.array([7, -5, 6], dtype=Float)

®x = np.linalg.solve(A, b)

Untuk sistem berdimensi besar atau matriks yang bersifat sparse
(jarang), metode langsung menjadi tidak efisien baik dari segi memori
maupun waktu. Dalam kasus ini, metode iteratif seperti Jacobi dan
Gauss-Seidel lebih disarankan karena hemat memori dan dapat
dihentikan setelah mencapai toleransi kesalahan tertentu. Implementasi
metode Jacobi secara manual di Python melibatkan iterasi pembaruan

66 Pemrograman dan Komputasi Numerik

nilai setiap variabel menggunakan nilai dari iterasi sebelumnya. Berikut
contoh kode sederhana:

def jacobi(a, b, %8, tol=1e-18, max_iter=1028):
len(b)
=@ .copy()

for _ in range(max_iter):

n

X

X new = x.copy()

for 1 in range(n):
s = sum{A[1][j] * x[]j] for j in rangs(n) if j !=
x_new[i] = (b[1i] - s) / A[i][d1]

if np.linalg.norm(x_new - x, ord=np.inf) < tol:
return x_new

X = ¥_new

return x

Untuk Gauss-Seidel, struktur kode hampir serupa, namun dengan
penggunaan nilai-nilai terbaru yang diperoleh selama iterasi:

def gauss_seidel(A, b, %@, tol=1le-18, max_iter=108):
n = len(b)
x = x8.copy()
for _ in range(max_iter):
®x old = x.copy()
for i in range(n):
s1 = sum{A[i][j] * x[j] for j in range(i))
s2 = sum{A[i][j] * % old[j] for j in range(i + 1, n))
x[i] = (b[i] - s1 - s2) / A[i][i]
if np.linalg.norm({x - x_old, crd=np.inf) < tol:
return x

return x

Pustaka SciPy juga menyediakan metode iteratif seperti
Conjugate Gradient (CG) dan BiCGSTAB untuk sistem yang sangat
besar. Fungsi seperti scipy.sparse.linalg.cg() sangat efisien jika
digunakan bersama objek matriks sparse (csr_matrix).

Python juga unggul dalam visualisasi dan dokumentasi hasil,
menggunakan pustaka seperti Matplotlib untuk plotting grafik
konvergensi atau residual. Secara keseluruhan, Python memberikan
kombinasi optimal antara kemudahan pemrograman, fleksibilitas, dan
Buku Referensi 67

efisiensi, menjadikannya platform ideal untuk menerapkan dan
membahas metode numerik seperti Jacobi dan Gauss-Seidel dalam
penyelesaian sistem linear.

2. MATLAB

MATLAB adalah lingkungan komputasi numerik yang
dirancang khusus untuk menangani operasi matematika teknik dan
ilmiah. Menurut Chapman (2017) dalam MATLAB for Engineers,
MATLAB menyediakan sintaks yang ringkas dan efisien untuk
melakukan berbagai operasi aljabar linear, termasuk penyelesaian sistem
persamaan linear dengan metode langsung maupun metode iteratif.
Karena fokus utamanya pada pemrosesan matriks dan vektor, MATLAB
menjadi pilihan utama dalam banyak aplikasi teknik, sains komputer,
dan analisis data numerik.

Untuk sistem berukuran kecil hingga sedang, MATLAB
memiliki operator backslash (\)yang sangat efisien dalam menyelesaikan
sistem Ax=b secara langsung. Contohnya:

A=[18021; 151; 23 18];
= [7; -8; 6];

A\\b_-'.

X

4% e f
disp(x)

Untuk sistem yang besar atau memiliki struktur sparse (matriks
dengan banyak nol), metode langsung menjadi kurang efisien baik dari
segi waktu maupun konsumsi memori. Dalam kasus ini, metode iteratif
seperti Jacobi dan Gauss-Seidel lebih sesuai karena mampu menangani
sistem skala besar dengan lebih ringan. MATLAB mendukung
penerapan metode iteratif melalui pemrograman prosedural, serta
menyediakan alat bantu visualisasi untuk memantau konvergensi solusi.

Implementasi metode Jacobi dalam MATLAB dapat ditulis
secara eksplisit menggunakan loop for:

68 Pemrograman dan Komputasi Numerik

1 function x = jacobi(A, b, x©, tol, max_iter)
length{b);
X o= ME;

= |
1]

for k = 1:max_iter

¥_new = zeros(n, 1);
for 1 = 1:n
5 = 83
for § = 1:n
if j~—=1
s =5+ A(L,3)"x(3);
end
end
* new(i) = (b{i) - s)/A(i,1);
end
if norm(x_new - x, inf) < tol
break;
end

X = X_new;
end

Untuk sistem berdimensi besar atau matriks yang bersifat sparse
(jarang), metode langsung menjadi tidak efisien baik dari segi memori
maupun waktu. Dalam kasus ini, metode iteratif seperti Jacobi dan
Gauss-Seidel lebih disarankan karena hemat memori dan dapat
dihentikan setelah mencapai toleransi kesalahan tertentu.

Implementasi metode Jacobi secara manual di Python melibatkan
iterasi pembaruan nilai setiap variabel menggunakan nilai dari iterasi
sebelumnya. Berikut contoh kode sederhana:

Buku Referensi 69

or k = 1:max_iter
»_old = x;
or i = 1:n
s1 = A{i,1:1-1) * x{1:1i-1);

2 = A(i,i+1:n} * x_old(i+1:n);

®(i)y = (b{i) - s1 - s2} / A({1,1);
end
if norm(x - ®x_old, inf) < tol

break;

end

Kedua fungsi tersebut menggunakan norma maksimum (infinity
norm) untuk mengevaluasi apakah solusi telah konvergen pada tingkat
toleransi tertentu.

MATLAB juga memiliki fungsi internal seperti pcg
(Preconditioned Conjugate Gradient) dan Isqr untuk menyelesaikan
sistem sparse atau overdetermined. Fungsi-fungsi ini dapat digunakan
bersama objek matriks sparse (sparse(A)) untuk meningkatkan efisiensi
memori. Fitur command window dan plotting tools di MATLAB sangat
membantu untuk memvisualisasikan error atau kecepatan konvergensi
iterasi. Dengan antarmuka grafis yang intuitif, dokumentasi bawaan, dan
kapabilitas debugging yang kuat, MATLAB memberikan platform yang
sangat sesuai bagi mahasiswa, peneliti, maupun profesional teknik untuk
menerapkan dan menguji algoritma numerik dalam penyelesaian sistem
linear.

70 Pemrograman dan Komputasi Numerik

INTERPOLASI DAN
APROKSIMASI FUNGSI

Interpolasi dan aproksimasi fungsi merupakan salah satu cabang
penting dalam komputasi numerik yang berperan besar dalam
menyederhanakan persoalan kompleks menjadi bentuk yang dapat
dianalisis dan dihitung secara efisien. Dalam banyak kasus praktis, data
yang tersedia tidak selalu dalam bentuk fungsi eksak, melainkan berupa
himpunan titik diskrit yang dihasilkan dari pengukuran atau eksperimen.
Di sinilah interpolasi berfungsi untuk membangun fungsi baru yang
melewati seluruh titik data, sementara aproksimasi bertujuan mencari
fungsi yang mendekati pola umum data dengan kesalahan seminimal
mungkin. Kedua metode ini tidak hanya menjadi fondasi dalam
pengolahan sinyal, pemodelan fisik, hingga analisis ekonomi, tetapi juga
membentuk dasar bagi pengembangan algoritma dalam machine
learning dan simulasi numerik. Buku ini menyajikan pembahasan
mendalam tentang berbagai teknik interpolasi seperti metode Lagrange,
Newton, dan spline, serta pendekatan aproksimasi menggunakan metode
Least Squares. Setiap konsep dijelaskan dengan teori yang kuat dan
dilengkapi contoh implementasi dalam Python dan MATLAB agar
mudah dipahami dan langsung dapat diaplikasikan.

A. Interpolasi Polinomial (Lagrange, Newton)

Interpolasi polinomial merupakan salah satu metode paling
fundamental dalam komputasi numerik, digunakan untuk mendekati
fungsi atau data diskrit dengan fungsi polinomial. Dua pendekatan yang
paling banyak digunakan untuk interpolasi polinomial adalah metode
Lagrange dan Newton. Keduanya memiliki perbedaan dalam struktur

Buku Referensi 71

penyusunan polinomial, namun sama-sama bertujuan mencari
polinomial orde-n yang melewati semua titik data yang diberikan.

Menurut Burden dan Faires (2010), interpolasi adalah proses
mencari suatu fungsi yang melewati serangkaian titik data
(X0,Y0),(X1,y1),...,(Xn,yn), di mana tidak ada dua nilai xix yang sama.
Dalam interpolasi polinomial, fungsi interpolasi dicari dalam bentuk
polinomial derajat paling tinggi n yang cocok dengan n+1 titik data
tersebut. Secara umum, bentuk polinomial interpolasi adalah:

2 4
P.(z) = ap+ a2 + agz® + -+« + a, 2"

Daripada menyusun sistem persamaan linear untuk
menyelesaikan koefisien ai, pendekatan Lagrange dan Newton
menawarkan cara yang lebih sistematis dan efisien.

1. Interpolasi Polinomial Lagrange

Interpolasi polinomial Lagrange merupakan salah satu metode
klasik dalam komputasi numerik yang digunakan untuk membangun
fungsi polinomial yang melewati sekumpulan titik data diskret.
Pendekatan ini diperkenalkan oleh Joseph-Louis Lagrange pada abad ke-
18 sebagai solusi untuk masalah interpolasi, yaitu mencari suatu fungsi
polinomial ~ Pn(x) yang memuat tepat n+l1 titkk data
(X0,¥0),(X1,y1),...,(Xn,¥n), di mana tidak ada dua nilai xix yang sama. Ide
utama dari interpolasi Lagrange adalah menyusun polinomial sebagai
kombinasi linier dari basis polinomial Li(x), yang masing-masing
bernilai satu di titik data tertentu dan nol di titik lainnya, sehingga setiap
kontribusi yi hanya aktif pada posisi Xi saja. Secara matematis,
polinomial interpolasi Lagrange dinyatakan dalam bentuk:

Pu(z) = E yi - Li(z)

dengan

LI'{EJ =

=0

iFt

E—ﬁj

:I!I'—:.T:j

Rumus ini menunjukkan bahwa setiap basis polinomial Li(x)

dikonstruksi dengan mengalikan fraksi-fraksi yang memastikan bahwa
72 Pemrograman dan Komputasi Numerik

nilai Li(xj)=0 untuk semua j#ij dan Li(xi)=1. Dengan demikian, Pn(x)
merupakan penjumlahan dari hasil perkalian antara nilai yi dan fungsi
basis Li(x), yang menjamin bahwa hasil interpolasi akan melewati semua
titik data yang diberikan.

Keunggulan metode Lagrange terletak pada kesederhanaan
bentuk matematisnya. Tanpa perlu menyelesaikan sistem persamaan
linear atau melakukan operasi matriks, interpolasi dapat dilakukan
langsung dari data yang tersedia. Hal ini sangat berguna dalam
pengajaran dasar komputasi numerik dan dalam situasi di mana efisiensi
bukanlah kendala utama. Namun, metode ini memiliki kekurangan
signifikan. Salah satunya adalah kesulitan dalam menambahkan titik data
baru; penambahan satu titik baru mengharuskan rekalkulasi seluruh basis
polinomial, sehingga metode ini tidak efisien untuk data dinamis atau
jumlah data yang besar. Selain itu, metode ini cenderung menghasilkan
osilasi besar di bagian tepi domain ketika digunakan pada titik-titik yang
tersebar luas (fenomena yang dikenal sebagai osilasi Runge).

Pada penerapan praktis, interpolasi Lagrange banyak digunakan
untuk estimasi nilai fungsi di antara data eksperimen, rekonstruksi kurva
dalam pemodelan numerik, serta dalam bidang rekayasa dan fisika yang
membutuhkan aproksimasi fungsi kompleks dari data terbatas.
Implementasinya dalam bahasa pemrograman seperti Python pun cukup
sederhana, dan sering digunakan untuk tujuan pendidikan atau aplikasi
ringan. Secara keseluruhan, interpolasi polinomial Lagrange
memberikan pemahaman fundamental yang penting tentang bagaimana
fungsi dapat dibangun dari sekumpulan titik, meskipun dalam kasus
aplikasi berskala besar atau data tak beraturan, metode interpolasi lain
seperti spline atau Newton mungkin lebih disukai.

Diketahui tiga titik data sebagai berikut:
Inp = 1, f{.tn:] =2
x = 2, f{:m:]—:;
Er — 4_. f{.tz:l =1

Gunakan metode interpolasi polinomial Lagrange untuk membentuk
polinomial L(x), dan hitung nilai pendekatan fungsi di x=3.

Bentuk umum polinomial Lagrange orde dua (untuk tiga titik) adalah:

Buku Referensi 73

L(x) = f(xo)Lo(z) + f(z1) Ly (x) + f(2o) La(z)

Dengan:

) — (z — =)(z — z0)
Lofe) = ({n—h}gin—»ﬁ?]

) — x — ap)le
Lifz) (21 — o) (2 —-32]

o @—zm)(e—o)
Lofe) = (z2 — zo)(z2 — z1)

Substitusi nilai:

PR Gl [) B) G B C) ()
T a-90-9 " ()3 3
Ly(z) = (z —1)(z —4) _ (z — 1)z — 4) _ (z — 1)(z — 4)
(2-1)(2—-4) (1)(-2) 2
Ly~ E=0E=D _ ([2-DE-2) (-1)-2)
(4-1)(4-2) (3)(2) 6
Maka:
L(z) =2 Lo(z) +3- Ly(2) + 1- Ly(x)
Hitung nilai L(3):
oy B=2)3-4) (1)(-1) 1
- (3]()= :?) =)_5
. 3—-1)(3—4 2)(—1
LL(‘”=;)(2) ZE;[) o
; J-1)3—-2 2)(1 1
L2(3) = 6 ~ 6 3
Maka:

1 1 2 1
LN =2.{—-=)14+3-(V+1-[=)=—-43+ = 26667
(3) (J) 3-(1)+ (J) 3+ +:1 i

2. Interpolasi Polinomial Newton

Interpolasi polinomial Newton adalah salah satu metode
interpolasi numerik yang dirancang untuk menyusun polinomial yang
melewati sekumpulan titik data (xo,yo0),(X1,y1),...,(Xn,yn) dengan cara
yang efisien dan fleksibel. Berbeda dengan metode Lagrange yang
menghitung seluruh bentuk polinomial sekaligus, metode Newton

74 Pemrograman dan Komputasi Numerik

menggunakan pendekatan rekursif berdasarkan konsep selisih terbagi
(divided differences). Metode ini memungkinkan pembangunan
polinomial secara bertahap, sehingga sangat efisien jika diperlukan
penambahan titik baru tanpa harus menghitung ulang seluruh polinomial
yang telah dibentuk sebelumnya.

Polinomial Newton ditulis dalam bentuk:

Ple)=qpt+ay(e—zp) tagle —xp)(z —2)) + - +a,(z—z)(e —21) ... (2 —:

Koefisien aia iai di sini diperoleh dari tabel selisih terbagi, yang
dihitung secara rekursif dari nilai-nilai yi. Proses ini dimulai dari nilai
f[xi]=yi, kemudian menghitung selisih dua nilai berturut-turut dibagi
dengan selisih titik x-nya:

flzija] — fla]

£ipl — &g

f[ﬂ':i-,iﬂﬂl] =

dan dilanjutkan ke orde lebih tinggi seperti:

f[fﬂz:-hﬂff!z] —f[ﬂff-.fﬂ:'u]
Lipz — &3

f[fﬂisﬂ-'s 1:135.-2] =

Keunggulan utama interpolasi Newton adalah kemampuannya
dalam menyusun polinomial secara bertahap, menjadikannya lebih
efisien dibanding Lagrange, terutama ketika data baru ditambahkan.
Dengan hanya menghitung satu suku tambahan dan satu koefisien baru,
polinomial yang telah dibentuk dapat diperluas tanpa perhitungan ulang
seluruhnya. Ini membuat metode Newton sangat cocok untuk aplikasi
dengan jumlah data bertambah secara dinamis. Selain itu, bentuk
rekursifnya juga mempermudah proses komputasi numerik, baik secara
manual maupun dalam program komputer.

Metode Newton memiliki kekurangan dalam kompleksitas awal
pembuatan tabel selisih terbagi, terutama bila tidak dilakukan secara
otomatis. Kesalahan dalam perhitungan selisih terbagi dapat menjalar ke
hasil akhir, karena setiap koefisien bergantung pada hasil sebelumnya.
Selain itu, jika titik xi sangat berdekatan atau data mengandung noise
tinggi, perhitungan dapat menjadi tidak stabil.

Pada praktiknya, interpolasi Newton banyak digunakan dalam
rekayasa, fisika komputasi, ekonomi, dan bidang-bidang yang

Buku Referensi 75

memerlukan estimasi nilai fungsi di antara titik-titik data. Kelebihannya
dalam fleksibilitas dan efisiensi menjadikannya metode yang disukai
dalam implementasi algoritmik. Di berbagai bahasa pemrograman
seperti Python dan MATLAB, algoritma Newton sangat mudah
diimplementasikan menggunakan array dan operasi rekursif,
menjadikannya alat penting dalam toolkit numerik modern. Dengan
dasar teori yang kuat dan struktur perhitungan yang sistematis,
interpolasi Newton merupakan pendekatan yang sangat relevan dalam
pengolahan dan pemodelan data numerik.

Diberikan tiga titik data berikut:

eg =1, flzg) =1

ry =2, flz)=4

g =3, flze) =9
Gunakan metode interpolasi Newton untuk membentuk polinomial
interpolasi dan hitung nilai pendekatan fungsi di x=2.5.

Buat tabel zelisih terbagt:

x flz] Sz, 2o Jlaza, 21, 2]
1 1

2 4 =3

3 9 =5 =1
Jadi:

+ flza] =1

o fley,x] =3

o fleg,m, 2]l =1

76 Pemrograman dan Komputasi Numerik

Rumus polinomial Mewton:
Pz} = flzo] + flzy,mol(z —) + flza, @1, 2] (2 — 20) (2 — 1)
Substitusi nilai:

Plz)=1+3(xz—-1)+1{z—1)(z — 2)

Langkah 3: Hitung P(2.5)

P(25) =1+3(2.5—1) + (256 —1)(2.5 — 2)
— 1+ 3(1.5) + (1.5)(0.5)
=1+4.5+0.75 = 6.25

Hasil pendekatan dengan interpolasi Newton menunjukkan bahwa
f(2.5)~6.25, yang mendekati nilai eksak dari fungsi f(x)=x* pada x=2.5.

B. Interpolasi Spline dan Kurva Halus

Interpolasi spline merupakan salah satu metode numerik yang
dirancang untuk menghasilkan kurva halus yang melewati sekumpulan
titik data, dengan menghindari osilasi ekstrem yang sering muncul pada
interpolasi polinomial derajat tinggi. Metode ini menjadi penting dalam
berbagai bidang seperti grafik komputer, pemodelan geometri, simulasi
ilmiah, dan teknik rekayasa karena mampu menghasilkan kurva yang
tidak hanya akurat tetapi juga estetis dan stabil secara numerik.

Menurut Chapra dan Canale (2015) dalam bukunya Numerical
Methods for Engineers, interpolasi spline adalah proses menyusun
potongan-potongan fungsi polinomial berorde rendah yang
disambungkan secara kontinu pada titik-titik data. Fungsi spline
dirancang sedemikian rupa sehingga setiap potongan kurva (disebut
segmen spline) hanya berlaku pada interval tertentu di antara dua titik
data, dan memiliki kontinuitas hingga turunan kedua atau lebih pada titik
sambungan (disebut knots). Hal ini membuat spline menjadi solusi ideal
dalam interpolasi yang menuntut kurva halus dan stabil.

Jenis spline yang paling umum digunakan adalah Spline Kubik
(Cubic Spline), di mana masing-masing segmen kurva adalah polinomial
derajat tiga. Bentuk umum spline kubik pada setiap interval [Xi,Xi+1]

adalah:
Buku Referensi 77

Si(z) = a; + bi(z — ;) + ei(z —) + di(2 — 2:)°

Koefisien ai,bi,ci, di ditentukan berdasarkan kondisi interpolasi
(kurva harus melewati titik data), dan syarat kekontinuan turunan
pertama dan kedua di titik sambung antar segmen.

1. Kelebihan Spline Dibandingkan Polinomial Global

Interpolasi spline memiliki sejumlah keunggulan penting
dibandingkan interpolasi polinomial global, terutama dalam hal
kestabilan numerik, fleksibilitas, dan keakuratan lokal. Polinomial
global, seperti interpolasi Lagrange atau Newton, menyusun satu fungsi
polinomial berderajat tinggi yang mencakup seluruh domain data,
artinya satu fungsi harus melewati semua titik data. Meskipun
pendekatan ini secara teoritis valid, dalam praktiknya sering kali
menimbulkan masalah, terutama jika jumlah titik data cukup banyak atau
jika titik-titik tersebut tersebar secara tidak merata. Salah satu masalah
paling terkenal adalah osilasi Runge, yaitu fenomena di mana polinomial
derajat tinggi berosilasi secara ekstrem di dekat ujung-ujung domain,
menyebabkan interpolasi yang tidak akurat dan tidak realistis. Hal ini
terutama terjadi jika titik data tersebar secara ekuidistan. Dalam konteks
ini, interpolasi spline memberikan solusi yang jauh lebih stabil dan dapat
diandalkan.

Spline, khususnya spline kubik, menyusun interpolasi dalam
bentuk segmen-segmen polinomial rendah (biasanya derajat tiga) yang
diterapkan pada setiap interval antar dua titik data. Setiap segmen ini
memiliki koefisiennya sendiri, namun disatukan melalui syarat
kekontinuan nilai fungsi, turunan pertama, dan bahkan turunan kedua di
titik sambung. Karena setiap polinomial hanya berlaku pada satu interval
lokal, spline menghindari masalah osilasi yang terjadi pada pendekatan
global. Sebagaimana dijelaskan oleh Burden dan Faires (2010),
penggunaan polinomial derajat rendah secara lokal jauh lebih stabil
secara numerik, karena galat interpolasi terkendali dan tidak berkembang
secara ekstrem seiring bertambahnya jumlah titik data.

Keunggulan lain spline adalah fleksibilitas dalam menangani
jumlah data yang besar. Dalam interpolasi polinomial global,
penambahan titik data mengubah struktur seluruh polinomial, sehingga
memerlukan penghitungan ulang keseluruhan fungsi interpolasi.

78 Pemrograman dan Komputasi Numerik

Sebaliknya, dalam spline, penambahan titik data hanya memengaruhi
segmen di sekitar titik baru, sehingga perhitungan dapat dilakukan secara
lebih modular dan efisien. Ini sangat berguna dalam aplikasi dinamis,
seperti dalam grafik komputer atau pemrosesan sinyal waktu nyata, di
mana data terus berkembang.

Spline juga mendukung pengaturan kondisi batas yang lebih
fleksibel, seperti dalam natural spline (dengan turunan kedua nol di
ujung), clamped spline (dengan kemiringan ujung yang ditentukan), dan
smoothing spline (yang memungkinkan penyimpangan dari titik data
untuk menghindari overfitting). Dengan demikian, spline tidak hanya
menyediakan interpolasi yang akurat, tetapi juga memberikan kontrol
yang lebih besar terhadap bentuk kurva.

2. Jenis-Jenis Spline

Spline adalah bentuk interpolasi numerik yang mengandalkan
potongan-potongan polinomial derajat rendah untuk membentuk kurva
halus yang melewati titik-titik data. Keunggulan metode ini terletak pada
kemampuannya menghasilkan interpolasi yang stabil dan halus tanpa
harus menggunakan polinomial derajat tinggi yang rentan terhadap
osilasi. Dalam praktiknya, terdapat beberapa jenis spline yang
dikembangkan untuk memenuhi berbagai kebutuhan interpolasi dan
pemodelan data. Jenis-jenis spline ini dibedakan berdasarkan kondisi
batas, derajat polinomial yang digunakan, serta cara pengontrolan
kekontinuan dan kelengkungan antar segmen. Jenis spline yang paling
umum meliputi natural spline, clamped spline, not-a-knot spline,
smoothing spline, dan B-spline.

Natural spline adalah jenis spline kubik yang menetapkan bahwa
turunan kedua dari fungsi spline di titik ujung (boundary) adalah nol,
yaitu S"(x0)=0 dan S"(xn)=0. Kondisi ini memberikan bentuk kurva yang
cenderung datar di ujung domain, mencerminkan asumsi bahwa
kelengkungan di luar titik data dianggap tidak signifikan. Natural spline
sangat populer karena secara matematis sederhana dan cocok untuk data
yang tidak memiliki informasi tambahan di batas domain.

Berbeda dengan itu, clamped spline menetapkan nilai turunan
pertama (kemiringan) pada titik ujung domain. Artinya, pengguna harus
mengetahui atau memperkirakan S'(xo) dan S'(xn). Clamped spline
sangat berguna ketika kemiringan atau kecepatan perubahan data pada

batas domain sudah diketahui, misalnya dalam pemodelan mekanika
Buku Referensi 79

atau fisika, di mana gradien pada batas bisa dihitung dari teori atau
eksperimen.

Jenis lainnya, not-a-knot spline, menghilangkan status simpul
pada titik kedua dan titik kedua dari akhir, yaitu x1dan xa-1. Dengan kata
lain, spline pada interval [xo,x2] dan [Xn-2,Xn] diperlakukan seolah-olah
sebagai satu segmen tunggal. Tujuan pendekatan ini adalah untuk
meminimalkan jumlah kondisi sambungan dan menyederhanakan
sistem, sambil tetap menjaga kekontinuan hingga turunan kedua.

Smoothing spline adalah jenis spline yang tidak memaksa kurva
untuk melewati setiap titik data, tetapi berusaha meminimalkan
gabungan antara kesalahan interpolasi dan kelengkungan kurva. Spline
ini sangat cocok untuk data yang mengandung noise, karena tidak terlalu
sensitif terhadap fluktuasi kecil. Fungsi objektif smoothing spline
biasanya berbentuk:

min | 3 (0~ 9(e) + 2 [{g“’iw]}zdm]
M

di mana A adalah parameter regularisasi. Ketika A besar, spline
menjadi lebih halus; ketika kecil, sp/ine lebih mendekati data.

B-spline (Basis spline) dan Spline NURBS (Non-Uniform
Rational B-Splines) digunakan secara luas dalam grafik komputer dan
CAD (Computer-Aided Design). B-spline adalah representasi spline
dalam basis tertentu yang memberikan fleksibilitas tinggi dan kontrol
lokal. Tidak seperti spline polinomial biasa, perubahan pada satu titik
kontrol hanya memengaruhi segmen tertentu, membuatnya sangat
efisien untuk manipulasi bentuk dalam desain. Dengan berbagai jenis
spline yang tersedia, pengguna dapat memilih metode yang paling sesuai
dengan sifat data dan kebutuhan aplikasi. Pemilihan jenis spline yang
tepat akan menghasilkan interpolasi yang tidak hanya akurat, tetapi juga
halus, stabil, dan representatif terhadap perilaku data sebenarnya.

3. Proses Pembentukan Spline Kubik

Proses pembentukan spline kubik merupakan tahap penting
dalam interpolasi numerik yang bertujuan menghasilkan kurva halus
yang melewati serangkaian titik data diskrit. Spline kubik adalah
interpolasi yang menggunakan potongan-potongan fungsi polinomial
derajat tiga pada setiap interval antar dua titik data. Masing-masing

80 Pemrograman dan Komputasi Numerik

segmen spline diwakili oleh suatu fungsi Si(x) yang berbentuk
polinomial kubik:

Si(z) = a; + bi(z — @) + ci(e — 2;)° + diz — @)’

di mana x€[x;,xi+1]. Tujuannya adalah menemukan koefisien aj,
bi, ci, dan di untuk setiap interval sehingga seluruh potongan spline
tersambung secara mulus membentuk kurva kontinyu, baik dalam nilai
fungsinya maupun turunannya.

Langkah pertama dalam membentuk spline kubik adalah
menetapkan syarat bahwa kurva harus melewati semua titik data, artinya
Si(xi) = yi dan Si(xi+1) = yi+1. Ini menghasilkan dua persamaan untuk
setiap segmen. Selanjutnya, karena spline harus membentuk kurva yang
halus, maka diperlukan syarat kekontinuan turunan pertama dan turunan
kedua di setiap titik sambungan xi, x2,..., Xn-1. Syarat ini menghasilkan
dua persamaan tambahan per titik sambungan, yakni: S'i(xi+1) = Si+1 dan
S"i(xi+1) = S"i1(Xi+1).

Untuk n titik data, akan terbentuk n—1 segmen spline, dan total
ada 4(n—1) koefisien yang harus dihitung, sehingga diperlukan jumlah
persamaan yang sama. Untuk melengkapi sistem persamaan, dua syarat
tambahan harus diberikan sebagai kondisi batas. Dalam natural spline,
misalnya, ditetapkan bahwa turunan kedua di kedua ujung domain nol,
yaitu S"”o(x0) = 0 dan S"n2(xn) = 0. Alternatifnya, dalam clamped spline,
ditentukan nilai kemiringan di ujung domain, seperti S’o(x0) = mo dan S'n-
2(Xn) = mn, berdasarkan informasi yang diketahui atau diasumsikan.

Setelah semua syarat dituliskan, langkah selanjutnya adalah
menyusun sistem persamaan linear dalam bentuk matriks, khususnya
matriks tridiagonal, karena hanya koefisien dari titik-titik berdekatan
yang saling terkait. Umumnya, sistem ini difokuskan pada pencarian
nilai koefisien ci (turunan kedua), karena dari nilai ci, koefisien lainnya
dapat dihitung dengan rumus langsung. Sistem tridiagonal ini kemudian
diselesaikan menggunakan metode eliminasi Gauss atau algoritma
Thomas. Setelah semua koefisien diperoleh, fungsi spline dapat
digunakan untuk mengestimasi nilai fungsi di antara titik-titik data
secara halus dan stabil. Dengan desain proses yang memastikan
kekontinuan fungsi dan turunannya, spline kubik menjadi metode

Buku Referensi 81

interpolasi unggulan dalam berbagai aplikasi rekayasa, grafik komputer,
dan pemodelan ilmiah.

C. Least Squares dan Regresi Polinomial

Pada analisis data dan komputasi numerik, kita sering kali
dihadapkan pada sekumpulan data diskrit yang tidak memiliki hubungan
eksak atau pasti satu sama lain, baik karena adanya noise, kesalahan
pengukuran, maupun karena hubungan antara variabel memang tidak
linier. Dalam situasi seperti ini, metode interpolasi tidak lagi memadai
karena interpolasi mensyaratkan kurva harus melalui seluruh titik data.
Sebaliknya, metode aproksimasi diperlukan untuk menemukan suatu
fungsi yang mendekati pola umum dari data tersebut, dan salah satu
metode paling populer dalam pendekatan ini adalah metode Least
Squares atau kuadrat terkecil. Ketika fungsi pendekatan berbentuk
polinomial, metode ini dikenal sebagai regresi polinomial.

1. Konsep Least Squares

Konsep Least Squares atau metode kuadrat terkecil merupakan
pendekatan dasar dan penting dalam statistik dan komputasi numerik
yang digunakan untuk mencari fungsi aproksimasi terbaik terhadap
sekumpulan data yang tidak sepenuhnya presisi atau tidak mengikuti
pola tertentu secara eksak. Metode ini dirancang untuk meminimalkan
jumlah kuadrat selisih antara nilai-nilai hasil observasi atau eksperimen
dengan nilai-nilai yang diprediksi oleh suatu model matematis. Artinya,
dalam konteks hubungan antara dua variabel, metode least squares
bertujuan menemukan garis atau kurva yang paling “pas” di tengah data,
bukan yang melalui setiap titik secara sempurna, seperti dalam
interpolasi. Hal ini sangat relevan dalam dunia nyata, karena data hasil
observasi sering kali mengandung noise atau kesalahan pengukuran
sehingga tidak cocok diinterpolasi secara langsung.

Secara matematis, diberikan sekumpulan data
(x1,¥1),(X2,y2),...,(Xn,¥n), tujuan dari least squares adalah mencari fungsi
aproksimasi f(x) sedemikian rupa sehingga total kuadrat galat S

diminimalkan:

82 Pemrograman dan Komputasi Numerik

Fungsi f(x) dapat berupa model linier, polinomial, eksponensial,
atau bentuk lainnya tergantung kebutuhan. Dalam kasus paling
sederhana, yaitu regresi linier, model f(x) diasumsikan berbentuk garis
lurus f(x)=aotaix, dan metode least squares digunakan untuk
menentukan koefisien a0dan a 1yang memberikan nilai minimum bagi
S. Proses ini melibatkan penurunan fungsi kesalahan total S terhadap
masing-masing parameter, menghasilkan sistem persamaan normal yang
kemudian diselesaikan untuk mendapatkan parameter terbaik.

Keunggulan metode least squares terletak pada
kesederhanaannya, baik dalam konsep maupun implementasi. la tidak
hanya digunakan untuk menemukan parameter model linier, tetapi juga
dapat diperluas untuk regresi polinomial, multivariat, dan model non-
linier melalui modifikasi algoritma atau penggunaan transformasi basis.
Bahkan, least squares menjadi pondasi utama dalam banyak algoritma
machine learning, pengolahan sinyal, dan pemodelan ekonomi. Dalam
banyak situasi praktis, metode ini menawarkan solusi yang cepat dan
akurat, terutama ketika hubungan antara variabel sulit didekati secara
eksak.

Metode least squares juga memiliki keterbatasan. Ia sangat
sensitif terhadap outlier titik data yang menyimpang ekstrem dari pola
umum karena kuadrat galat memperbesar pengaruh deviasi besar. Oleh
karena itu, dalam kasus data dengan banyak outlier, digunakan
pendekatan alternatif seperti least absolute deviations atau robust
regression. Meskipun begitu, secara keseluruhan, konsep least squares
tetap menjadi alat analisis numerik dan statistika yang sangat penting
karena kemampuannya menyederhanakan persoalan aproksimasi data
yang kompleks menjadi bentuk matematis yang dapat dipecahkan secara
sistematis dan efisien.

2. Regresi Linier sebagai Kasus Khusus

Regresi linier merupakan bentuk paling sederhana dan paling
fundamental dari metode Least Squares, menjadikannya kasus khusus
yang sangat penting dalam analisis data dan komputasi numerik. Regresi
linier digunakan ketika pola hubungan antara dua variabel dapat didekati
dengan fungsi garis lurus, yaitu dalam bentuk model matematis:

Y = dap + apr + £

Buku Referensi 83

di mana y adalah variabel dependen (respons), x adalah variabel
independen (prediktor), ao adalah intersep (titik potong sumbu-y), ai
adalah kemiringan garis (gradien), dan € adalah komponen kesalahan
(residual). Tujuan regresi linier adalah mencari nilai a0 dan a1 yang
meminimalkan jumlah kuadrat galat antara nilai aktual yi dan nilai yang
diprediksi oleh garis regresi, yaitu f(xi)=ao+aixi.

Proses penurunan model regresi linier sederhana melibatkan
penggunaan prinsip Least Squares, dengan membentuk fungsi galat total:

TL
5= Z{'Hz‘ — dp — ﬂliﬂz‘}z
i=1
Kemudian, nilai S diminimalkan terhadap parameter ao dan ai
dengan mengambil turunan parsial terhadap masing-masing parameter
dan menyamakannya dengan nol, sehingga diperoleh sistem persamaan
normal sebagai berikut:

Ty a1y E =y Y
an Yz tar Yl =Yz

Sistem ini dapat diselesaikan secara aljabar untuk memperoleh
estimasi parameter regresi. Setelah parameter diperoleh, garis regresi
linier dapat digunakan untuk memprediksi nilai y untuk input x baru, dan
juga untuk mengukur sejauh mana variabel x berpengaruh terhadap y.

Menurut Montgomery, Peck & Vining (2012), regresi linier tidak
hanya memberikan garis terbaik, tetapi juga menyertakan kemampuan
untuk mengukur keakuratan model melalui nilai-nilai statistik seperti
koefisien determinasi (R?), nilai p, dan analisis residual. Nilai R?,
misalnya, mengindikasikan seberapa besar proporsi variansi data yang
dapat dijelaskan oleh model regresi. Jika R?>=0.95, maka 95% variasi
dalam data y dapat dijelaskan oleh variasi dalam x, sedangkan sisanya
dianggap sebagai noise atau kesalahan.

Regresi linier juga sangat mudah diterapkan dalam perangkat
lunak statistik dan bahasa pemrograman seperti Python, R, dan
MATLAB. Fungsionalitas ini membuatnya menjadi alat utama dalam
eksplorasi data awal (exploratory data analysis), pemodelan prediktif,
serta dalam validasi hipotesis hubungan antar variabel. Namun, regresi
linier memiliki asumsi dasar yang perlu diperhatikan agar hasilnya valid,
seperti linearitas hubungan, normalitas residual, homoskedastisitas
(kesamaan variansi), dan tidak adanya autokorelasi. Jika asumsi ini

84 Pemrograman dan Komputasi Numerik

dilanggar, hasil model bisa menjadi bias atau menyesatkan. Berikut
contoh soalnya.

Seorang peneliti ingin mengetahui hubungan antara jumlah jam belajar
(X) dan nilai ujian matematika (Y) siswa. Berikut data lima siswa:

Jam Belajar (%) Milai Ujian (Y)
2 63
3 70
5 73
7 85
9 95

Gunakan regresi linier sederhana untuk menentukan persamaan regresi
dan prediksi nilai ujian jika seseorang belajar selama 6 jam.
Jawaban :

X =

24+ T+89 -] T 75
+3+54+T7+ — 52, Y=f1'5+ 0+ +85+5‘5=

78
5 5]

Hitung koefisien b dan a

(X - X)(¥: - Y)

A S g

¢ DX - X)(Y;-Y) =166

e T(X:i— X)? =328
b= 290 506
32.8

a=Y —bX = 78 — (5.06)(5.2) = 51.67

Buku Referensi 85

ladi, persamaan regresi:

Y =51.674+5.06X

Y = 51.67 + 5.06(6) = 51.67 + 30.36 = 82.03

Dengan regresi linier sederhana, diperoleh model Y=51.67+5.06X. Jika
seseorang belajar selama 6 jam, diperkirakan akan memperoleh nilai
sekitar 82.03.

3. Regresi Polinomial

Regresi polinomial adalah perluasan dari regresi linier yang
memungkinkan model untuk menangkap hubungan yang bersifat
nonlinier antara variabel independen (x) dan variabel dependen (y).
Dalam regresi linier, model dibatasi hanya pada garis lurus (y=aot+aix),
sehingga kurang fleksibel ketika data menunjukkan pola lengkung atau
perubahan arah yang tidak bisa ditangkap oleh garis lurus. Untuk
mengatasi keterbatasan ini, regresi polinomial menggunakan fungsi
polinomial sebagai model aproksimasi, yaitu:

. . 2 o ' .
Yy = ag +a x + asx” + azr” + - +a,r +E

di mana mmm adalah derajat polinomial, ao,ai,...,am adalah
koefisien regresi, dan €\varepsilone adalah komponen galat (error).
Tujuan dari regresi polinomial tetap sama seperti pada regresi linier:
meminimalkan jumlah kuadrat selisih antara nilai prediksi dan data
aktual menggunakan metode Least Squares.

Menurut Chapra dan Canale (2015) dalam Numerical Methods
for Engineers, regresi polinomial berguna ketika terdapat indikasi bahwa
data memiliki hubungan melengkung, misalnya seperti kurva parabola,
eksponensial, atau siklikal. Model polinomial memungkinkan kita
menangkap berbagai bentuk tren tersebut dengan cara menambahkan
pangkat variabel independen ke dalam model regresi. Derajat polinomial
yang digunakan sangat menentukan bentuk dan fleksibilitas kurva hasil.
Misalnya, polinomial orde dua (y=aotaixtaxx2) cukup untuk
mendeskripsikan tren berbentuk parabola, sementara orde tiga atau lebih
tinggi digunakan untuk bentuk yang lebih kompleks. Proses perhitungan

86 Pemrograman dan Komputasi Numerik

koefisien regresi polinomial melibatkan penyusunan sistem persamaan
normal yang lebih besar dibanding regresi linier. Dalam hal ini, kita
menghitung jumlah hasil kali dari x dengan berbagai pangkatnya, serta
dengan y, untuk membentuk sistem persamaan linear yang dapat
diselesaikan menggunakan eliminasi Gauss atau metode numerik
lainnya.

Regresi polinomial sangat fleksibel dan banyak digunakan dalam
bidang teknik, ekonomi, dan ilmu data, terutama ketika pola data tidak
dapat dijelaskan dengan baik oleh model linier. Namun demikian, model
ini juga memiliki kelemahan. Jika derajat polinomial terlalu tinggi,
model cenderung mengalami overfitting, yaitu menyesuaikan diri secara
berlebihan dengan data pelatihan hingga kehilangan kemampuan
generalisasi terhadap data baru. Selain itu, polinomial derajat tinggi bisa
menimbulkan osilasi tajam antara titik-titik data, mirip dengan fenomena
osilasi Runge pada interpolasi.

Untuk mengatasi hal tersebut, pemilihan derajat polinomial harus
hati-hati, bisa menggunakan teknik validasi silang (cross-validation),
kriteria Akaike (AIC), atau Bayesian Information Criterion (BIC).
Secara keseluruhan, regresi polinomial adalah alat yang sangat berguna
dalam pendekatan aproksimatif terhadap data nonlinier, selama
digunakan dengan pertimbangan metodologis yang tepat.

Buku Referensi 87

1 import numpy as np
import matplotlib.pyplot as plt

Data
¥ = np.array([1, 2, 3, 4, 5])
¥ = np.array([2.2, 2.8, 3.6, 4.5, 5.1])

Regresi polimomial orde 2
coeffs = np.polyfitix, ¥, 2)
p = np.polyld{coeffs)

Evaluasi kurva
¥_new = np.linspace{min{x), max({x), 18a)
y_new = p{x_new)

Visualisasi

plt.scatter{x, v, label="Data")}

plt.plot{x_new, ¥_new, "r-', label="Polimomial")

plt.legend()

plt.title{"Regresi Polincmial Orde 2%)

plt.grid{True)

plt.show()

Kode ini menunjukkan bagaimana polinomial orde dua dapat

diaproksimasi ke data yang cenderung non-linier menggunakan fungsi
np.polyfit().Berikut adalah contoh soal dan jawabannya mengenai

Regresi Polinomial.

Seorang analis ingin memodelkan hubungan antara usia kendaraan (X,
dalam tahun) dan biaya perawatan tahunan (Y, dalam juta rupiah). Data
berikut dikumpulkan:

Usia Kendaraan (X) Biaya Perawatan (Y}
1 2

2 2.5

3 3.7

4 5.8

5 9

88 Pemrograman dan Komputasi Numerik

Gunakan regresi polinomial orde 2 (kuadrat) untuk menemukan
persamaan regresi dan prediksi biaya perawatan saat usia kendaraan 3,5
tahun.

Langkah 1: Bentuk model regresi polinomial kuadrat

Model umumnya:
Y =a+bX +cX?

Gunakan software seperti Excel, Python, atau kalkulasi manual untuk mendapatkan

koefisien a, b, e. Dengan metode least squares, diperaleh hasil:
Y = 0.46 + 0.29X + 0.56X°
Langkah 2: Prediksi saat X = 3.5

Y = 0.46 + 0.29(3.5) + 0.56(3.5)°
= 0.46 + 1.015 + 0.56(12.25)
= 0.46 + 1.015 + 6.86 = 8.335

Maodel regresi polinomial yang diperoleh adalah:

Y =046 + 0.29X + 0.56X°

Dengan maodel tersebut, diperkirakan biaya perawatan kendaraan saat usia 3.5 tahun

adalah sekitar 8,34 juta rupiah.

D. Visualisasi dan Evaluasi Aproksimasi

Pada konteks komputasi numerik dan analisis data, aproksimasi
merupakan metode penting untuk mendekati fungsi atau data yang tidak
diketahui bentuk analitiknya secara eksak. Aproksimasi sering
digunakan ketika data hasil eksperimen atau pengamatan tidak dapat
diwakili secara sempurna oleh model eksak, sehingga dibutuhkan
pendekatan numerik seperti regresi atau interpolasi. Namun,
membangun model aproksimasi hanyalah langkah awal yang tak kalah
penting adalah visualisasi dan evaluasi dari hasil aproksimasi tersebut.
Visualisasi memungkinkan pemahaman intuitif terhadap kualitas kurva
aproksimasi, sementara evaluasi memberikan ukuran kuantitatif
terhadap akurasi dan reliabilitas model tersebut.

Buku Referensi 89

1. Pentingnya Visualisasi Aproksimasi

Visualisasi aproksimasi merupakan langkah esensial dalam
proses analisis data dan komputasi numerik karena membantu
menyampaikan secara intuitif sejauh mana model aproksimatif mewakili
data yang sebenarnya. Dalam konteks aproksimasi, baik menggunakan
regresi linier, polinomial, atau teknik lain seperti spline, visualisasi
memungkinkan kita mengevaluasi kualitas kurva hasil secara langsung
melalui representasi grafis. Tanpa visualisasi, analisis terhadap model
aproksimasi hanya akan mengandalkan metrik numerik seperti RMSE,
MAE, atau R’ yang meskipun objektif, sering kali tidak cukup
menggambarkan perilaku model terhadap data secara menyeluruh.
Visualisasi memperlihatkan aspek-aspek yang tidak tertangkap oleh
angka, seperti outlier, pola sistematis dalam residual, atau indikasi
overfitting dan underfitting.

Menurut Chapra dan Canale (2015) dalam Numerical Methods
for Engineers, visualisasi sangat berguna untuk mendeteksi kecocokan
antara model dan data secara lokal maupun global. Misalnya, ketika
kurva hasil aproksimasi diplot bersamaan dengan titik-titik data aktual,
kita bisa segera melihat apakah kurva tersebut terlalu kaku (underfit) atau
terlalu berlekuk mengikuti data (overfit). Bahkan ketika nilai koefisien
determinasi R? tinggi, bisa saja kurva menampilkan osilasi liar akibat
pemilihan model yang tidak tepat, seperti pada regresi polinomial derajat
tinggi. Hal seperti ini hanya bisa diidentifikasi dengan jelas melalui
visualisasi, bukan sekadar dari nilai metrik statistik.

Visualisasi juga penting dalam memahami distribusi kesalahan
(residual). Plot residual terhadap wvariabel independen dapat
menunjukkan apakah galat tersebar secara acak atau membentuk pola
tertentu. Jika residual menunjukkan pola sistematis, seperti pola
melengkung atau menaik-menurun, hal itu menunjukkan bahwa model
tidak menangkap karakteristik data dengan baik. Sebaliknya, jika
residual tersebar acak di sekitar garis nol, ini mengindikasikan bahwa
model telah menangkap tren data dengan cukup baik. Visualisasi residual
ini juga menjadi langkah penting dalam menguji asumsi-asumsi statistik
pada regresi, seperti linearitas, homoskedastisitas, dan normalitas.

Pada aplikasi dunia nyata, visualisasi aproksimasi juga
memudahkan komunikasi dan interpretasi hasil. Peneliti, analis, atau
pengambil keputusan sering kali bukan ahli statistik atau numerik,

90 Pemrograman dan Komputasi Numerik

sehingga menyampaikan hasil dalam bentuk grafik yang mudah
dipahami jauh lebih efektif dibandingkan tabel angka dan persamaan.
Grafik regresi atau kurva aproksimasi juga sangat membantu dalam
presentasi teknis, laporan penelitian, dan dokumentasi ilmiah.

2. Evaluasi Aproksimasi

Evaluasi aproksimasi adalah proses penting untuk menilai
seberapa baik suatu model matematis atau numerik dalam
merepresentasikan hubungan antara variabel-variabel dalam sekumpulan
data. Dalam konteks komputasi numerik dan analisis data, aproksimasi
sering digunakan ketika model eksak tidak tersedia atau hubungan antar
variabel terlalu kompleks untuk dijelaskan secara analitik. Oleh karena
itu, setelah membentuk model aproksimasi baik melalui regresi linier,
regresi polinomial, spline, atau metode lainnya kita perlu mengevaluasi
performa model tersebut secara kuantitatif dan objektif. Evaluasi ini
bertujuan untuk memastikan bahwa model tidak hanya cocok pada data
yang tersedia (fit), tetapi juga memiliki kemampuan generalisasi yang
baik terhadap data baru atau tak terlihat sebelumnya.

Menurut Burden dan Faires (2010) dalam Numerical Analysis,
salah satu cara paling umum dalam mengevaluasi aproksimasi adalah
dengan menghitung galat (error) antara nilai aktual dan nilai hasil
prediksi model. Galat ini dapat diukur dalam berbagai bentuk, yang
paling mendasar adalah galat absolut |yi—y'| dan galat kuadrat (yi—yi)%,
di mana y; adalah nilai aktual dan y' adalah hasil prediksi. Dari sini,
beberapa metrik evaluasi dapat diturunkan, seperti Mean Absolute Error
(MAE), yang memberikan ukuran rata-rata kesalahan absolut, dan Root
Mean Squared Error (RMSE), yang mengkuadratkan kesalahan terlebih
dahulu sebelum dirata-rata, sehingga memberikan penalti lebih besar
pada kesalahan besar.

Salah satu metrik yang paling banyak digunakan dalam evaluasi
regresi adalah koefisien determinasi (R?), yang mengukur proporsi
variabilitas data yang dapat dijelaskan oleh model aproksimasi. Nilai R?
berkisar dari 0 hingga 1, di mana nilai mendekati 1 menunjukkan bahwa
model menjelaskan hampir seluruh variasi dalam data, sedangkan nilai
mendekati 0 menunjukkan bahwa model kurang efektif dalam
menjelaskan data. Namun, meskipun R? berguna, ia bisa menyesatkan
jika digunakan tanpa memperhatikan kompleksitas model. Model yang

Buku Referensi 91

terlalu kompleks bisa memiliki R? tinggi tetapi sebenarnya mengalami
overfitting, yaitu menyesuaikan diri secara berlebihan dengan data
pelatihan hingga gagal bekerja dengan baik pada data baru.

Evaluasi aproksimasi juga melibatkan analisis residual, yaitu
perbedaan antara nilai aktual dan nilai prediksi model. Pola residual yang
acak mengindikasikan bahwa model telah menangkap struktur data
dengan baik, sedangkan pola sistematis (misalnya membentuk kurva
atau tren) menunjukkan bahwa model belum cukup baik. Visualisasi
residual dapat memperjelas hal ini dan membantu dalam diagnosis
model.

Pada praktik profesional, evaluasi biasanya tidak dilakukan
hanya dengan satu metrik. Kombinasi antara MAE, RMSE, R?, dan
analisis residual memberikan gambaran yang lebih menyeluruh tentang
kualitas aproksimasi. Evaluasi ini juga sangat penting dalam pemilihan
model terbaik dari beberapa alternatif, penyesuaian parameter model,
dan validasi hasil sebelum digunakan untuk prediksi atau pengambilan
keputusan. Oleh karena itu, evaluasi aproksimasi merupakan langkah
kritis dalam siklus pemodelan numerik dan statistik yang tidak boleh
diabaikan.

3. Visualisasi Residual dan Diagnostik

Visualisasi residual dan diagnostik merupakan aspek penting
dalam evaluasi model aproksimasi, khususnya dalam konteks regresi
numerik dan statistik. Residual adalah selisih antara nilai sebenarnya dari
data (yi) dengan nilai yang diprediksi oleh model aproksimasi (y'), yakni
ri=yi—y'. Analisis terhadap residual memberikan wawasan mendalam
tentang seberapa baik model menangkap pola hubungan dalam data.
Visualisasi residual bertujuan untuk mengidentifikasi apakah galat
(kesalahan prediksi) terdistribusi secara acak, atau justru membentuk
pola tertentu yang mengindikasikan kelemahan model. Ketika model
aproksimasi dinilai hanya berdasarkan metrik seperti RMSE atau R?, kita
bisa saja melewatkan masalah penting yang tersembunyi, seperti non-
linearitas, heteroskedastisitas, atau autokorelasi dan semua ini bisa
terdeteksi melalui analisis grafis terhadap residual.

Menurut Montgomery, Peck, dan Vining (2012) dalam
Introduction to Linear Regression Analysis, pola residual yang baik
harus menyerupai sebaran acak yang simetris di sekitar garis nol. Ini

menunjukkan bahwa model sudah cukup baik dalam menangkap struktur
92 Pemrograman dan Komputasi Numerik

data, dan sisa galat hanyalah fluktuasi acak (noise). Namun, jika residual
menunjukkan pola melengkung, berbentuk U atau terdistribusi asimetris,
hal itu menandakan bahwa model belum cukup baik mungkin karena
hubungan antar variabel bersifat nonlinier, namun model yang
digunakan hanya linier. Dalam regresi polinomial, visualisasi residual
dapat membantu memilih orde polinomial yang tepat. Jika residual
melengkung, maka kemungkinan besar derajat polinomial masih terlalu
rendah.

Jenis plot residual yang paling umum adalah plot residual
terhadap nilai prediksi (y) dan plot residual terhadap variabel independen
(x). Pada kedua plot ini, idealnya residual tersebar acak di sekitar garis
nol tanpa pola yang jelas. Pola yang berbentuk kipas (menyempit atau
melebar) menunjukkan adanya heteroskedastisitas, yaitu varian galat
yang tidak konstan. Ini menjadi masalah serius dalam regresi klasik
karena melanggar asumsi homoskedastisitas dan dapat membuat
estimasi varians tidak akurat.

Visualisasi diagnostik lain termasuk normal probability plot (Q-
Q plot), yang digunakan untuk mengevaluasi apakah residual
berdistribusi normal. Dalam regresi linear klasik, normalitas residual
diperlukan untuk validitas uji statistik seperti t-test dan F-test. Jika titik-
titik dalam Q-Q plot menyimpang jauh dari garis diagonal, maka residual
tidak normal dan model tidak memenuhi asumsi klasik. Selain itu,
histogram residual dapat digunakan untuk evaluasi visual distribusi
residual secara langsung.

Dengan melakukan visualisasi residual, pengguna dapat
memahami lebih dalam mengapa suatu model bekerja dengan baik atau
buruk, dan apakah perlu dilakukan transformasi data, penambahan
variabel, atau penggantian bentuk model. Oleh karena itu, visualisasi
residual bukan hanya alat bantu, tetapi merupakan bagian integral dari
proses diagnosis dan validasi model aproksimasi numerik maupun
statistik yang andal.

4. Evaluasi Kinerja Model pada Data Baru

Evaluasi kinerja model pada data baru merupakan langkah
penting dalam proses validasi model aproksimasi atau prediktif untuk
memastikan bahwa model yang telah dibangun tidak hanya cocok
dengan data pelatihan (training data), tetapi juga memiliki kemampuan

generalisasi yang baik terhadap data yang belum pernah dilihat
Buku Referensi 93

sebelumnya. Dalam praktik nyata, tujuan utama dari pembangunan
model aproksimasi bukanlah hanya untuk menyesuaikan model terhadap
data historis, melainkan untuk digunakan dalam prediksi dan estimasi
nilai di masa depan atau dalam konteks yang berbeda. Oleh karena itu,
evaluasi model pada data baru sangat krusial untuk menilai apakah
model bersifat overfit, underfit, atau benar-benar mampu menangkap
pola dasar dari hubungan antar variabel.

Menurut Hastie, Tibshirani, dan Friedman (2009) dalam The
Elements of Statistical Learning, overfitting adalah situasi ketika model
sangat akurat pada data pelatihan, tetapi berkinerja buruk pada data baru
karena model terlalu kompleks dan menangkap noise atau fluktuasi acak
dalam data, bukan pola yang mendasarinya. Sebaliknya, underfitting
terjadi jika model terlalu sederhana sehingga gagal menangkap pola
penting bahkan dalam data pelatihan. Kedua kondisi ini bisa sulit
dikenali jika hanya mengevaluasi model berdasarkan data yang sama
dengan yang digunakan untuk melatihnya. Untuk itu, evaluasi pada data
baru yang tidak digunakan dalam proses pelatihan menjadi keharusan
dalam penilaian performa model secara menyeluruh.

Salah satu pendekatan yang paling umum adalah dengan
membagi data menjadi dua bagian: training set dan testing set. Model
dibangun menggunakan training set, lalu performanya diuji pada testing
set. Evaluasi dilakukan dengan menghitung metrik seperti Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), atau R-squared
pada data uji. Jika nilai error pada data uji jauh lebih besar dibandingkan
dengan data pelatihan, maka model cenderung overfit. Sebaliknya, jika
error besar pada kedua data, maka kemungkinan besar model underfit.

Pada situasi dengan data terbatas, evaluasi model dapat dilakukan
dengan metode cross-validation, di mana data dibagi menjadi beberapa
subset (fold), dan model dilatih serta diuji secara bergilir di seluruh
subset. Teknik ini, terutama k-fold cross-validation, sangat efektif dalam
memberikan estimasi performa model yang lebih stabil dan bebas dari
pengaruh pemisahan data yang kebetulan tidak representatif. Selain itu,
evaluasi pada data baru juga mencakup pengamatan terhadap distribusi
residual, robustness model terhadap noise, serta kemampuan menangani
data ekstrem atau outlier. Hal ini sangat penting dalam aplikasi dunia
nyata di mana data masa depan tidak selalu bersih atau konsisten dengan
pola historis. Model yang hanya diuji pada data pelatihan cenderung

94 Pemrograman dan Komputasi Numerik

menyesatkan karena tidak mencerminkan kondisi operasional
sesungguhnya.

Dengan demikian, evaluasi kinerja model pada data baru adalah
langkah kritis dalam menjamin keandalan dan kegunaan praktis suatu
model. Model yang baik bukan hanya yang cocok dengan data masa lalu,
tetapi juga yang mampu memprediksi dengan akurat dalam kondisi dan
situasi yang bervariasi. Evaluasi yang menyeluruh ini menjadi kunci
sukses dalam penerapan model numerik, statistik, maupun machine
learning di berbagai bidang aplikasi.

Buku Referensi 95

DIFERENSIASI DAN
INTEGRASI NUMERIK

Diferensiasi dan Integrasi Numerik, yang menjadi landasan
dalam menyelesaikan berbagai persoalan matematika terapan dan teknik.
Di dunia nyata, fungsi-fungsi yang digunakan tidak selalu memiliki
bentuk analitik yang sederhana atau mudah diturunkan secara simbolik,
sehingga pendekatan numerik menjadi solusi efektif dalam
memperkirakan turunan maupun integral dari suatu fungsi. Dalam bab
ini, pembaca akan dikenalkan pada berbagai metode diferensiasi
numerik seperti metode selisih maju, mundur, dan tengah, yang
digunakan untuk menghitung laju perubahan fungsi secara mendekati.
Selain itu, metode integrasi numerik seperti metode Trapezoid, Simpson,
dan teknik Romberg akan dijelaskan secara rinci, lengkap dengan
pembahasan galat (error) dan kestabilan perhitungan. Topik ini tidak
hanya penting secara teoritis, tetapi juga memiliki banyak aplikasi
praktis seperti dalam pemrosesan sinyal, perhitungan energi dalam
sistem mekanik, serta estimasi luas dan volume dalam berbagai konteks
sains dan rekayasa. Dengan memahami konsep dan teknik diferensiasi
serta integrasi numerik, pembaca diharapkan mampu mengembangkan
solusi numerik yang akurat, efisien, dan aplikatif untuk berbagai
permasalahan yang kompleks dan dinamis.

A. Metode Selisih Hingga (Finite Difference)

Metode selisih hingga (finite difference method, FDM)
merupakan salah satu pendekatan numerik yang paling umum digunakan
untuk menyelesaikan persoalan matematika, terutama dalam hal
diferensiasi, integrasi, serta penyelesaian persamaan diferensial biasa
Buku Referensi 97

(ODE) dan persamaan diferensial parsial (PDE). Konsep dasar metode
ini adalah menggantikan turunan fungsi kontinu dengan pendekatan
diskrit menggunakan nilai-nilai fungsi pada titik-titik diskrit dalam
domain tertentu.

Burden dan Faires (2011) dalam Numerical Analysis, metode
selisih hingga bekerja dengan cara mendekati nilai turunan suatu fungsi
menggunakan selisih nilai fungsi pada titik-titik yang berjarak tertentu.
Dalam bentuk yang paling sederhana, jika kita memiliki fungsi kontinu
f(x), maka turunan pertama di titik x dapat dihampiri dengan selisih
antara dua nilai f(x+/) dan f(x), dibagi dengan 4, yaitu:

_,I'-j[:i} . f(,t + h}} _ f[::’:]
3
Ini dikenal sebagai metode selisih maju (forward difference).
Nilai 2 merupakan langkah diskret (step size), dan pendekatan ini
menjadi lebih akurat seiring semakin kecilnya nilai 4, meskipun efek

galat pembulatan bisa menjadi signifikan jika 4 terlalu kecil.

Gunakan metode selisih hingga untuk menyelesaikan persamaan diferensial berikut:

d?
C¥ _ 2 untuk0<z<1
da?

Dengan syarat batas:

y(0)=0, y(1)=0
Gunakan 3 titik (termasuk titik batas) untuk menghitung nilai pendekatan

y pada titik tengah, yaitu x=0.5, dengan metode beda hingga orde 2.
Jawaban:

Karena terdapat 3 titike g = (), ; = 0.5, dan 2, = 1, maka selang b = % = .5,

Gunakan pendekatan selisih hingga untuk turunan kedua:

Py w12y tyin
dax? h?

Untuk & = 0.5 (titik tengah), indeks § = 1. Maka:

Yo— 2ty
h?

98 Pemrograman dan Komputasi Numerik

Substitusi nilai:

o yp = 0 (dari syarat batas)
* o = () (dari syarat batas}

« h=10.5
0—2y +0 —2y 1
(0.5)2 0.25 n w=7=02

1. Jenis-Jenis Selisih Hingga

Metode selisih hingga (finite difference) adalah teknik numerik
yang digunakan untuk menghampiri turunan suatu fungsi menggunakan
pendekatan diskrit. Metode ini memanfaatkan nilai-nilai fungsi pada
titik-titik tertentu yang berjarak tetap dalam domain yang telah dibagi
menjadi grid atau titik diskrit. Dalam praktik komputasi, turunan eksak
suatu fungsi seringkali tidak dapat dihitung secara simbolik, terutama
jika fungsi tersebut hanya diketahui dalam bentuk data atau hasil
pengukuran. Oleh karena itu, pendekatan selisih hingga menjadi solusi
efektif dalam memperkirakan turunan-turunan tersebut secara numerik.
Terdapat tiga jenis utama selisih hingga yang umum digunakan dalam
komputasi numerik, yaitu selisih maju (forward difference), selisih
mundur (backward difference), dan selisih tengah (central difference).
Masing-masing metode memiliki keunggulan, keterbatasan, dan akurasi
yang berbeda, serta digunakan dalam konteks aplikasi yang spesifik.

Jenis pertama adalah selisih maju (forward difference). Metode
ini memperkirakan turunan suatu fungsi pada titik x dengan
memanfaatkan nilai fungsi di titik tersebut dan titik sesudahnya, yaitu
x+h, di mana & adalah panjang langkah diskrit atau grid spacing. Rumus
matematisnya adalah:

(z + k) — f(x)

i) ~ 2D

Metode ini tergolong sederhana dan mudah diterapkan karena
hanya memerlukan nilai fungsi pada dua titik berurutan. Namun, selisih
maju memiliki tingkat akurasi yang lebih rendah dibanding metode lain

karena memiliki galat truncation orde pertama (O(4). Galat truncation
terjadi karena pendekatan yang digunakan hanya merepresentasikan
sebagian dari deret Taylor, sehingga hasil yang diperoleh menjadi kurang
akurat jika 4 tidak cukup kecil. Metode ini umumnya digunakan ketika
informasi nilai fungsi hanya tersedia mulai dari titik tertentu ke depan,

Buku Referensi 99

seperti dalam kasus proses waktu berjalan ke arah positif, atau pada
domain batas awal.

Jenis kedua adalah selisth mundur (backward difference).
Pendekatan ini memperkirakan turunan dengan menggunakan nilai
fungsi pada titik x dan titik sebelumnya, yaitu x—4. Rumusnya dituliskan
sebagai:

Selisih mundur juga memiliki galat truncation orde pertama,
sehingga tingkat akurasinya setara dengan selisih maju. Metode ini
cocok digunakan pada kasus di mana data hanya tersedia dari akhir
domain ke belakang, atau pada titik-titik batas akhir suatu interval,
terutama saat menangani kondisi batas dalam simulasi numerik. Dalam
konteks tertentu seperti pemodelan proses historis atau simulasi numerik
berbasis waktu mundur, selisih mundur menjadi pilihan utama karena
bentuknya yang mempertimbangkan titik-titik masa lalu.

Jenis ketiga dan yang paling banyak digunakan adalah selisih
tengah (central difference). Metode ini memanfaatkan nilai fungsi pada
dua titik yang simetris terhadap titik x, yaitu x—4 dan x+Ah. Pendekatan

ini dituliskan sebagai:
fle+h)— f(z—h)
'l =
fila) = ST

Metode ini memiliki galat truncation orde kedua (0(42))),
sehingga jauh lebih akurat dibandingkan dengan selisih maju dan selisih
mundur, khususnya jika 4 tidak terlalu kecil. Karena nilai turunan
dihitung berdasarkan rata-rata perubahan ke depan dan ke belakang,
maka pendekatan ini lebih stabil dan lebih baik dalam banyak kasus
analisis numerik. Central difference banyak diterapkan dalam simulasi
fisika, mekanika fluida, dan teknik karena mampu memberikan

keseimbangan antara akurasi dan efisiensi komputasi.

Metode selisih hingga juga dikembangkan untuk menghampiri
turunan orde lebih tinggi, seperti turunan kedua. Untuk turunan kedua
f"(x), pendekatan selisih tengah dituliskan sebagai:

4+ h)—2f(= r—h
() L) = 20(@) + f(z = h)

h2

100 Pemrograman dan Komputasi Numerik

Turunan kedua sangat penting dalam pemodelan fisik, seperti
dalam penyelesaian persamaan diferensial parsial yang melibatkan fluks,
perpindahan panas, atau percepatan. Akurasi metode ini tetap tinggi
karena menggunakan pendekatan simetris yang mengurangi pengaruh
kesalahan lokal.

Beberapa variasi lain dari metode selisih hingga juga tersedia,
seperti metode selisih hingga tak seragam (non-uniform finite
difference), di mana jarak antar titik h tidak konstan, serta pendekatan
selisih orde lebih tinggi (higher-order difference), yang menggunakan
lebih banyak titik dan menghasilkan akurasi lebih tinggi namun dengan
kompleksitas komputasi yang lebih besar.

Pada praktiknya, pemilihan jenis selisih hingga bergantung pada
beberapa faktor: kondisi batas domain, distribusi data fungsi, kebutuhan
akurasi, dan efisiensi perhitungan. Misalnya, jika kita memiliki data
eksperimental yang hanya mencakup nilai dari satu sisi domain, maka
pendekatan selisih maju atau mundur lebih sesuai. Sebaliknya, untuk
fungsi yang didefinisikan secara lengkap di sekitar titik evaluasi, selisih
tengah lebih disarankan karena ketelitiannya.

2. Galat dan Akurasi

Pada komputasi numerik, dua konsep fundamental yang sangat
menentukan kualitas hasil perhitungan adalah galat (error) dan akurasi
(accuracy). Keduanya tidak dapat dipisahkan dan saling berkaitan dalam
proses evaluasi hasil numerik. Galat menggambarkan sejauh mana hasil
perhitungan menyimpang dari nilai sebenarnya (eksak), sedangkan
akurasi menunjukkan tingkat kedekatan hasil komputasi terhadap nilai
tersebut. Memahami asal-usul, jenis, dan dampak galat sangat penting
agar seseorang tidak hanya dapat menilai kualitas solusi numerik, tetapi
juga mengambil langkah-langkah korektif untuk memperbaikinya.

Secara umum, galat dalam komputasi numerik dapat
diklasifikasikan ke dalam beberapa jenis utama, yaitu galat pembulatan
(round-off error), galat pemotongan (fruncation error), galat propagasi
(propagation error), serta galat total (fotal error) yang merupakan
kombinasi dari beberapa sumber galat. Galat pembulatan terjadi karena
komputer tidak dapat menyimpan angka real secara presisi tak hingga.
Sebagian besar komputer menggunakan standar bilangan floating-point
(misalnya IEEE 754) yang hanya mampu merepresentasikan sejumlah

digit tertentu. Ketika angka tidak dapat direpresentasikan secara tepat,
Buku Referensi 101

maka sistem akan membulatkan angka tersebut ke representasi terdekat,
menyebabkan terjadinya galat pembulatan. Galat ini sering kali sangat
kecil, namun jika dikombinasikan dalam perhitungan berulang seperti
iterasi atau integrasi numerik, dampaknya dapat menjadi signifikan.

Galat pemotongan merupakan galat yang muncul ketika
pendekatan numerik digunakan untuk menggantikan prosedur
matematika yang ideal, seperti deret tak hingga atau turunan eksak.
Misalnya, ketika metode selisih hingga digunakan untuk menghampiri
turunan suatu fungsi, nilai sebenarnya dari turunan tersebut digantikan
dengan bentuk diskrit yang hanya mempertimbangkan sebagian dari
deret Taylor. Ketidaksesuaian ini menghasilkan galat pemotongan. Jenis
galat ini sangat bergantung pada ukuran langkah diskret (misalnya 4
dalam metode selisih hingga): semakin kecil 4, semakin kecil pula galat
pemotongan, meskipun pada titik tertentu galat pembulatan akan mulai
meningkat dan mendominasi, menyebabkan kehilangan presisi.

Galat propagasi terjadi ketika galat yang muncul pada tahap awal
perhitungan terbawa dan diperbesar pada tahap-tahap selanjutnya.
Proses propagasi ini sering kali terjadi dalam metode iteratif atau pada
penyelesaian sistem persamaan diferensial numerik. Jika suatu metode
numerik tidak stabil (unstable), galat kecil yang tidak signifikan dapat
berkembang secara eksponensial dan menghasilkan solusi yang sama
sekali tidak representatif terhadap kenyataan. Oleh karena itu, penting
untuk melakukan analisis kestabilan terhadap metode numerik yang
digunakan.

Pada praktiknya, galat total adalah gabungan dari semua bentuk
galat di atas. Meskipun dalam teori kita bisa membahas jenis-jenis galat
secara terpisah, dalam aplikasi nyata, galat-galat ini muncul secara
simultan dan berinteraksi satu sama lain. Oleh karena itu, pendekatan
komputasi numerik yang baik adalah yang mampu meminimalkan galat
total, baik melalui pemilihan metode yang tepat, pengaturan parameter
langkah diskret yang optimal, maupun pemrosesan data dengan presisi
tinggi.

Berbicara tentang akurasi, konsep ini menjelaskan seberapa
dekat hasil numerik terhadap solusi eksak yang sesungguhnya. Akurasi
dapat dinyatakan secara absolut maupun relatif. Galat absolut
didefinisikan sebagai selisih antara nilai hasil komputasi dan nilai eksak:

102 Pemrograman dan Komputasi Numerik

Galat absolut = |Zuumerik — Teksak|
Sedangkan galat relatif merupakan perbandingan antara galat absolut dan nilai eksak:

Gﬁlﬂ.t- relatif — |Tﬂuum1_'rik - :[:L]\.hﬂk|

|ﬂjr_]u.ak|

Pada banyak kasus, galat relatif lebih berguna karena
memberikan gambaran proporsional terhadap besarnya kesalahan
terhadap nilai yang dihitung. Misalnya, galat absolut sebesar 0.01 pada
nilai eksak 1000 mungkin dapat diabaikan, namun galat yang sama pada
nilai eksak 0.01 bisa menjadi sangat signifikan.

Untuk mengevaluasi kualitas dan akurasi suatu metode numerik,
konsep orde konvergensi atau orde galat sering digunakan. Orde ini
menunjukkan seberapa cepat galat menyusut ketika ukuran langkah
diskret dikurangi. Misalnya, metode dengan galat O(/) dikatakan
memiliki akurasi orde satu, dan metode dengan galat O(42) memiliki
akurasi orde dua. Hal ini berarti jika kita mengurangi /4 menjadi
setengahnya, galat pada metode orde satu akan berkurang separuh,
sementara pada metode orde dua galat akan berkurang seperempat.
Dengan demikian, orde galat memberikan ukuran kuantitatif dari
efisiensi suatu metode dalam mencapai hasil yang akurat.

Akurasi tinggi tidak selalu menjamin hasil yang benar, terutama
jika metode tersebut tidak stabil atau jika galat pembulatan
mendominasi. Oleh karena itu, dalam banyak kasus numerik, dibutuhkan
keseimbangan antara akurasi, stabilitas, dan efisiensi komputasi. Strategi
praktis dalam menghadapi isu galat dan akurasi mencakup pemilihan
algoritma numerik yang sesuai dengan jenis masalah, pengujian hasil
dengan menggunakan ukuran langkah yang berbeda (refinement), serta
verifikasi terhadap solusi analitik (jika tersedia) atau solusi numerik yang
sudah terverifikasi.

Pemahaman menyeluruh tentang galat dan akurasi merupakan
fondasi dalam komputasi numerik yang andal. Meskipun galat tidak
dapat dihindari dalam setiap perhitungan numerik, pengelolaan yang
tepat terhadap sumber-sumber galat akan sangat menentukan seberapa
efektif suatu metode numerik dalam memodelkan fenomena nyata secara
kuantitatif. Evaluasi akurasi tidak hanya bersifat matematis, tetapi juga

Buku Referensi 103

menjadi instrumen penting dalam menjembatani kesenjangan antara
teori matematika dan penerapan teknis dalam dunia sains dan rekayasa.

B. Metode Trapezoid, Simpson, dan Romberg

Pada komputasi numerik, integrasi numerik adalah teknik
penting yang digunakan untuk menghitung luas di bawah kurva atau
integral dari fungsi yang tidak dapat dihitung secara analitik. Ketika
fungsi tidak memiliki bentuk antiturunan yang diketahui, atau ketika
hanya tersedia dalam bentuk data diskrit (seperti hasil eksperimen), maka
pendekatan numerik menjadi solusi utama. Tiga metode yang paling
dikenal dan banyak digunakan dalam integrasi numerik adalah metode
Trapezoid, metode Simpson, dan metode Romberg. Ketiganya
menawarkan pendekatan yang berbeda dalam mendekati nilai integral
suatu fungsi dan masing-masing memiliki kelebihan serta batasan
tergantung pada konteks penggunaannya.

1. Metode Trapezoid

Metode trapezoid adalah salah satu teknik dasar dalam integrasi
numerik yang digunakan untuk menghitung aproksimasi nilai integral
tentu dari suatu fungsi yang kontinu. Dalam banyak kasus praktis, fungsi
yang ingin diintegrasikan tidak memiliki bentuk antiturunan yang
diketahui atau terlalu kompleks untuk diselesaikan secara simbolik. Oleh
karena itu, metode numerik seperti metode trapezoid menjadi solusi yang
efisien dan relatif mudah diterapkan. Nama “trapezoid” berasal dari cara
pendekatan yang digunakan, yaitu memperkirakan luas di bawah kurva
fungsi sebagai jumlah dari luas beberapa trapesium yang dibentuk oleh
segmen-segmen garis lurus antara titik-titik evaluasi fungsi.

Secara matematis, jika f(x) adalah fungsi kontinu pada interval
[a,b], maka integral tentu Jabf(x)dx dapat dihampiri menggunakan
metode trapezoid sederhana sebagai berikut:

[1@ o~ 15 + 160

di mana h =b - a adalah panjang interval. Rumus ini sebenarnya
merupakan pendekatan yang sangat kasar karena hanya menggunakan
dua titik, titik awal dan akhir, dan menghubungkannya dengan garis

104 Pemrograman dan Komputasi Numerik

lurus. Luas di bawah kurva di antara kedua titik itu kemudian
diaproksimasi sebagai luas sebuah trapesium. Oleh karena itu, metode
ini akan memberikan hasil yang cukup baik hanya jika fungsi f(x) hampir
linear di antara a dan b.

Untuk meningkatkan akurasi, digunakan metode trapezoid
komposit, yaitu dengan membagi interval [a,b][a, b][a,b] menjadi nnn
subinterval yang sama panjang. Setiap subinterval dihitung luasnya
menggunakan pendekatan trapesium, kemudian dijumlahkan
seluruhnya. Formula komposit metode trapezoid dinyatakan sebagai:

f f(@)de ~ 2 [f(rn} 123 fw) + ()

L
2 .
i=1

Dalam pendekatan ini, kita membentuk nnn trapesium yang
masing-masing mencakup dua titik evaluasi, dan menjumlahkan luasnya
secara keseluruhan. Nilai fungsi di titik-titik tengah dikalikan dua karena
merupakan titik yang digunakan dua kali dalam perhitungan luas dua
trapesium yang bersebelahan.

Menurut Burden dan Faires (2011), metode trapezoid memiliki
orde akurasi kedua (O(h?)), yang berarti jika panjang langkah hhh dibagi
dua, maka galat (kesalahan aproksimasi) akan berkurang hingga
seperempat. Galat dari metode ini dapat diperkirakan dengan rumus:

(b—a)?

Ep = —Wf”{f}

untuk suatu £€[a,b], yang menunjukkan bahwa galat tergantung
pada nilai turunan kedua dari fungsi f(x). Oleh karena itu, metode
trapezoid akan lebih akurat jika fungsi yang diintegrasikan memiliki
turunan kedua yang kecil atau mendekati nol (yakni, mendekati linear).
Namun, jika fungsi memiliki kelengkungan yang tajam, metode ini akan
menghasilkan galat yang cukup signifikan.

Salah satu keunggulan utama metode trapezoid adalah
kesederhanaannya. Karena hanya melibatkan operasi dasar
(penjumlahan dan perkalian skalar), metode ini sangat mudah
diimplementasikan dalam pemrograman. Bahkan, banyak kalkulator
ilmiah dan perangkat lunak spreadsheet seperti Excel menyediakan
fungsi bawaan untuk metode trapezoid, menjadikannya sangat praktis
untuk analisis numerik cepat. Dalam bahasa pemrograman seperti

Buku Referensi 105

Python, MATLAB, atau C++, metode ini juga menjadi dasar untuk
algoritma integrasi numerik yang lebih kompleks.

Keterbatasan metode trapezoid tetap perlu diperhatikan. Salah
satu kelemahan terbesarnya adalah kecenderungan untuk kurang akurat
ketika diterapkan pada fungsi yang sangat melengkung, osilatif, atau
diskontinu. Dalam kasus seperti itu, hasil aproksimasi bisa menyimpang
jauh dari nilai eksak. Untuk meningkatkan ketelitian tanpa harus
mengurangi panjang langkah secara ekstrem (yang dapat meningkatkan
beban komputasi), biasanya digunakan metode numerik dengan orde
lebih tinggi seperti metode Simpson atau Romberg.

Pada konteks tertentu, metode trapezoid justru menjadi pilihan
utama. Misalnya, dalam pengolahan sinyal atau data eksperimental di
mana nilai fungsi hanya diketahui pada titik-titik tertentu secara diskrit
(tanpa bentuk fungsional eksplisit), metode trapezoid menjadi
pendekatan praktis yang dapat langsung diterapkan. Demikian pula
dalam integrasi pada domain waktu riil dalam sistem tertanam
(embedded systems), pendekatan berbasis trapezoid sering digunakan
karena kecepatan dan ringannya komputasi.

Pada aplikasi dunia nyata, metode trapezoid digunakan dalam
berbagai bidang, seperti fisika (untuk menghitung kerja mekanik dari
grafik gaya vs. perpindahan), ekonomi (untuk estimasi nilai rata-rata
fungsi permintaan), biologi (untuk menghitung area di bawah kurva
pertumbuhan), dan teknik (untuk menghitung energi listrik berdasarkan
tegangan dan arus). Meski sederhana, metode ini tetap relevan karena
fleksibilitasnya untuk digunakan dalam beragam kondisi praktis.

Hitung pendekatan nilai integral berikut menggunakan metode
trapezoid:

3
f (2 + 1) d=
1

106 Pemrograman dan Komputasi Numerik

Batas bawah:a =1

Batas atas: b = 3

Jumlah subinterval: nn = 2

Lebar subinterval:

h. - = - J.
i) 2
Titik-titiknya:
ﬂﬂ—l, El—g, ﬂz—J
Maka,
fle)=a?+1

fleg) = f(1)=12+1=2

flz)) = f(2)=2"+1=5

flz2) = f(3)=3"+1=10

Maka,

[1@ dw = 1) + 26 () + £(22)]
=%[2+2(5}—:1ﬂ]=%(2+1ﬂ+1)=%-22=11

Dengan metode trapezoid dan 2 subinterval, nilai pendekatan dari:
3
f (02 + 1) dz ~ 11
1

Nilai eksak dari integral tersebut adalah:

Fﬂ+mr—{ﬁ+3] (1+1)—12 232 1067
3 - 3 3 3

Buku Referensi 107

2. Metode Simpson

Metode Simpson adalah salah satu teknik integrasi numerik yang
sangat terkenal dan banyak digunakan karena menawarkan
keseimbangan yang baik antara akurasi dan efisiensi komputasi. Metode
ini merupakan pendekatan untuk menghitung integral tentu dari suatu
fungsi dengan menggunakan interpolasi polinomial kuadrat (parabola)
sebagai pendekatan lokal terhadap fungsi yang diintegrasikan.
Ketimbang menggunakan garis lurus seperti pada metode trapezoid,
metode Simpson menggunakan segmen parabola untuk mendekati kurva
fungsi, sehingga menghasilkan estimasi luas di bawah kurva yang jauh
lebih akurat, terutama untuk fungsi-fungsi yang halus dan melengkung.

Menurut Chapra dan Canale (2015) dalam buku Numerical
Methods for Engineers, metode Simpson diperoleh dengan mengambil
tiga titik pada fungsi yang ingin diintegrasikan, yaitu titik awal a, titik
tengah m, dan titik akhir b, lalu membentuk fungsi polinomial kuadrat
yang melewati ketiga titik tersebut. Integral dari fungsi asli kemudian
dihampiri dengan integral dari polinomial tersebut. Rumus dasar metode
ini, yang dikenal sebagai Simpson’s 1/3 Rule, adalah sebagai berikut:

f:f(a:) o~ 22 [f(a) +4f (“ * E’) + f(b)}

2

Untuk fungsi yang lebih kompleks atau interval yang lebih luas,
metode ini diperluas menjadi bentuk Simpson Komposit, di mana
interval [a,b] dibagi menjadi sejumlah genap n subinterval yang sama

panjang (h = %), dan integral dihitung sebagai jumlah dari integral

beberapa segmen parabola. Rumus Simpson Komposit adalah:

[r@de g 1@+ 4 X f@)+2 Y 1) + ()

pajil Eemap

Fungsi pada indeks ganjil dikalikan empat karena menjadi titik
tengah segmen parabola, sedangkan fungsi pada indeks genap (kecuali
titik awal dan akhir) dikalikan dua karena menjadi titik sambungan antar
parabola.

Keunggulan utama dari metode Simpson terletak pada orde
akurasi keempat (O(h4)). Ini berarti jika panjang langkah hhh dibagi dua,

108 Pemrograman dan Komputasi Numerik

maka galat aproksimasi akan berkurang dari nilai sebelumnya. Galat
truncation (pemotongan) metode Simpson diberikan oleh:
ro - 0= a)
Bs = =g 1)

untuk suatu {€[a,b], yang menunjukkan bahwa galat bergantung
pada turunan keempat dari fungsi f(x). Oleh karena itu, metode Simpson
akan menghasilkan hasil yang sangat akurat untuk fungsi yang halus dan
tidak memiliki perubahan mendadak pada kelengkungan.

Metode Simpson memiliki keterbatasan, yaitu jumlah subinterval
harus genap. Jika jumlah subinterval ganjil, maka metode ini tidak dapat
langsung diterapkan secara penuh. Untuk mengatasi masalah ini, kadang
digunakan gabungan antara Simpson’s 1/3 Rule dan Simpson’s 3/8 Rule,
yang merupakan varian lain dari metode Simpson yang menggunakan
empat titik (tiga subinterval). Simpson 3/8 Rule memiliki rumus:

f f(a)de ~ 2 (£(z0) +3f(e1) + 3 (e2) + £ (23)

Meski jarang digunakan secara keseluruhan, aturan 3/8 berguna
dalam menutupi sisa interval ketika jumlah subinterval tidak bisa dibagi
rata untuk aturan 1/3.

Dari segi implementasi, metode Simpson sangat mudah
diprogram menggunakan bahasa komputasi seperti Python, MATLAB,
atau C++. Dalam praktiknya, pendekatan ini sering digunakan dalam
berbagai aplikasi sains dan teknik seperti simulasi fisika, perhitungan
energi, volume fluida, analisis struktur, dan bahkan ekonomi dan biologi.
Misalnya, untuk menghitung total konsumsi energi berdasarkan kurva
daya terhadap waktu, metode Simpson dapat digunakan untuk
menghasilkan estimasi numerik dengan presisi tinggi.

Metode Simpson juga sangat bermanfaat dalam kasus di mana
fungsi hanya tersedia dalam bentuk data diskrit dari pengukuran
eksperimen. Dalam hal ini, interpolasi lokal berbasis parabola
memungkinkan kita mendekati integral meskipun tidak memiliki bentuk
fungsi eksplisit. Ini menjadikan metode Simpson sebagai alat yang
sangat fleksibel dan berguna dalam analisis data real-world.

Akurasi metode Simpson bergantung pada asumsi bahwa fungsi
f(x) dapat diaproksimasi dengan baik oleh polinomial kuadrat pada
setiap subinterval. Jika fungsi tersebut sangat tidak mulus, osilatif, atau

memiliki diskontinuitas, maka hasil integrasi bisa menjadi tidak akurat.
Buku Referensi 109

Dalam kasus seperti itu, solusi yang lebih baik mungkin menggunakan
pendekatan orde lebih tinggi atau teknik adaptif seperti metode Romberg
atau kuadratur Gauss.

Hitung pendekatan dari integral berikut menggunakan metode Simpson 1/3:

f:(:c?‘ + 2) dz

* Batas bawah:a =0
* Batasatas:b=4
* Jumlah subinterval: . = 2 — harus genap (sesuai syarat metode Simpson)

* Panjang subinterval:

ho— b-a _ ﬂ -9
) 2
Titik-titik:
En=ﬂ, 2:1—2, 222—4
Maka,
flz) =2+2
flzg) = f(O)=02+2=2
flz))=f(2)=2+2=6
flas) = f(4) =4 +2 =18
Maka,
b

f(@) do = 5 (7 (@) + 4f(ex) + S(22)]

2 2
= SER2H4(0) + 18] = S (4) = S ~ 2933

Dengan metode Simpson 1/3 dan 2 subinterval, diperoleh pendekatan:
4
f (2 + 2) dx = 29.33
0
Sementara nilai eksaknya adalah:

110 Pemrograman dan Komputasi Numerik

4 3 4 .
/(m2+2]dmzl%+2w] =(f;j—4+8)=@=29-§
0 :

3. Metode Romberg

Metode Romberg adalah salah satu teknik integrasi numerik yang
menggabungkan kelebihan dari metode trapezoid dan konsep
ekstrapolasi Richardson untuk menghasilkan hasil integral dengan
akurasi tinggi. Dibandingkan metode trapezoid dan Simpson, metode
Romberg memiliki keunggulan dari sisi konvergensi dan efisiensi dalam
mencapai ketelitian yang lebih tinggi tanpa harus memperkecil ukuran
langkah secara ekstrem. Metode ini sangat cocok digunakan untuk fungsi
yang halus (smooth) dan kontinu, di mana turunan berorde tinggi dapat
diperkirakan dengan baik. Pendekatan ini secara bertahap meningkatkan
akurasi dengan memanfaatkan hasil integrasi trapezoid dari beberapa
tingkat subdivisi dan mengurangi galat truncation dengan teknik
ekstrapolasi numerik sistematis.

Menurut Burden dan Faires (2011) dalam Numerical Analysis,
metode Romberg dimulai dengan menghitung integral tentu
menggunakan metode trapezoid pada sejumlah langkah diskret hhh yang
semakin kecil. Hasil tersebut kemudian disusun dalam bentuk tabel
segitiga yang dikenal sebagai tabel Romberg, yang memungkinkan kita
menggabungkan informasi dari beberapa tingkat pembagian interval
untuk memperbaiki hasil sebelumnya. Proses ini dilakukan dengan
mengaplikasikan rumus ekstrapolasi Richardson, yaitu teknik matematis
untuk memperkirakan limit dari deret pendekatan numerik terhadap nilai
sebenarnya dengan mengurangi pengaruh galat berorde rendah.

Langkah pertama dalam metode Romberg adalah menghitung
integral dengan metode trapezoid pada interval [a,b] dengan jumlah
pembagian n=1, yang menghasilkan nilai pertama Ri,;. Kemudian
jumlah subinterval digandakan (n=2,4,8,...), dan untuk setiap tingkat K,
dihitung nilai Rk sebagai hasil metode trapezoid dengan 25!
subinterval. Setelah itu, diperoleh nilai-nilai ekstrapolasi yang lebih
tinggi dengan rumus:

Rpj1— Ry o151
4111

Ry; =Ry 1+

Buku Referensi 111

Rumus ini merupakan inti dari ekstrapolasi Richardson, di mana
Rk,jR {k,j}Rk,j merupakan hasil koreksi terhadap galat orde rendah
menggunakan dua nilai sebelumnya. Dengan cara ini, setiap level baru
dalam tabel Romberg memberikan pendekatan yang lebih akurat
terhadap nilai integral sebenarnya.

Keunggulan metode Romberg terletak pada konvergensi cepat
yang dihasilkan dari pendekatan sistematis terhadap pengurangan galat.
Misalnya, metode trapezoid memiliki galat truncation orde dua (O(h?)),
tetapi dengan menerapkan ekstrapolasi Richardson secara berulang,
metode Romberg dapat mencapai orde konvergensi yang sangat tinggi,
bahkan mendekati eksponensial terhadap jumlah tingkat ekstrapolasi.
Artinya, kita bisa mendapatkan hasil integral yang sangat akurat hanya
dalam beberapa iterasi, tanpa harus memperkecil ukuran langkah hingga
titik yang mengakibatkan akumulasi galat pembulatan.

Metode Romberg juga memiliki keterbatasan. Pertama, metode
ini sangat bergantung pada kelicinan fungsi. Jika fungsi f(x) memiliki
diskontinuitas, turunan tak terbatas, atau perubahan ekstrem dalam
kelengkungan, maka hasil ekstrapolasi bisa menjadi tidak stabil atau
menyimpang jauh dari nilai sebenarnya. Selain itu, metode ini
memerlukan penyimpanan memori tambahan untuk menampung semua
hasil intermediate dalam tabel Romberg, dan kompleksitas
komputasinya meningkat secara signifikan dibanding metode trapezoid
atau Simpson. Oleh karena itu, meskipun metode Romberg unggul dalam
hal akurasi, ia tidak selalu menjadi pilihan terbaik untuk semua jenis
fungsi, terutama dalam kondisi sumber daya terbatas.

Pada praktiknya, metode Romberg sangat berguna dalam aplikasi
yang memerlukan hasil integrasi presisi tinggi, seperti dalam fisika
teoretis, komputasi teknik, pemrosesan sinyal, atau dalam verifikasi
numerik untuk membandingkan hasil dengan metode analitik. Misalnya,
dalam perhitungan gaya total dalam sistem mekanika fluida, distribusi
beban dalam analisis struktur, atau evaluasi energi dalam sistem partikel,
metode Romberg memungkinkan penghitungan integral dengan
kesalahan sangat kecil.

Implementasi metode Romberg dalam perangkat Iunak
komputasi seperti MATLAB, Python (melalui pustaka SciPy), dan
bahasa pemrograman ilmiah lainnya sangat mudah dilakukan karena
bentuknya yang rekursif dan tabel yang sistematis. Dalam Python, fungsi

112 Pemrograman dan Komputasi Numerik

scipy.integrate.romberg() menyediakan fitur otomatis untuk menghitung
integral dengan metode ini tanpa harus membangun tabel secara manual.
Sebagai ilustrasi sederhana, misalkan kita ingin menghitung

integral [o e~ dx, fungsi ini tidak memiliki antiturunan dalam bentuk

tertutup, sehingga harus dihitung secara numerik. Dengan metode
Romberg, hasilnya akan sangat dekat dengan nilai referensi

fole_xzdx ~ 0,746824 hanya dalam beberapa iterasi, lebih cepat

dibanding metode Simpson atau trapezoid standar dengan jumlah titik
yang sama.

Hitung pendekatan nilai integral berikut menggunakan Metode Romberg

1
1
[—Ed:r:

g 1+

hingga tingkat R2,2:

Fungsi ini memiliki solusi eksak:

1
l L
j; 1T 22 de = arctan(1l) — arctan(0) = g = 0.7854
Gunakan:
h
T(h) = 5[f(a) + ()]
Dengan by = 1,
1 1 1 1 3
T, =T(1)= EU(U]—!—I(I]] =3 [1+ §j| =53 =0.75

Dengan by = % ambil titik tengah z = 0.5:

Ty = %[f(o) +2f(0.5) + f(1)] = i [1 +2- 1% + 0.5} = %(1 +1.6+05) = 3(3.1) =0.775
Maka,
J' —_— . —_— . —_—
Rpp = 4. T -1 ~ 4-0.775 - 0.75 _ 3.1 —-10.75 _ 2.‘35 £ 0.7833

4 -1 3 3

Buku Referensi 113

Dengan Metode Romberg hingga R 2. diperoleh pendekatan integral:

|
da =2 (0.783:
fn 1+ 22 x =2 0.7833

Milai ini sangat mendekati hasil eksak g =2 0.7854, menunjukkan bahwa Romberg cepat

konvergen dengan presisi tinggi.

C. Evaluasi Akurasi dan Estimasi Kesalahan

Evaluasi akurasi dan estimasi kesalahan adalah dua aspek
fundamental dalam analisis numerik dan komputasi ilmiah. Ketika
metode numerik digunakan untuk menghampiri solusi dari persoalan
matematika seperti integral, turunan, atau solusi sistem persamaan
diferensial, hasil yang diperoleh bersifat aproksimasi, bukan nilai eksak.
Oleh karena itu, sangat penting untuk memahami seberapa dekat hasil
tersebut terhadap nilai sebenarnya (akurasi) serta sejauh mana kesalahan
(galat) dapat dikenali, diprediksi, dan dikendalikan. Dalam konteks ini,
proses evaluasi akurasi dan estimasi kesalahan menjadi indikator utama
yang menentukan kualitas dan reliabilitas hasil komputasi.

Menurut Burden dan Faires (2011) dalam Numerical Analysis,
akurasi mengacu pada seberapa dekat nilai hasil komputasi numerik
terhadap nilai eksak dari masalah yang diselesaikan. Dalam pengukuran
matematis, akurasi dapat dijelaskan melalui galat absolut dan galat
relatif. Galat absolut didefinisikan sebagai selisih langsung antara nilai
eksak dan hasil aproksimasi:

Galat Absolut = |20k — Teksak]
Sedangkan galat relatif memberikan ukuran proporsional terhadap nilai eksak:

Galat Relatif = |:Baprnk=i - Et‘ksakl

|$L]m.=1k|

Pada praktiknya, galat relatif lebih sering digunakan karena
memberikan ukuran kesalahan yang lebih kontekstual, terutama ketika
nilai eksak sangat kecil atau sangat besar.

Pada Chapra dan Canale (2015), dinyatakan bahwa semua
metode numerik mengandung kesalahan yang berasal dari berbagai
sumber, yang secara umum dapat dikategorikan ke dalam dua kelompok

114 Pemrograman dan Komputasi Numerik

besar: galat pembulatan (round-off error) dan galat pemotongan
(truncation error). Galat pembulatan timbul akibat keterbatasan
representasi bilangan real dalam komputer, sedangkan galat pemotongan
muncul dari penyederhanaan atau pemotongan operasi matematika
seperti deret Taylor atau pendekatan diskrit dalam diferensiasi dan
integrasi.

1. Galat Pembulatan

Galat pembulatan (round-off error) adalah salah satu jenis
kesalahan paling mendasar dalam komputasi numerik yang berasal dari
keterbatasan sistem komputer dalam merepresentasikan bilangan real.
Dalam sistem digital, komputer menyimpan angka dalam bentuk biner
dengan jumlah digit terbatas. Akibatnya, banyak bilangan riil yang tidak
dapat direpresentasikan secara persis dalam sistem biner tersebut,
sehingga komputer harus melakukan pembulatan ke nilai terdekat yang
dapat direpresentasikan. Proses pembulatan inilah yang menghasilkan
galat pembulatan, yang dalam banyak kasus bersifat sangat kecil, tetapi
bisa menjadi signifikan ketika akumulatif dalam perhitungan yang
kompleks atau berulang.

Menurut Burden dan Faires (2011), galat pembulatan merupakan
konsekuensi langsung dari penggunaan bilangan floating-point dalam
sistem komputasi. Standar umum seperti IEEE 754 mendefinisikan
bagaimana bilangan disimpan dan dioperasikan dalam memori
komputer. Dalam standar ini, sebuah bilangan floating-point disusun dari
tiga bagian: bit tanda (sign), eksponen, dan mantissa (atau significand).
Karena panjang mantissa terbatas (misalnya, 23 bit untuk single
precision dan 52 bit untuk double precision), hanya sejumlah terbatas
angka desimal yang dapat diwakili secara tepat. Misalnya, angka 1/3
dalam sistem desimal adalah 0.333..., sebuah desimal tak hingga. Dalam
sistem biner, representasi ini lebih terbatas lagi dan pasti akan dipotong
atau dibulatkan pada digit tertentu, menghasilkan nilai yang sedikit
berbeda dari nilai eksaknya.

Pada praktiknya, galat pembulatan bisa muncul dalam berbagai
bentuk operasi numerik, termasuk penjumlahan, perkalian, pembagian,
dan terutama dalam operasi yang melibatkan selisih dua bilangan yang
hampir sama (dikenal sebagai cancellation). Misalnya, dalam operasi
x—y di mana x dan y bernilai sangat dekat, hasil selisihnya menjadi

sangat kecil dan dapat kehilangan digit signifikan, sehingga
Buku Referensi 115

meningkatkan proporsi galat pembulatan terhadap nilai hasil. Hal ini
sangat berbahaya dalam komputasi presisi tinggi karena galat kecil pada
digit rendah bisa menjadi dominan.

Pada iterasi numerik atau algoritma rekursif, galat pembulatan
bisa terpropagasi dan diperbesar. Sebagai contoh, dalam metode numerik
seperti metode Euler atau Runge-Kutta untuk menyelesaikan persamaan
diferensial, pembulatan hasil setiap langkah akan memengaruhi langkah
berikutnya. Jika tidak dikendalikan, hal ini dapat menyebabkan
akumulasi kesalahan yang signifikan dan mengarahkan solusi pada hasil
yang sangat menyimpang dari kenyataan. Oleh karena itu, analisis
stabilitas numerik menjadi penting dalam menilai sejauh mana suatu
metode tahan terhadap galat pembulatan.

Strategi untuk mengurangi dampak galat pembulatan mencakup
penggunaan presisi lebih tinggi (misalnya, menggunakan double
daripada single precision), pembulatan yang stabil secara numerik, dan
penataan ulang algoritma untuk menghindari pengurangan angka yang
hampir sama atau pembagian terhadap angka sangat kecil. Dalam
pengembangan perangkat lunak ilmiah dan rekayasa, teknik ini menjadi
bagian penting dari proses validasi hasil numerik.

2. Galat Pemotongan

Galat pemotongan (truncation error) adalah jenis kesalahan
numerik yang muncul ketika suatu metode numerik menggunakan
pendekatan yang menyederhanakan operasi matematis eksak dengan
memotong atau mengabaikan bagian dari ekspresi matematis tersebut.
Tidak seperti galat pembulatan yang berasal dari keterbatasan
representasi bilangan dalam komputer, galat pemotongan terjadi karena
metode numerik secara sadar memilih untuk hanya mempertahankan
sebagian komponen dari suatu operasi, seperti deret tak hingga, turunan,
atau integral. Galat ini bersifat sistematis dan dapat dihitung atau
dikendalikan melalui pemilihan metode serta pengaturan parameter
numerik seperti ukuran langkah diskrit.

Menurut Chapra dan Canale (2015) dalam Numerical Methods
for Engineers, galat pemotongan paling umum terjadi dalam pendekatan
numerik terhadap turunan dan integral. Misalnya, dalam metode selisih
hingga untuk menghitung turunan pertama dari suatu fungsi f(x),
digunakan formula:

116 Pemrograman dan Komputasi Numerik

oy LoD 10

yang berasal dari pemotongan deret Taylor setelah suku pertama. Dalam ekspansi Taylor,

turunan eksak dituliskan sebagat:

flz+h) = flz)+hf'(2)+ %f”[m]+..,

2
Dengan mengabaikan suku %f"(x)+...., maka terjadi galat

pemotongan. Semakin besar nilai hhh, maka semakin besar juga galat
pemotongan yang ditimbulkan karena kontribusi suku-suku yang
diabaikan menjadi signifikan.

Galat pemotongan juga terjadi dalam metode integrasi numerik
seperti metode trapezoid atau Simpson. Misalnya, dalam metode
trapezoid komposit, integral dihampiri oleh jumlah luas trapesium antara
titik-titik fungsi. Dalam pendekatan ini, bentuk kurva sebenarnya diganti
dengan garis lurus, sehingga bagian melengkung dari fungsi tidak
diperhitungkan secara tepat. Galat yang timbul dapat diekspresikan
secara matematis sebagai:

(b— a)

3
Br = ———-1"(¢)

untuk suatu £€[a,b], menunjukkan bahwa galat tergantung pada
turunan kedua fungsi dan jumlah subinterval nnn. Ini berarti bahwa galat
pemotongan dapat dikurangi dengan memperkecil h (yakni memperbesar
jumlah subinterval), atau dengan menggunakan metode numerik dengan
orde lebih tinggi seperti metode Simpson yang memperhitungkan
kelengkungan fungsi.

Salah satu keunggulan dari galat pemotongan dibanding galat
pembulatan adalah sifatnya yang dapat diprediksi dan dikendalikan. Jika
suatu metode memiliki orde galat tertentu, maka pengguna dapat secara
sistematis memperkirakan berapa banyak kesalahan yang akan terjadi
dan menyesuaikan parameter komputasi agar kesalahan tetap dalam
batas toleransi. Misalnya, metode dengan galat orde dua (O(h?)) akan
memiliki galat yang berkurang seperempat jika hhh dibagi dua.

Buku Referensi 117

Pemahaman ini memungkinkan desain algoritma yang adaptif terhadap
kebutuhan presisi.

Ada batas bawah di mana pengurangan hhh tidak lagi efektif
karena akan memicu galat pembulatan, sehingga terdapat trade-off
antara mengurangi galat pemotongan dan mencegah galat pembulatan.
Dalam pengembangan perangkat lunak numerik yang efisien, penting
untuk menyeimbangkan dua jenis galat ini agar diperoleh hasil
komputasi yang optimal.

3. Evaluasi Akurasi Secara Praktis

Evaluasi akurasi secara praktis dalam komputasi numerik adalah
proses menilai seberapa dekat hasil komputasi mendekati nilai eksak,
meskipun dalam banyak kasus nilai eksak tersebut tidak diketahui secara
pasti. Oleh karena itu, evaluasi akurasi tidak hanya bergantung pada
perhitungan galat absolut atau relatif, melainkan juga pada strategi-
strategi praktis yang dapat digunakan untuk memverifikasi dan
memvalidasi hasil aproksimasi numerik. Evaluasi ini menjadi sangat
penting dalam konteks aplikasi nyata, seperti simulasi fisika, optimasi
teknik, atau perhitungan statistik, di mana hasil komputasi sering
dijadikan dasar pengambilan keputusan atau desain sistem.

Salah satu pendekatan paling umum dalam evaluasi akurasi
adalah analisis konvergensi. Dalam metode ini, hasil komputasi numerik
diuji dengan melakukan perhitungan berulang menggunakan ukuran
langkah atau parameter diskret yang semakin kecil. Jika metode numerik
yang digunakan benar dan stabil, maka hasil perhitungan akan
menunjukkan pola konvergen menuju nilai tetap tertentu. Misalnya,
dalam integrasi numerik menggunakan metode trapezoid atau Simpson,
jika panjang langkah /4 diperkecil, hasil integral yang diperoleh
seharusnya semakin mendekati nilai sejati. Pola konvergensi ini dapat
diukur dan divisualisasikan dengan memplot hasil terhadap ukuran h
atau jumlah subinterval. Dengan demikian, meskipun nilai eksak tidak
diketahui, kita dapat memperkirakan bahwa hasil sudah berada dalam
kisaran yang dapat diterima secara akurat.

Evaluasi akurasi juga dilakukan melalui perbandingan antar
metode numerik. Dalam banyak kasus, dua atau lebih metode dengan
orde akurasi berbeda digunakan untuk menyelesaikan masalah yang
sama. Selisih hasil antara metode berakurasi lebih tinggi (misalnya

Simpson atau Romberg) dengan metode lebih sederhana (misalnya
118 Pemrograman dan Komputasi Numerik

trapezoid) dapat memberikan gambaran mengenai besar kesalahan
aproksimasi. Teknik ini dikenal sebagai pendekatan estimasi galat
melalui redundansi metode, dan sering digunakan dalam perangkat lunak
komputasi teknik untuk memberikan informasi kepercayaan terhadap
hasil.

Cara lainnya adalah menggunakan pendekatan nilai referensi
atau solusi benchmark, terutama dalam kasus di mana fungsi uji tertentu
telah diketahui nilai eksaknya. Ini sering digunakan dalam pengujian
algoritma numerik, di mana fungsi dengan solusi analitik digunakan
untuk membandingkan hasil aproksimasi. Jika hasil numerik mendekati
solusi referensi dengan galat relatif kecil, maka metode dianggap valid
dan akurat untuk konteks yang serupa.

Pada iterasi numerik seperti metode Newton-Raphson atau
metode Jacobi, galat antar iterasi sering digunakan sebagai indikator
akurasi. Jika perubahan nilai hasil antara dua iterasi berturut-turut sangat
kecil (misalnya kurang dari 10—6), maka hasil tersebut diasumsikan telah
konvergen. Meskipun bukan galat sejati, estimasi ini secara praktis
cukup efektif dalam menentukan titik henti perhitungan.

D. Aplikasi pada Persoalan Teknik

Pada bidang teknik, perhitungan analitik yang presisi sering kali
tidak memungkinkan karena kompleksitas sistem yang dianalisis. Oleh
sebab itu, metode numerik menjadi pendekatan utama dalam
menyelesaikan berbagai persoalan teknik yang melibatkan formulasi
matematika rumit, fungsi tak diketahui, dan sistem tak linear. Metode
numerik memungkinkan solusi pendekatan terhadap masalah teknik
dengan efisiensi tinggi, baik dari sisi waktu maupun sumber daya
komputasi. Persoalan teknik yang melibatkan mekanika struktur,
perpindahan panas, dinamika fluida, kelistrikan, kontrol sistem, dan
simulasi material kini hampir seluruhnya mengandalkan pendekatan
numerik.

Menurut Chapra dan Canale (2015) dalam Numerical Methods
for Engineers, metode numerik digunakan dalam teknik karena sebagian
besar masalah teknik nyata mengarah pada persamaan diferensial (biasa
atau parsial), sistem persamaan linier besar, atau fungsi-fungsi yang
tidak dapat diintegrasikan secara analitik. Dalam konteks ini, metode
seperti metode selisih hingga (finite difference method/FDM), metode

elemen hingga (finite element method/FEM), metode volume hingga
Buku Referensi 119

(finite volume method/FVM), dan metode Runge-Kutta menjadi tulang
punggung penyelesaian masalah-masalah teknik secara komputasional.

1. Mekanika Struktur

Mekanika struktur adalah cabang penting dalam bidang teknik
sipil, mesin, dan arsitektur yang mempelajari perilaku benda padat
terutama struktur teknik yang mengalami beban, tekanan, dan gaya
lainnya. Fokus utamanya adalah untuk menganalisis dan merancang
struktur seperti balok, kolom, rangka baja, jembatan, gedung, hingga
pesawat terbang, agar mampu menahan beban yang bekerja tanpa
mengalami kerusakan atau kegagalan. Konsep-konsep dasar dalam
mekanika struktur meliputi tegangan (stress), regangan (strain), lendutan
(deflection), momen lentur, gaya geser, dan stabilitas struktur. Prinsip-
prinsip ini diterapkan untuk memastikan bahwa struktur dirancang tidak
hanya kuat dan stabil, tetapi juga efisien dari segi material dan biaya.

Menurut Hibbeler (2012) dalam Mechanics of Materials,
mekanika struktur bekerja berdasarkan hukum-hukum dasar fisika,
khususnya hukum Newton dan prinsip keseimbangan gaya, serta prinsip
deformasi elastis dari bahan. Salah satu konsep inti dalam analisis
struktur adalah hukum Hooke, yang menjelaskan hubungan linear antara
tegangan dan regangan dalam batas elastis suatu material. Dalam konteks
teknik, hal ini memungkinkan insinyur untuk menghitung respons
struktur terhadap gaya yang bekerja, seperti lenturan balok akibat beban
merata atau gaya konsentris pada kolom.

Pada aplikasi praktisnya, mekanika struktur tidak hanya
berfungsi sebagai alat analisis, tetapi juga sebagai dasar untuk
pengambilan keputusan desain. Misalnya, dalam merancang jembatan
baja, insinyur harus menentukan ukuran, bentuk, dan jenis material yang
digunakan berdasarkan perhitungan tegangan maksimum, batas leleh
material, serta faktor keamanan. Selain itu, struktur harus memenuhi
kriteria batas (limit states), baik batas kekuatan (ultimate limit state)
maupun batas layan (serviceability limit state), agar tetap aman dan
nyaman digunakan sepanjang umur bangunan.

Seiring dengan kompleksitas bentuk struktur dan beban yang
semakin variatif, metode analisis manual menjadi terbatas. Oleh karena
itu, analisis numerik, khususnya metode elemen hingga (finite element
method/FEM), menjadi alat bantu utama dalam mekanika struktur

modern. Metode ini membagi struktur kompleks menjadi elemen-elemen
120 Pemrograman dan Komputasi Numerik

kecil (seperti segitiga atau persegi), dan menghitung distribusi gaya,
tegangan, dan deformasi pada setiap elemen untuk kemudian
digabungkan menjadi analisis keseluruhan. Perangkat lunak berbasis
FEM seperti SAP2000, ANSY'S, atau ABAQUS kini menjadi standar
dalam perencanaan struktur besar seperti gedung pencakar langit atau
jembatan gantung.

Mekanika struktur juga mencakup aspek dinamik struktur, di
mana struktur harus mampu menghadapi beban yang berubah terhadap
waktu, seperti gempa bumi, angin kencang, atau lalu lintas kendaraan
berat. Untuk kondisi seperti ini, struktur perlu dianalisis berdasarkan
respons dinamis, dan sering kali melibatkan simulasi berbasis metode
numerik yang memperhitungkan gaya inersia, redaman, dan frekuensi
alami sistem.

2. Perpindahan Panas dan Termodinamika

Perpindahan panas dan termodinamika merupakan dua cabang
ilmu penting dalam teknik mesin, teknik kimia, dan rekayasa energi yang
saling berkaitan erat dalam memahami dan mengendalikan fenomena
energi dalam sistem teknik. Termodinamika berfokus pada studi
mengenai hubungan antara panas, kerja, dan energi dalam suatu sistem,
serta kondisi kesetimbangan termal dan proses perubahan energi yang
terjadi. Di sisi lain, perpindahan panas (heat transfer) mempelajari
bagaimana energi dalam bentuk panas berpindah dari satu tempat ke
tempat lain melalui tiga mekanisme utama: konduksi, konveksi, dan
radiasi. Kedua cabang ini menjadi landasan dalam merancang mesin,
sistem pendingin, turbin, boiler, reaktor, dan banyak sistem teknik
lainnya yang melibatkan konversi dan transportasi energi.

Menurut Cengel dan Boles (2015) dalam Thermodynamics: An
Engineering Approach, termodinamika menjelaskan perubahan energi
melalui hukum-hukum dasar: Hukum Pertama Termodinamika yang
menyatakan kekekalan energi, dan Hukum Kedua Termodinamika yang
memperkenalkan konsep entropi dan arah alami dari proses termal.
Misalnya, dalam sistem mesin kalor seperti motor bakar atau turbin gas,
hukum pertama menjelaskan konversi panas menjadi kerja mekanis,
sedangkan hukum kedua membatasi efisiensi konversi tersebut, karena
selalu ada sebagian energi yang hilang sebagai panas yang tidak dapat
digunakan. Hukum-hukum ini digunakan untuk menganalisis siklus

termal seperti siklus Rankine, siklus Otto, dan siklus Brayton, yang
Buku Referensi 121

menjadi dasar dalam perancangan pembangkit listrik dan mesin
kendaraan.

Ilmu perpindahan panas menjadi penting dalam menentukan
bagaimana dan seberapa cepat panas berpindah dari satu bagian sistem
ke bagian lainnya. Dalam konduksi, panas mengalir dalam benda padat
dari suhu tinggi ke suhu rendah melalui getaran atom dan konduksi
elektron, dijelaskan dengan hukum Fourier. Dalam konveksi, panas
berpindah antara permukaan padat dan fluida yang mengalir, dan
dianalisis menggunakan bilangan Nusselt, bilangan Reynolds, dan
hukum Newton pendinginan. Sedangkan radiasi panas melibatkan energi
elektromagnetik yang dipancarkan oleh permukaan benda, dijelaskan
dengan hukum Stefan-Boltzmann dan konsep emisivitas.

Pada rekayasa, analisis perpindahan panas sering digunakan
untuk merancang sistem pendingin (seperti radiator, heat exchanger, dan
sistem HVAC), serta isolasi termal pada dinding bangunan atau pipa.
Misalnya, pada sistem penukar kalor (heat exchanger), insinyur harus
memperhitungkan laju perpindahan panas antara dua fluida tanpa
mencampurkannya secara langsung, guna memastikan efisiensi energi
dan stabilitas operasi. Untuk sistem elektronik, analisis termal
diperlukan untuk memastikan bahwa suhu komponen seperti prosesor
tidak melebihi batas operasionalnya.

Perhitungan perpindahan panas dan termodinamika sering kali
melibatkan persamaan diferensial parsial yang kompleks, sehingga
metode numerik seperti metode elemen hingga (FEM) atau metode beda
hingga (FDM) digunakan untuk menghitung distribusi suhu dalam
geometri yang rumit. Perangkat lunak sepertt ANSYS, COMSOL, atau
MATLAB digunakan untuk simulasi termal secara menyeluruh, mulai
dari analisis stasioner hingga perpindahan panas transien.

Dengan memahami prinsip-prinsip perpindahan panas dan
termodinamika, para insinyur mampu mengendalikan aliran energi dan
suhu dalam sistem teknik secara efisien dan berkelanjutan. Ilmu ini
sangat vital dalam pengembangan teknologi energi terbarukan,
kendaraan hemat energi, bangunan ramah lingkungan, dan sistem
pendinginan berteknologi tinggi. Oleh karena itu, perpindahan panas dan
termodinamika terus menjadi pilar utama dalam inovasi teknologi energi
dan rekayasa masa depan.

122 Pemrograman dan Komputasi Numerik

3. Dinamika Fluida Komputasi (CFD)

Dinamika Fluida Komputasi (Computational Fluid
Dynamics/CFD) adalah cabang teknik yang menggunakan metode
numerik dan algoritma komputasi untuk menganalisis dan memecahkan
persoalan yang melibatkan aliran fluida dan transfer energi. Dalam
konteks teknik, CFD menjadi alat penting dalam memahami perilaku
fluida (gas dan cairan), memprediksi distribusi tekanan, kecepatan, suhu,
dan berbagai parameter penting lainnya dalam sistem rekayasa yang
kompleks. Dengan kemampuan ini, CFD telah menjadi teknologi utama
dalam desain dan optimasi produk pada berbagai sektor seperti
penerbangan, otomotif, energi, lingkungan, hingga biomedis.

Menurut Versteeg dan Malalasekera (2007) dalam An
Introduction to Computational Fluid Dynamics, CFD bekerja dengan
cara mendiskretkan dan menyelesaikan persamaan Navier-Stokes, yaitu
persamaan diferensial parsial non-linier yang mendeskripsikan
konservasi massa (kontinuitas), momentum (hukum Newton), dan energi
dalam fluida. Karena sulit atau bahkan tidak mungkin menyelesaikan
persamaan tersebut secara analitik untuk kasus nyata yang kompleks,
maka metode numerik seperti finite volume method (FVM), finite
element method (FEM), dan finite difference method (FDM) digunakan
untuk menyelesaikannya dalam bentuk diskrit di atas grid atau mesh
yang menggambarkan domain aliran.

Pada aplikasi teknik, CFD memberikan keunggulan besar karena
mampu menggantikan eksperimen fisik yang mahal dan memakan
waktu. Misalnya, dalam industri otomotif, CFD digunakan untuk
menganalisis aerodinamika mobil guna mengurangi hambatan udara dan
meningkatkan efisiensi bahan bakar. Dalam teknik penerbangan, CFD
membantu mendesain bentuk sayap dan badan pesawat agar memiliki lift
optimal dan drag minimal. CFD juga digunakan dalam perencanaan
sistem HVAC (Heating, Ventilation, and Air Conditioning) di gedung
untuk memastikan aliran udara dan distribusi suhu sesuai standar
kenyamanan termal.

CFD memungkinkan simulasi berbagai jenis aliran, mulai dari
aliran laminar hingga turbulen, aliran termal konvektif, aliran multifase
(seperti campuran air dan udara), hingga reaksi kimia dalam aliran fluida.
Dengan kemajuan teknologi komputasi, perangkat lunak CFD modern
seperti ANSYS Fluent, OpenFOAM, COMSOL Multiphysics, dan

STAR-CCM+ menyediakan antarmuka dan solver canggih yang mampu
Buku Referensi 123

menangani geometri kompleks, berbagai kondisi batas, serta interaksi
fluida dengan struktur padat.

CFD bukan hanya soal menjalankan simulasi. Kualitas hasil
sangat bergantung pada pemahaman fisika aliran, pemilihan model
turbelensi yang tepat (misalnya k-e¢ atau Large Eddy Simulation),
pemilihan skema numerik yang stabil, serta resolusi mesh yang cukup
untuk menangkap fenomena aliran penting. Selain itu, proses validasi
dan verifikasi harus dilakukan untuk memastikan bahwa hasil simulasi
mendekati realitas fisik dan cocok dengan data eksperimen atau
perhitungan teoritis.

4. Teknik Elektro dan Elektronika

Teknik elektro dan elektronika merupakan cabang ilmu teknik
yang berfokus pada studi, perancangan, dan penerapan sistem yang
melibatkan listrik, elektromagnetisme, serta perangkat elektronik. Ruang
lingkup teknik elektro mencakup sistem tenaga listrik, kontrol,
komunikasi, dan komputer, sedangkan teknik elektronika lebih
menekankan pada perancangan dan pemrosesan sinyal dalam perangkat-
perangkat mikro seperti transistor, rangkaian terpadu (IC), sensor, dan
mikrokontroler. Kedua bidang ini menjadi fondasi utama dari berbagai
inovasi teknologi modern, mulai dari pembangkit listrik dan jaringan
distribusi hingga ponsel pintar dan perangkat Internet of Things (10T).

Gambar 4. Internet of Things

loT ENABLED
MOBILE DEVICES

] @A 0T ENABLED
SHOPS, AIRPORTS, ®O N
90

STATIONS

EDGE loT DEVICES

d

| (©

B

loT ENABLED FACTORIES

loT DEVICES

£ E

DATACENTERS

INTERNET
D OF THINGS

i LN
hr\ H ﬁ'\\]@

e Sug

10T ENABLED SHIPS
AIRPLANES, TRAINS o

ﬂ

s

D)

=

loT ENABLED

loT ENABLED CITIES HOMES & BUILDINGS

Sumber:Binar

124 Pemrograman dan Komputasi Numerik

Menurut Hambley (2014) dalam FElectrical Engineering:
Principles and Applications, teknik elektro mempelajari bagaimana
energi listrik dihasilkan, ditransmisikan, dan digunakan secara efisien.
Di sektor pembangkitan tenaga listrik, para insinyur elektro merancang
sistem pembangkit seperti PLTA, PLTU, PLTS, dan PLTN, serta sistem
transmisi tegangan tinggi. Dalam proses ini, metode numerik digunakan
untuk menganalisis sistem jaringan listrik secara linier dan non-linier,
menentukan kestabilan tegangan, arus gangguan, serta distribusi beban.
Simulasi berbasis perangkat lunak seperti ETAP, MATLAB Simulink,
dan PowerWorld menjadi alat utama dalam perencanaan sistem tenaga
yang andal dan berkelanjutan.

Teknik elektronika berkaitan erat dengan pengembangan sirkuit
mikroelektronik dan sistem digital. Para insinyur elektronika merancang
sirkuit menggunakan komponen seperti resistor, kapasitor, dioda,
transistor, dan mikrokontroler untuk menciptakan perangkat seperti
sensor suhu, penguat sinyal, osilator, serta sistem tertanam (embedded
systems). Elektronika juga menjadi tulang punggung teknologi
komunikasi dan kontrol, misalnya pada pemancar radio, radar, perangkat
nirkabel, dan sistem kendali otomatis di industri. Dalam pengembangan
perangkat seperti ponsel, laptop, dan peralatan medis, prinsip-prinsip
elektronika digunakan untuk memastikan efisiensi energi, keandalan
sinyal, dan miniaturisasi perangkat.

Salah satu aspek penting dalam teknik elektro dan elektronika
modern adalah pengolahan sinyal digital (DSP), di mana sinyal analog
diubah menjadi bentuk digital agar dapat diolah, disimpan, dan
ditransmisikan secara efisien. Teknik ini digunakan dalam berbagai
aplikasi seperti pemrosesan audio, pengenalan suara, pengolahan gambar
digital, serta sistem komunikasi nirkabel. Dalam hal ini, metode numerik
seperti transformasi Fourier diskrit (DFT), filter digital (FIR dan IIR),
serta algoritma kompresi menjadi elemen penting dalam mendukung
kinerja sistem.

Perkembangan teknologi otomasi dan kontrol juga sangat
bergantung pada teknik elektro dan elektronika. Sistem kendali seperti
PID (Proportional-Integral-Derivative), kontrol logika fuzzy, hingga
kontrol adaptif digunakan untuk mengatur kecepatan motor, posisi robot,
suhu sistem, dan proses industri lainnya. Dengan dukungan sensor dan
aktuator, sistem ini mampu bekerja secara otomatis dan presisi tinggi.

Dalam dunia industri 4.0, integrasi antara teknik elektro, pemrograman,
Buku Referensi 125

dan komunikasi data membentuk sistem cerdas berbasis IoT dan Al yang
mampu mengoptimalkan produktivitas dan efisiensi.

5. Sistem Otomatisasi dan Kontrol

Sistem otomatisasi dan kontrol merupakan cabang penting dalam
teknik elektro, mekatronika, dan teknik industri yang berfokus pada
pengaturan perilaku sistem dinamis secara otomatis melalui penggunaan
perangkat keras (seperti sensor, aktuator, dan kontroler) dan perangkat
lunak (seperti algoritma kontrol dan sistem tertanam). Tujuan utama dari
sistem ini adalah menciptakan operasi yang efisien, presisi tinggi, stabil,
dan minim campur tangan manusia. Sistem kontrol banyak diterapkan
dalam berbagai bidang, mulai dari proses manufaktur, otomotif,
robotika, energi, transportasi, hingga peralatan rumah tangga pintar.

Menurut Ogata (2010) dalam Modern Control Engineering,
sistem kontrol bekerja berdasarkan prinsip pengumpanan (feedback) atau
umpan terbuka (open-loop). Dalam kontrol umpan balik, sensor
digunakan untuk mendeteksi keluaran sistem, lalu informasi ini
dibandingkan dengan nilai referensi (setpoint). Selisih antara keduanya
(disebut sebagai error) akan diproses oleh pengontrol (seperti pengontrol
PID) untuk menghasilkan sinyal yang mengatur aktuator, sehingga
sistem dapat menyesuaikan dirinya agar tetap berada dalam kondisi yang
diinginkan. Misalnya, dalam sistem kendali suhu ruangan, sensor suhu
mengukur kondisi aktual dan pengontrol mengatur pemanas atau
pendingin untuk mencapai suhu target.

Pengontrol PID (Proportional-Integral-Derivative) adalah jenis
kontroler yang paling umum dan banyak digunakan karena
kesederhanaannya serta efektivitasnya dalam berbagai jenis sistem.
Komponen proporsional (P) memberikan respons terhadap error saat ini,
integral (I) mengatasi error jangka panjang (akumulasi error), dan
turunan (D) merespons perubahan cepat dari error. Dengan penyesuaian
parameter yang tepat, pengontrol PID mampu mengendalikan sistem
dengan respons yang cepat dan stabil tanpa overshoot atau osilasi
berlebih.

Pada sistem industri modern, otomatisasi dikembangkan melalui
penggunaan Programmable Logic Controller (PLC), yang merupakan
komputer industri tahan lingkungan yang diprogram untuk mengatur
proses produksi secara berurutan atau paralel. PLC membaca sinyal dari

sensor, memproses logika kendali, dan mengaktifkan output seperti
126 Pemrograman dan Komputasi Numerik

motor, katup, atau lampu indikator. PLC menjadi komponen inti dalam
sistem otomasi pabrik, termasuk pada lini perakitan mobil, pengemasan
makanan, dan pengolahan air bersih.

Integrasi sistem kontrol dengan teknologi informasi telah
melahirkan konsep kontrol berbasis komputer dan jaringan. Dalam
pendekatan ini, sistem kendali terhubung secara digital dan dapat diakses
serta dikendalikan secara jarak jauh melalui antarmuka manusia-mesin
(HMI) atau Supervisory Control and Data Acquisition (SCADA). Ini
memungkinkan perusahaan memantau seluruh proses produksi secara
real-time, meningkatkan efisiensi operasional, deteksi kesalahan lebih
awal, dan pengambilan keputusan yang berbasis data.

Di sektor transportasi, sistem kontrol digunakan dalam cruise
control mobil, sistem navigasi pesawat terbang, hingga kendali otomatis
kereta cepat. Sementara dalam dunia robotika, sistem kontrol
memastikan gerakan lengan robot presisi sesuai dengan jalur atau posisi
targetnya. Dalam energi, sistem kontrol berperan dalam manajemen grid
listrik, pengaturan turbin pembangkit, dan sistem energi terbarukan yang
dinamis seperti panel surya dan turbin angin.

Dengan perkembangan teknologi sensor, kecerdasan buatan (Al),
dan komunikasi data, sistem otomatisasi dan kontrol kini berkembang
menuju arah cyber-physical systems dan internet of things (10T). Sistem-
sistem ini mampu beradaptasi secara cerdas terhadap perubahan
lingkungan, melakukan prediksi kegagalan, serta belajar dari data
historis untuk mengoptimalkan performa secara berkelanjutan. Oleh
karena itu, pemahaman terhadap sistem otomatisasi dan kontrol sangat
penting bagi para insinyur dan teknolog modern yang ingin membangun
sistem yang efisien, adaptif, dan siap menghadapi tantangan industri
masa depan.

6. Rekayasa Material dan Struktur Mikro

Rekayasa material dan struktur mikro adalah bidang
interdisipliner dalam teknik dan ilmu material yang mempelajari
hubungan antara struktur internal material pada skala mikro dan nano
terhadap sifat mekanik, termal, listrik, maupun kimianya. Tujuan utama
dari bidang ini adalah merekayasa bahan dengan sifat yang diinginkan
melalui kontrol atas komposisi, morfologi, dan struktur mikroskopik.
Rekayasa material sangat penting dalam mendukung inovasi teknologi,

mulai dari pengembangan bahan ringan untuk pesawat terbang, logam
Buku Referensi 127

tahan panas untuk turbin gas, hingga material superkonduktor,
biomaterial, dan nanokomposit untuk perangkat elektronik canggih.

Menurut Callister dan Rethwisch (2020) dalam Materials
Science and Engineering: An Introduction, sifat makroskopik suatu
material sangat dipengaruhi oleh struktur mikronya, seperti ukuran butir,
orientasi kristal, cacat kristal, serta distribusi fasa. Misalnya, logam
dengan ukuran butir yang lebih kecil cenderung memiliki kekuatan tarik
yang lebih tinggi, sebagaimana dijelaskan dalam prinsip Hall-Petch,
yang menyatakan bahwa kekuatan logam meningkat seiring dengan
berkurangnya ukuran butir. Oleh karena itu, proses-proses seperti
pengerjaan dingin, pemanasan ulang (annealing), atau rekayasa
solidifikasi dimanfaatkan untuk mengubah struktur mikro demi
mendapatkan karakteristik mekanik yang diinginkan.

Rekayasa struktur mikro tidak hanya terbatas pada logam, tetapi
juga mencakup keramik, polimer, dan komposit. Dalam pengembangan
komposit, misalnya, struktur mikro dirancang sedemikian rupa agar serat
penguat (seperti serat karbon atau serat kaca) terdistribusi merata dalam
matriks polimer atau logam. Hal ini menghasilkan material dengan
kombinasi kekuatan tinggi, ringan, dan ketahanan terhadap keausan atau
korosi. Sifat-sifat seperti ini sangat dibutuhkan dalam industri otomotif,
pesawat terbang, serta konstruksi infrastruktur yang mengutamakan
efisiensi dan daya tahan.

Perkembangan teknologi juga memungkinkan analisis struktur
mikro hingga ke tingkat nano dengan menggunakan teknik karakterisasi
canggih seperti mikroskop elektron transmisi (TEM), mikroskop
elektron pemindaian (SEM), dan difraksi sinar-X (XRD). Teknik ini
memungkinkan para insinyur dan ilmuwan material memahami
distribusi fasa, cacat kristal, atau interaksi atom dalam material.
Informasi ini menjadi dasar dalam pemodelan material berbasis
komputer, termasuk simulasi molekuler dan metode elemen hingga
(FEM) untuk memprediksi perilaku material dalam kondisi ekstrem,
seperti tekanan tinggi atau suhu tinggi. Selain itu, struktur mikro sangat
berperan dalam rekayasa material fungsional, seperti bahan magnetik,
piezoelektrik, termolistrik, dan superkonduktor. Dalam bidang
biomaterial, struktur mikro digunakan untuk merekayasa implan tulang
dan jaringan buatan agar memiliki porositas dan kekasaran permukaan
yang sesuai dengan proses regenerasi biologis.

128 Pemrograman dan Komputasi Numerik

PENYELESAIAN
PERSAMAAN
NONLINEAR

Persamaan nonlinear merupakan salah satu fondasi penting
dalam dunia sains dan teknik, yang sering kali muncul dalam berbagai
permasalahan nyata seperti mekanika, dinamika fluida, ekonomi, serta
sistem kendali. Tidak seperti persamaan linear yang memiliki sifat
sederhana dan solusi langsung, persamaan nonlinear menghadirkan
kompleksitas tinggi dan memerlukan pendekatan khusus untuk
menemukan solusinya. Dalam dunia komputasi modern, penyelesaian
persamaan nonlinear secara numerik menjadi sangat relevan karena
sering kali tidak tersedia solusi analitik yang eksak. Oleh karena itu,
metode numerik seperti bisection, regula falsi, Newton-Raphson, dan
secant method dikembangkan untuk memberikan solusi pendekatan yang
efisien dan stabil. Melalui bab ini, pembaca akan diperkenalkan pada
prinsip dasar penyelesaian persamaan nonlinear, karakteristik
konvergensi metode-metode yang digunakan, serta kelebihan dan
keterbatasan masing-masing pendekatan.

A. Metode Bagi Dua dan Regulafalsi

Di dunia komputasi numerik, penyelesaian persamaan nonlinear
menjadi salah satu topik penting, khususnya ketika solusi analitik tidak
dapat ditemukan secara langsung. Dua metode paling dasar namun
efektif yang digunakan untuk menyelesaikan persamaan nonlinear

Buku Referensi 129

adalah Metode Bagi Dua (Bisection Method) dan Metode Regula Falsi
(False Position Method). Kedua metode ini tergolong dalam kelompok
metode bracketing, yaitu teknik yang memerlukan dua nilai awal yang
mengurung akar fungsi.

1. Metode Bagi Dua

Metode Bagi Dua atau Bisection Method merupakan salah satu
teknik paling dasar dan penting dalam penyelesaian persamaan nonlinear
secara numerik. Metode ini tergolong dalam kategori bracketing
methods, yakni pendekatan yang bekerja dengan menyempitkan interval
yang mengandung akar dari suatu fungsi secara bertahap. Prinsip
dasarnya sangat sederhana namun kuat, yakni jika suatu fungsi kontinu
f(x) memiliki tanda yang berlawanan pada dua titik, misalnya f(a)<0 dan
f(b)>0, maka menurut Teorema Nilai Antara (Intermediate Value
Theorem) pasti terdapat setidaknya satu akar c€(a,b) yang memenuhi
f(c)=0. Inilah dasar teoritis dari metode bagi dua.

Langkah pertama dalam metode ini adalah menentukan interval
awal [a,b] di mana nilai fungsi pada kedua ujung memiliki tanda yang

o . " . b
berlawanan. Setelah itu, titik tengah dari interval dihitung, yaitu ¢ = %,

dan nilai fungsi di titik tersebut, f(c) dievaluasi. Jika f(c)=0, maka c
adalah solusi akar yang dicari. Namun dalam praktiknya, sangat jarang
nilai fungsi di titik tengah benar-benar nol. Oleh karena itu, proses
dilanjutkan dengan menentukan subinterval baru yang masih
mengandung akar, yaitu antara [a,c] atau [c,b], tergantung pada tanda
fungsi di titik-titik tersebut. Proses ini diulang terus-menerus dengan cara
yang sama hingga panjang interval |b—al menjadi sangat kecil atau nilai
fungsi [f(c)] mendekati nol, sesuai dengan tingkat toleransi kesalahan
yang telah ditentukan.

Kekuatan utama metode bagi dua terletak pada stabilitas dan
jaminan konvergensi. Selama syarat dasar f(a)xf(b)<0 dipenuhi dan
fungsi bersifat kontinu pada interval tersebut, maka metode ini pasti akan
menemukan akar atau pendekatannya. Oleh karena itu, metode ini
dianggap sangat andal, terutama dalam kondisi di mana fungsi memiliki
bentuk yang kompleks atau tidak mudah diturunkan secara analitik.
Pendekatan ini juga tidak bergantung pada kemiringan fungsi atau
perubahan bentuk grafiknya, yang membuatnya sangat berguna untuk

130 Pemrograman dan Komputasi Numerik

fungsi-fungsi yang tidak diketahui bentuk pastinya atau yang memiliki
perilaku tidak terduga di antara titik a dan b.

Keunggulan dalam kestabilan dan kesederhanaan ini juga disertai
dengan kelemahan, terutama dalam hal kecepatan konvergensi. Metode
bagi dua hanya menunjukkan konvergensi linier, artinya error berkurang
secara bertahap dan cukup lambat dari iterasi ke iterasi. Dalam
praktiknya, dibutuhkan banyak iterasi untuk mencapai ketelitian yang
tinggi, terutama jika akar berada sangat dekat dengan salah satu ujung
interval. Hal ini menjadikan metode ini kurang efisien dibandingkan
metode yang menggunakan informasi tambahan, seperti Newton-
Raphson atau metode secant, yang memiliki kecepatan konvergensi yang
lebih tinggi. Selain itu, metode bagi dua tidak dapat digunakan jika
fungsi tidak berubah tanda pada interval awal, yang berarti proses seleksi
interval awal menjadi sangat penting.

Aplikasi metode bagi dua sangat luas dan mencakup berbagai
bidang, mulai dari fisika, teknik elektro, teknik mesin, hingga ekonomi.
Contohnya, dalam teknik sipil, metode ini dapat digunakan untuk
menghitung titik netral dalam sistem struktur lentur. Dalam ilmu
ekonomi, metode bagi dua bisa diterapkan untuk mencari nilai suku
bunga internal (IRR) yang membuat nilai kini bersih (NPV) sama dengan
nol. Dalam pengembangan perangkat lunak atau pemrograman, metode
ini juga sangat sering digunakan sebagai bagian dari modul numerik,
terutama dalam bahasa seperti Python, MATLAB, C++, dan Java.
Implementasinya relatif mudah dan tidak memerlukan struktur data
kompleks, hanya membutuhkan iterasi sederhana berbasis logika
percabangan dan perhitungan aritmatika dasar.

Sebagai ilustrasi, pertimbangkan fungsi f(x) = x3- x - 2. Kita ingin
mencari akar fungsi tersebut dalam interval [1, 2]. Evaluasi awal
menunjukkan f(1)=—2 dan f(2)=2, sehingga fungsi memenuhi syarat
metode bagi dua. Titik tengah pertama adalah ci=1.5, di mana
f(1.5)=—0.125, masih negatif, yang berarti akar ada pada interval [1.5,
2]. Proses ini terus diulang: hitung titik tengah baru, evaluasi nilai fungsi,
dan perbarui interval. Setelah beberapa iterasi, nilai pendekatan akar
akan mendekati 1.521, yang merupakan akar nyata dari fungsi tersebut.
Meskipun konvergensinya lambat, hasil akhirnya sangat presisi jika
dilakukan hingga toleransi tertentu.

Secara implementatif, metode bagi dua dapat dituliskan dalam

bentuk program komputasi sederhana. Misalnya, dalam Python, cukup
Buku Referensi 131

menggunakan perulangan while dan logika pembaruan nilai aaa atau bbb
berdasarkan hasil evaluasi fungsi di titik tengah. Fungsi umum biasanya
juga dilengkapi parameter toleransi dan jumlah iterasi maksimum untuk
mencegah komputasi tak berujung akibat fungsi yang sangat mendekati
datar di sekitar akar.

Pada pengajaran dan pembelajaran komputasi numerik, metode
bagi dua sangat direckomendasikan sebagai titik awal untuk
memperkenalkan prinsip penyelesaian persamaan nonlinear. Ini karena
metode ini mengajarkan banyak konsep mendasar seperti pemilihan
interval, evaluasi fungsi, penggunaan toleransi kesalahan, dan
pentingnya sifat kontinuitas. Bahkan ketika mahasiswa atau peneliti
akhirnya beralih ke metode yang lebih kompleks, pemahaman yang kuat
tentang metode bagi dua tetap menjadi landasan penting dalam
memahami bagaimana pendekatan numerik bekerja secara umum.

Dengan segala kelebihan dan keterbatasannya, metode bagi dua
tetap menjadi alat yang relevan, terutama ketika kestabilan dan
keandalan lebih diprioritaskan daripada kecepatan. Dalam dunia di mana
solusi eksak semakin langka dan model numerik semakin dominan,
metode seperti ini memberikan alternatif yang kuat dan dapat dipercaya
untuk menyelesaikan masalah nonlinear dalam berbagai disiplin ilmu.

flz)=2"—a -2
Cari akar dalam interval [1,2], dan lakukan tiga iterasi.

f)=1*"-1-2=-2
f(2y=2"-2-2-4

Karena f(1) - f(2) < 0, maka akar berada di antara 1 dan 2.
Iterasi 1

x, = —— = 1.5
f(15)=(15)-15-2=3375—15-2=—0.125

Karena f(1.5) - f(2) > 0, akar berada di [1.5, 2].

132 Pemrograman dan Komputasi Numerik

Iterasi 2

1.5+2
Ty = =1.75

F(1.75) = (1.75)° — 1.75 — 2 = 5.359 — 1.75 — 2 = 1.609
Karena f(1.5) - f(1.75) < 0, akar berada di [1.5, 1.75].

Iterasi 3

1.5+ 1.7
_L6+1m 1.625

F(1.625) = (1.625)" — 1.625 — 2 = 4.29 — 1.625 — 2 = 0.665

&,

Karena f(1.5) - f(1.625) < 0, akar berada di [1.5, 1.625].

Setelah tiga iterasi, kita mendekati akar dalam interval [1.5,
1.625], dengan nilai pendekatan terakhir x=1.625. Metode ini akan terus
mempersempit interval hingga mendekati akar sejati dari f(x)=0.

2. Metode Regula Falsi

Metode Regula Falsi, atau sering disebut juga False Position
Method, merupakan salah satu metode numerik yang digunakan untuk
menyelesaikan persamaan nonlinear f(x)=0 dengan cara yang lebih
cerdas dibandingkan metode bagi dua. Sama seperti metode bisection,
Regula Falsi termasuk dalam kategori bracketing methods, yaitu metode
yang memerlukan dua titik awal aaa dan bbb sehingga f(a)xf(b)<0,
artinya terdapat perubahan tanda nilai fungsi di antara dua titik tersebut.
Berdasarkan Teorema Nilai Antara (Intermediate Value Theorem), jika
fungsi f(x) bersifat kontinu dalam interval tersebut, maka dijamin
terdapat setidaknya satu akar di antara aaa dan bbb. Namun, keunikan
metode Regula Falsi terletak pada cara pendekatannya dalam
menentukan nilai x baru (akar pendekatan), yakni dengan menggunakan
persamaan garis lurus yang menghubungkan dua titik fungsi tersebut dan
menghitung titik potong garis dengan sumbu x. Secara matematis, titik
pendekatan akar c¢ dihitung berdasarkan rumus:

_fb)-(b—a)
f(b) — f(a)
Rumus ini secara geometris berarti bahwa C adalah titik potong

garis lurus antara titik (a,f(a)) dan (b,f(b)) terhadap sumbu x. Dengan
kata lain, alih-alih memilih titik tengah seperti dalam metode bagi dua,

Buku Referensi 133

=b

metode Regula Falsi memilih titik yang diperkirakan lebih dekat dengan
akar karena mempertimbangkan nilai fungsi itu sendiri. Pendekatan ini
membuat metode ini memiliki potensi konvergensi yang lebih cepat
daripada metode bisection, karena lebih "menyesuaikan diri" dengan
bentuk kurva fungsi.

Langkah-langkah metode Regula Falsi cukup sederhana dan
efisien. Pertama, tentukan dua nilai awal aaa dan bbb yang memenuhi
syarat bracketing f(a)xf(b)<0. Kedua, hitung nilai C menggunakan
rumus di atas. Ketiga, evaluasi f(c); jika f(c)=0, maka C adalah akar dari
fungsi. Jika tidak, perbarui nilai interval: jika f(a)xf(c)<0, maka akar
berada dalam interval [a,c], sehingga b diganti dengan C; jika
f(c)xf(b)<0, maka akar berada dalam interval [c,b], sehingga a diganti
dengan C. Proses ini diulang hingga nilai absolut f(c) lebih kecil dari
toleransi yang ditentukan atau panjang interval sudah sangat kecil.

Keunggulan utama metode Regula Falsi adalah kecepatannya
dalam konvergensi pada banyak kasus, terutama dibandingkan dengan
metode bagi dua. Karena pendekatan nilai C lebih bersifat adaptif dan
tergantung pada bentuk fungsi, maka dalam fungsi-fungsi yang tidak
terlalu datar atau memiliki gradien yang cukup tajam, metode ini dapat
mencapai solusi lebih cepat. Sebagai contoh, dalam fungsi f(x)=x>-x-2,
jika digunakan Regula Falsi dengan nilai awal a=1 dan b=2, nilai akar
akan mendekati x~1.521 dalam iterasi yang lebih sedikit dibandingkan
metode bagi dua.

Regula Falsi juga memiliki kelemahan tertentu yang perlu
diperhatikan. Salah satu kelemahan signifikan adalah potensi stagnasi
konvergensi. Ini terjadi ketika salah satu dari dua titik aaa atau bbb tetap
tidak berubah dalam banyak iterasi karena nilai fungsi di titik tersebut
sangat kecil atau tidak berubah secara signifikan. Dalam kasus seperti
ini, meskipun metode masih bekerja, konvergensinya menjadi sangat
lambat dan mendekati metode bagi dua. Untuk mengatasi masalah ini,
beberapa varian dari metode Regula Falsi telah dikembangkan, seperti
metode Modified Regula Falsi, Illinois Method, dan Pegasus Method,
yang mencoba mengoreksi titik stagnan agar proses konvergensi tetap
cepat.

Pada praktik komputasi, Regula Falsi sering kali digunakan
ketika metode yang lebih kompleks seperti Newton-Raphson tidak bisa
diaplikasikan karena fungsi tidak terdiferensiasi dengan mudah, atau

nilai turunan tidak tersedia atau tidak stabil. Karena metode ini hanya
134 Pemrograman dan Komputasi Numerik

membutuhkan evaluasi fungsi, tanpa perlu menghitung turunan, maka ia
sangat cocok untuk fungsi-fungsi kompleks atau eksperimental yang
diperoleh dari data empiris. Selain itu, metode ini relatif mudah
diimplementasikan dalam bahasa pemrograman seperti Python,
MATLAB, maupun C++. Berikut merupakan ilustrasi implementasi
sederhana metode Regula Falsi dalam Python.

1 def regula falsi(f, a, b, tol=le-6, max_iter=12¢8)
if f(a) * f(b) »= a:

raise valueErrcr{"Fungsi tidak berubah tanda di imterval yang diberikan.™}
for _ in range(max_iter)
c="h - f(b) * (b - a) / {f(b) - F{a))
if abs(f{c)} < tol:
return c

if f{a)y * f{c) « a&:
b=c

else:
a=c

return ¢

Dengan contoh fungsi:

f = lambda »x: x**3 - x - 2
gkar = regula falsi{f, 1, 2)
primt(akar)

Dari penjelasan tersebut, dapat disimpulkan bahwa metode
Regula Falsi merupakan kompromi antara kesederhanaan metode
bisection dan kecepatan metode Newton-Raphson. Ia tidak secepat
metode berbasis turunan, namun lebih aman karena tidak bergantung
pada informasi turunan fungsi. Metode ini sangat cocok untuk digunakan
dalam tahap awal pemrograman numerik atau ketika menghadapi fungsi
yang sulit dianalisis secara simbolik. Dengan memilih interval awal yang
tepat dan toleransi yang sesuai, metode ini mampu memberikan solusi
yang akurat dan efisien untuk berbagai jenis permasalahan nonlinear
yang kompleks.

flz)=2—2—2

Dengan interval awal [1, 2], lakukan tiga iterasi.

Buku Referensi 135

Langkah 1: Evaluasi fungsi di batas interval

fl)=1"-1-2=—-2
f2)=2"-2-2=4

Karena f(1) - f(2) < 0. akar berada dalam interval tersebut.

Rumus Regula Falsi:

)b
=T Ha) - 1)

dengana =1 b= 2.

Iterasi 1:

g 21=2) 4 a2 1333
Iy = — = _ — = — — = 1.3d:
—-2—-4 —G 3

£(1.333) = (1.333)° — 1.333 — 2~ 2.37 — 1.333 — 2 = —0.963

Karena f(1.333) - f(2) < 0, interval baru: [1.333, 2]

Ilterasi 2:

4(1.333-2) —2.668
—0.963 —4 —4.963

r =

~ 2 —0.538 = 1.462

f(1.462) = {1.4{]’2]3 —1.462 — 2 72 3.125 — 1.462 — 2 = —0.337
Interval baru: [1.462, 2]

Iterasi 3:

4(1.462 — 2) —2.148
o — _—— _
T —0.337 -4 —4.337

F(1.505) =~ —0.124

= 2—10.495 = 1.505

Setelah 3 iterasi, akar pendekatan berada di sekitar x~1.505.
Metode Regula Falsi lebih cepat dari metode Bisection karena
menggunakan pendekatan garis lurus antara titik-titik.

B. Metode Newton-Raphson dan Secant

Pada penyelesaian persamaan nonlinear f(x)=0, metode numerik
sangat penting ketika solusi eksak tidak tersedia atau sulit ditemukan.

136 Pemrograman dan Komputasi Numerik

Dua metode populer yang digunakan untuk pendekatan akar adalah
metode Newton-Raphson dan metode Secant. Keduanya merupakan
bagian dari metode terbuka (open methods), yang tidak mensyaratkan
nilai awal harus mengurung akar seperti pada metode bracketing
(misalnya metode bagi dua atau regula falsi). Karena itulah, kedua
metode ini dikenal memiliki konvergensi yang lebih cepat, meskipun
dengan risiko konvergensi yang tidak dijamin jika pemilihan titik awal
kurang tepat.

1. Metode Newton-Raphson

Metode Newton-Raphson adalah salah satu teknik numerik
paling populer dan efisien untuk mencari akar persamaan nonlinear
f(x)=0. Metode ini dikenal luas dalam bidang teknik, fisika, matematika
terapan, dan ilmu komputer karena konvergensinya yang cepat dan
kemampuannya menyelesaikan berbagai permasalahan kompleks
dengan pendekatan iteratif. Diperkenalkan oleh Sir Isaac Newton dan
Joseph Raphson pada abad ke-17, metode ini memanfaatkan pendekatan
kalkulus, khususnya turunan pertama fungsi, untuk memperkirakan nilai
akar secara bertahap dengan tingkat ketelitian yang semakin tinggi.

Dasar teori dari metode Newton-Raphson didasarkan pada
perluasan Taylor orde pertama dari fungsi f(x). Jika kita
mengembangkan f(x) di sekitar titik x=xn, maka dapat dituliskan:

flx) = flza) + f*{._n”}{:ﬁ — &n)

Dengan mengasumsikan f(x)=0 dan menyelesaikan persamaan
tersebut untuk x, maka diperoleh rumus iteratif:

flz,)
f'(n)

Rumus ini merupakan inti dari metode Newton-Raphson, di
mana xn+1 adalah pendekatan akar yang lebih baik berdasarkan nilai

Ly] — Tn —

xnx_nxn sebelumnya. Iterasi ini terus dilakukan sampai diperoleh nilai
xn+1 yang mendekati akar sebenarnya dengan tingkat kesalahan yang bisa
ditoleransi.

Salah satu keunggulan utama metode Newton-Raphson adalah
kecepatan konvergensinya yang kuadratik, artinya jika pendekatan awal
cukup dekat dengan akar sebenarnya, maka jumlah digit benar dari hasil
perhitungan akan bertambah dua kali lipat di setiap iterasi. Hal ini

Buku Referensi 137

membuat metode ini sangat efisien dibandingkan metode lain seperti
bisection atau regula falsi yang hanya konvergen secara linier. Namun,
kecepatan ini hanya dapat dicapai apabila kondisi ideal terpenuhi, seperti
turunan fungsi tidak mendekati nol dan nilai awal tidak terlalu jauh dari
akar.

Pada implementasinya, metode Newton-Raphson memerlukan
dua komponen utama: nilai fungsi f(x) dan turunan pertamanya f'(x). Ini
menjadi kekuatan sekaligus keterbatasan metode. Pada satu sisi,
informasi turunan memberikan arah dan kecepatan pergerakan menuju
akar, sehingga konvergensi menjadi sangat efisien. Namun di sisi lain,
metode ini menjadi sulit atau tidak praktis jika turunan fungsi tidak
diketahui secara eksplisit, sulit dihitung, atau fungsi tidak
terdiferensialkan dengan baik di sekitar titik yang sedang dianalisis.
Dalam kasus semacam ini, pengguna dapat mempertimbangkan metode
alternatif seperti metode secant, yang tidak memerlukan turunan
eksplisit.

Contoh sederhana penerapan metode Newton-Raphson adalah
pada fungsi f(x)=x’- x - 2, di mana akar nyata dari persamaan ini terletak
di sekitar x=1.521. Dengan memilih titik awal xo=1.5x, kita dapat
menghitung f(x0)=—0.125 dan f'(x0)=3(1.5)2—1=5.75. Maka:

—0.125
5.75
Dengan hanya satu iterasi, nilai pendekatan akar sudah sangat

2, = 1.5 — = 1.5217

dekat dengan solusi sebenarnya. Dalam beberapa iterasi berikutnya, hasil
perhitungan akan semakin mendekati akar sejati dengan tingkat
kesalahan yang sangat kecil.

Meski sangat efektif, metode Newton-Raphson memiliki
sejumlah potensi masalah. Jika nilai awal terlalu jauh dari akar, atau jika
fungsi memiliki turunan nol di titik tertentu (seperti di puncak atau
lembah grafik), maka perhitungan bisa tidak stabil atau bahkan gagal
konvergen. Dalam beberapa kasus ekstrem, iterasi dapat menyimpang
jauh dari akar sebenarnya, atau masuk ke dalam siklus tak berujung yang
tidak menghasilkan konvergensi. Oleh karena itu, pemilihan nilai awal
yang baik dan pemahaman bentuk fungsi menjadi sangat krusial dalam
menjamin keberhasilan metode ini.

Pada praktik pemrograman, implementasi metode Newton-
Raphson relatif mudah. Bahasa seperti Python, MATLAB, atau C++

138 Pemrograman dan Komputasi Numerik

menyediakan cara cepat untuk menghitung fungsi dan turunannya.
Sebagai contoh, implementasi sederhana dalam Python dapat dituliskan
sebagai berikut:
def newton raphson(f, df, x8, tol=le-&, max iter=188):
for _ in range(max_iter):
*1 = x8 - f(x8) [df(=x8@)
if abs{x1 - =x@) < tol:
return x1
@ = xl
return x@

Dalam penggunaan dunia nyata, metode Newton-Raphson
banyak diterapkan dalam berbagai bidang. Dalam teknik sipil, digunakan
untuk menghitung deformasi struktur nonlinear. Dalam bidang
keuangan, digunakan untuk menghitung akar dari persamaan nilai kini
bersih (NPV) dalam penentuan IRR (/nternal Rate of Return). Dalam
bidang optimisasi dan pembelajaran mesin, metode ini menjadi dasar
bagi algoritma yang lebih kompleks seperti gradient descent dan
Newton's optimization method dalam pelatihan model.

flz)=2%—z -2

Gunakan tebakan awal x; = 1.5, dan lakukan tiga iterasi.

flz) =2’ — 2 —2 g f(zn)
f’{.‘;:;l — 32 -1 mt " f’[i‘u)
Iterasi 1:
xn = 1.5

f(1.5) = 3.375 — 1.5 — 2 = —0.125
f(1.5)=3(15)°—-1=6.75—1=5.75

—0.125

oz =15— == 1.5 + 0.0217 = 1.5217

the t,
lterasi 2:

F(1.5217) = (1.5217)% — 1.5217 — 2 = 3.525 — 1.5217 — 2 = 0.0033
F(L.5217) = 3(1.5217)% — 1 ~ 5.948

0.0033

rs = L5217 — 3 == 1.5217 — 0.000555 = 1.5211

LS

Buku Referensi 139

Iterasi 3:

£(1.5211) = 0.00001, f'(1.5211) = 5.943
o 0.00000
x5 = 1.5211 — ~ 1.5211
5.043

Setelah tiga iterasi, diperoleh akar pendekatan x~1.5211. Metode
Newton-Raphson sangat cepat konvergen jika tebakan awal dekat
dengan akar dan turunan tidak mendekati nol.

2. Metode Secant

Metode Secant merupakan salah satu metode numerik yang
digunakan untuk menyelesaikan persamaan nonlinear dalam bentuk
f(x)=0, dan secara khusus merupakan variasi dari metode Newton-
Raphson yang tidak memerlukan turunan eksplisit dari fungsi yang
dianalisis. Metode ini menjadi alternatif praktis ketika fungsi f(x) terlalu
kompleks atau tidak memiliki turunan yang dapat dihitung dengan
mudah. Oleh karena itu, metode Secant menjadi sangat relevan dalam
banyak aplikasi komputasi teknik, fisika, dan ekonomi, di mana bentuk
fungsi sering kali tidak diketahui secara simbolik atau hanya tersedia
dalam bentuk data numerik.

Secara konseptual, metode Secant memanfaatkan pendekatan
turunan numerik berdasarkan dua titik pendekatan sebelumnya. Jika
pada metode Newton-Raphson digunakan turunan analitik f'(x), maka
pada metode Secant, turunan didekati dengan:

— f(:fra} - f{iﬂn 1]

fxn) =
5 Iy — &no1

Rumus ini kemudian disubstitusikan ke dalam formula Newton-
Raphson, sehingga diperoleh rumus iteratif metode Secant:
Iy — En 1

f[:r:ra} - f(j:ra .l}

Dengan demikian, metode ini hanya memerlukan dua nilai awal,
yaitu xo dan x1, yang digunakan untuk memulai iterasi dalam mencari
akar fungsi. Berbeda dengan metode bracketing seperti metode bisection
atau regula falsi, metode Secant termasuk dalam kategori open methods,
yang tidak mengharuskan kedua nilai awal mengurung akar (tidak harus
f(x0)*1(x1)<0.

Lyl = &8y — f[::r:ra} ’

140 Pemrograman dan Komputasi Numerik

Kekuatan utama dari metode Secant terletak pada kesederhanaan
perhitungannya dan kecepatan konvergensi yang relatif tinggi
dibandingkan metode-metode bracketing. Meskipun kecepatan
konvergensi metode Secant tidak secepat Newton-Raphson yang bersifat
kuadratik, metode ini memiliki konvergensi super-linear dengan laju
mendekati 1.618, yakni golden ratio. Artinya, dalam banyak kasus,
metode ini tetap memberikan hasil yang cukup cepat dan efisien, tanpa
syarat ketersediaan turunan fungsi.

Sebagai ilustrasi, pertimbangkan fungsi nonlinear f(x)=x>-x-2.
Kita ingin mencari akar fungsi tersebut menggunakan metode Secant.
Misalkan dua nilai awal adalah xo=1 dan x1=2. Maka, f(1)=—2 dan
f(2)=2. Iterasi pertama akan menghasilkan:

xz_g_w_g_é_l_ﬁ
2 —(-2) 4

Dengan terus melanjutkan proses iteratif menggunakan dua nilai
pendekatan terakhir, kita akan mendekati akar sejati dari fungsi tersebut,
yaitu sekitar x=1.521. Meskipun pada contoh ini metode regula falsi juga
dapat digunakan, metode Secant cenderung lebih cepat karena tidak
memerlukan validasi tanda fungsi untuk memperbarui interval.

Metode Secant bukan tanpa kelemahan. Salah satu kelemahan
utama adalah tidak adanya jaminan konvergensi. Karena metode ini tidak
menggunakan prinsip bracketing, maka jika nilai awal tidak dipilih
dengan tepat atau jika fungsi memiliki perilaku tak menentu (seperti
perubahan kemiringan ekstrem atau osilasi lokal), maka iterasi dapat
menyimpang jauh dari akar atau bahkan tidak konvergen sama sekali.
Selain itu, jika dua nilai pendekatan menghasilkan f(xn)=f(xn-1), maka
metode akan gagal karena menghasilkan pembagian nol. Oleh karena itu,
kontrol terhadap nilai-nilai awal dan pemeriksaan stabilitas perhitungan
menjadi aspek penting dalam penerapan metode ini.

Pada praktiknya, metode Secant dapat diimplementasikan
dengan sangat mudah dalam bahasa pemrograman seperti Python,
MATLAB, atau C++. Contoh implementasi sederhana metode ini dalam
Python adalah sebagai berikut:

Buku Referensi 141

def secant(f, =@, x1, tol=le-6, max_iter=188):
for _ in range(max_iter):
fa, f1 = f(x8), f(x1)
if f1 - fo == o:
raise ValueError("Terjadi pembagian dengan nol.™)
¥2 = x1 - f1 * (x1 - »8) / (f1 - 18]
if abs(x2 - x1) < tol:
return x2
a8, x1 = x1, =2
return x1

Penggunaan metode ini sangat cocok untuk fungsi-fungsi yang
tidak diketahui bentuk turunannya, seperti fungsi empiris yang diperoleh
dari hasil eksperimen atau pengukuran. Misalnya, dalam rekayasa sistem
kontrol, kita bisa menggunakannya untuk menyetel parameter sistem
berdasarkan fungsi karakteristik hasil simulasi. Dalam ekonomi, metode
ini bisa digunakan untuk menghitung tingkat diskonto dari arus kas
dengan model yang tidak memiliki turunan eksplisit. Dalam ilmu data,
metode Secant bahkan dapat digunakan dalam pencarian nilai minimum
fungsi loss secara numerik.

Dari perspektif pendidikan, metode Secant juga sangat
bermanfaat untuk memperkenalkan konsep turunan numerik dan
pendekatan iteratif. Mahasiswa dapat memahami bagaimana perbedaan
antara metode terbuka dan tertutup memengaruhi hasil akhir, serta
menyadari pentingnya pemilihan nilai awal. Selain itu, metode ini
menjadi jembatan alami antara metode reguler dan metode berbasis
turunan seperti Newton-Raphson.

flz) =2 —a —2

Gunakan dua tebakan awal:
In—ldﬂ]’liﬁl —2,

lalu lakukan tiga iterasi.

Iy — En 1

fl@a) = f@n 1)

Lyl — &y — f[:i:uj '

142 Pemrograman dan Komputasi Numerik

f(z) = et — o — 2

fll)=1-1-2=—-2
f(2)=8-2-2=-4

Maka,
Iterasi 1:
Ip = 1,) = 2
2-1 1 2
g =2-—4.— — 2 4.--2---1.333
4—(-2) 6 3
F(1.333) = (1.3::‘-3]3 —1.333—2=2.37—1.333 -2 =-0.963
Iterasi 2:

1.333 — 2 1,335 — (0.963) —0.667
—0.963—4 777 0 T 063

== 1.333 — (0.963 - 0.134) = 1.333 — 0.129 = 1.204

3 = 1.333 — (—0.963) -

lterasi 3:

£(1.204) = —0.400, f(1.333) = —0.963

1904 — (—0.4) . 1204~ 1333
4 —0.4 — (—0.963)

7~ 1.204 — (—0.4) - (—0.129/0.563) == 1.204 — 0.092 = 1.112

Setelah tiga iterasi, pendekatan akar dari f(x)=0 berada di sekitar
x~1.112. Metode secant cepat dan tidak memerlukan turunan, berbeda
dengan Newton-Raphson.

C. Konvergensi dan Stabilitas Solusi

Pada bidang komputasi numerik dan penyelesaian persamaan
matematis secara numerik, dua konsep yang sangat fundamental adalah
konvergensi dan stabilitas solusi. Kedua konsep ini menentukan
keberhasilan dan keandalan suatu metode numerik dalam memberikan
solusi yang mendekati nilai sebenarnya. Sebuah metode yang akurat
tetapi tidak stabil, atau metode yang stabil tetapi tidak konvergen, tidak
akan dapat digunakan secara efektif dalam praktik nyata. Oleh karena
itu, memahami konvergensi dan stabilitas secara mendalam sangat

Buku Referensi 143

penting, baik dalam pengembangan algoritma maupun dalam
penerapannya untuk menyelesaikan masalah ilmiah dan rekayasa.

1. Konvergensi

Konvergensi merupakan konsep fundamental dalam komputasi
numerik yang mengukur seberapa efektif suatu metode numerik dalam
menghampiri solusi sebenarnya dari sebuah masalah matematis. Dalam
konteks penyelesaian persamaan nonlinear, sistem linier, maupun
persamaan diferensial, konvergensi menentukan apakah urutan solusi
mendekati nilai yang benar saat jumlah iterasi bertambah. Dengan kata
lain, suatu metode dikatakan konvergen jika hasil pendekatan
numeriknya semakin dekat ke solusi eksak seiring bertambahnya iterasi
atau penyempurnaan partisi numerik. Konsep ini tidak hanya penting
secara teoritis, tetapi juga sangat menentukan keberhasilan metode
numerik dalam berbagai aplikasi dunia nyata seperti simulasi teknik,
optimisasi, pemodelan ilmiah, dan pemrosesan data.

Menurut Burden dan Faires (2010), konvergensi suatu metode
numerik secara formal dapat didefinisikan sebagai berikut: jika terdapat
suatu solusi eksak x* dan urutan hasil pendekatan {x»}, maka metode
dikatakan konvergen jika:

lim &, = "

o0

Artinya, seiring dengan bertambahnya iterasi atau

penyempurnaan skema (seperti langkah waktu atau ukuran grid), solusi
numerik xn semakin dekat ke nilai x*. Dalam praktiknya, pengguna akan
menghentikan proses iterasi pada titik di mana selisih antara dua iterasi
berturut-turut sudah berada di bawah toleransi kesalahan tertentu,
misalnya [Xn+1 - Xnl <€.

Salah satu aspek penting dari konvergensi adalah kecepatan
konvergensi atau rate of convergence. Ini menjelaskan seberapa cepat
pendekatan menuju solusi sebenarnya. Terdapat beberapa tingkatan
konvergensi yang umum digunakan dalam teori numerik:

|z, 1 — x| < Cla, —2"| dengan 0 < C <1
|l2g1 — 2| < Clz, — :r'|2

Kecepatan konvergensi sangat memengaruhi efisiensi
komputasi. Dalam metode iteratif, semakin tinggi laju konvergensi,

144 Pemrograman dan Komputasi Numerik

semakin sedikit iterasi yang dibutuhkan untuk mencapai presisi tertentu,
sehingga waktu komputasi lebih singkat dan penggunaan sumber daya
menjadi lebih efisien. Oleh karena itu, analisis konvergensi sering kali
dilakukan sebelum memilih atau merancang metode numerik yang akan
digunakan untuk menyelesaikan suatu masalah.

Tidak semua metode dijamin konvergen dalam segala situasi.
Kondisi awal, sifat fungsi, dan parameter numerik sangat memengaruhi
konvergensi. Misalnya, dalam metode Newton-Raphson, konvergensi
kuadratik hanya dapat dicapai jika titik awal cukup dekat dengan akar
dan fungsi memiliki turunan yang tidak nol di sekitar akar. Jika tidak,
iterasi bisa menyimpang jauh dan bahkan tidak pernah mendekati akar
(divergen). Hal ini menunjukkan bahwa analisis konvergensi tidak hanya
bergantung pada rumus iteratif, tetapi juga pada pemahaman sifat
masalah yang sedang diselesaikan.

Pada konteks penyelesaian persamaan diferensial numerik,
konvergensi memiliki definisi yang sedikit berbeda tetapi prinsipnya
serupa. Misalnya, dalam penyelesaian persamaan diferensial biasa
(ODE) dengan metode numerik seperti Euler atau Runge-Kutta,
konvergensi mengacu pada apakah solusi numerik mendekati solusi
eksak ketika langkah waktu (At) didekati ke nol. Suatu metode dikatakan
konvergen jika kesalahan total (global error) mendekati nol ketika
ukuran langkah mendekati nol. Oleh karena itu, dalam banyak kasus,
konvergensi dinyatakan sebagai fungsi dari ukuran langkah:
Error~O(hp)p), di mana p menunjukkan orde akurasi dari metode
tersebut.

Hubungan antara konsistensi, stabilitas, dan konvergensi juga
dijelaskan dalam Teorema Lax (Lax Equivalence Theorem), yang
menyatakan bahwa untuk skema linear yang stabil dan konsisten, maka
metode tersebut pasti konvergen. Ini berarti bahwa konvergensi tidak
bisa dilihat secara terpisah dari aspek stabilitas dan keakuratan metode.
Jika suatu metode tidak stabil atau tidak konsisten, maka meskipun
secara matematis menjanjikan, metode tersebut bisa gagal menghampiri
solusi sebenarnya.

Pada praktik rekayasa dan ilmu terapan, konvergensi tidak hanya
menjadi syarat teoritis, melainkan juga panduan penting dalam validasi
simulasi numerik. Misalnya, dalam simulasi struktur bangunan
menggunakan metode elemen hingga (finite element method), hasil yang

Buku Referensi 145

diperoleh pada model kasar (coarse mesh) harus diverifikasi dengan
memperkecil ukuran elemen (mesh refinement). Jika solusi tidak berubah
secara signifikan saat mesh diperhalus, maka solusi dianggap konvergen
dan valid. Konsep ini juga diterapkan dalam simulasi fluida, analisis
medan elektromagnetik, dan berbagai bidang yang memerlukan
pendekatan numerik berbasis grid.

Secara praktis, untuk mengukur konvergensi, para insinyur dan
ilmuwan biasanya melakukan studi konvergensi (convergence study),
yaitu dengan mencoba berbagai nilai parameter numerik (misalnya
ukuran grid atau langkah waktu) dan membandingkan hasilnya. Jika
perbedaan hasil menjadi semakin kecil, dan mendekati nilai tetap, maka
metode dianggap telah mencapai konvergensi numerik.

Konvergensi adalah fondasi dari setiap algoritma numerik yang
andal. Metode yang tidak konvergen tidak dapat dipercaya dalam
menghasilkan hasil yang benar, betapapun canggih atau cepatnya metode
tersebut. Oleh karena itu, dalam pengembangan algoritma, simulasi
numerik, dan penerapan di dunia nyata, analisis konvergensi harus
menjadi bagian utama dalam evaluasi keakuratan dan efisiensi metode
numerik. Pemahaman yang baik tentang karakteristik konvergensi
memungkinkan praktisi memilih metode yang paling tepat sesuai dengan
jenis masalah, struktur matematis fungsi, serta keterbatasan sumber daya
komputasi yang tersedia.

Seorang mahasiswa menggunakan metode Newton-Raphson untuk menyelesaikan

persamaan nonlinear:

fley=a2%—a—1
la memulai dengan tebakan awal 2 = 1 dan menghitung hingga x5. Hasil per iterasinya:
* I = 1.5

* g = 1.3478
o g = 1.3247

Tentukan apakah metode ini konvergen, dan hitung galat relatif pada
iterasi ke-3.

146 Pemrograman dan Komputasi Numerik

Gunakan rumus galat relatif pada iterasi ke-3:

Galat Relatif — | 22| « 100%
I3
Substitusi nilai:
_ 13247 —13478) o | S00231) e
1.3247 ° T 1 13247 0 LA

Kesimpulan

e Karena nilai xn dari iterasi ke iterasi semakin mendekati suatu nilai
tetap, metode ini menunjukkan konvergensi.

e (Qalat relatif sebesar 1.74% menunjukkan bahwa hasil sudah cukup
dekat, meskipun belum sangat presisi.

e Untuk keperluan praktis, konvergensi biasanya diterima jika galat
relatif < 1% (tergantung toleransi yang ditentukan pengguna).

2. Stabilitas Solusi

Stabilitas solusi merupakan konsep kunci dalam komputasi
numerik yang berkaitan erat dengan keandalan dan ketahanan suatu
metode numerik terhadap gangguan atau kesalahan kecil dalam proses
perhitungan. Dalam konteks penyelesaian masalah numerik baik itu
persamaan aljabar, diferensial, maupun sistem linear stabilitas mengukur
seberapa besar efek kesalahan kecil pada data input atau pembulatan
selama iterasi dapat mempengaruhi solusi akhir. Dengan kata lain,
stabilitas solusi menggambarkan apakah sebuah metode mampu menjaga
agar kesalahan kecil tidak berkembang secara signifikan sehingga
menyebabkan penyimpangan besar pada hasil akhir. Konsep ini sangat
penting dalam dunia nyata karena setiap komputasi yang dilakukan
dengan komputer digital pasti mengandung kesalahan pembulatan akibat
keterbatasan presisi representasi bilangan floating point.

Menurut Chapra dan Canale (2015), stabilitas numerik adalah
kemampuan metode untuk membatasi pertumbuhan kesalahan selama
proses iteratif berlangsung. Kesalahan tersebut bisa berasal dari dua
sumber utama: (1) kesalahan pembulatan, yang terjadi ketika hasil
perhitungan dibatasi oleh jumlah digit yang dapat direpresentasikan
komputer, dan (2) kesalahan gangguan input, yaitu ketidakakuratan pada
data awal atau nilai awal iterasi. Dalam algoritma yang tidak stabil,
kesalahan-kesalahan kecil ini bisa diperkuat oleh struktur perhitungan

Buku Referensi 147

hingga mengakibatkan hasil akhir yang menyimpang jauh dari solusi
sebenarnya.

Salah satu ilustrasi paling umum dari pentingnya stabilitas adalah
pada metode numerik untuk menyelesaikan persamaan diferensial biasa
(ODE). Misalnya, dalam metode Euler eksplisit, hasil iterasi sangat
bergantung pada ukuran langkah waktu (At). Jika At terlalu besar,
kesalahan lokal yang terjadi dalam satu iterasi bisa diperkuat secara
eksponensial di iterasi-iterasi berikutnya. Akibatnya, meskipun metode
Euler secara teori konsisten (yakni mampu mendekati solusi sebenarnya
jika langkah waktu cukup kecil), tetapi bila digunakan dengan langkah
waktu yang tidak sesuai, hasil akhirnya bisa menjadi tidak masuk akal
atau bahkan mengalami numerical blow-up. Oleh karena itu, untuk
metode eksplisit seperti Euler, hanya nilai-nilai langkah waktu tertentu
yang menjamin stabilitas solusi wilayah nilai ini disebut daerah
stabilitas.

Pada konteks metode numerik untuk sistem persamaan linear,
stabilitas berkaitan dengan kondisi matriks yang digunakan dalam
perhitungan. Jika sebuah matriks koefisien dari sistem linear sangat
sensitif terhadap perubahan kecil dalam data (disebut ill-conditioned),
maka solusi yang dihasilkan dapat berubah drastis bahkan ketika
perubahan data sangat kecil. Kondisi seperti ini biasanya dinyatakan
dalam bentuk angka kondisi (condition number). Matriks dengan angka
kondisi tinggi menunjukkan bahwa metode yang digunakan untuk
menyelesaikannya bisa sangat tidak stabil. Oleh karena itu, stabilitas
solusi dalam sistem linear sangat dipengaruhi oleh struktur aljabar dari
sistem tersebut, bukan hanya oleh metode yang digunakan.

Pada metode iteratif, seperti metode Gauss-Seidel atau Jacobi
untuk sistem linear, stabilitas juga berperan penting. Algoritma iteratif
harus dirancang agar error tidak diperbesar pada setiap langkah,
melainkan diminimalkan. Ketika algoritma terus menerus memperkuat
error dari langkah sebelumnya, maka proses iterasi akan menyimpang
dari hasil sebenarnya dan menjadi divergen. Oleh karena itu, analisis
spektral radius dari matriks iterasi sering digunakan untuk menilai
stabilitas suatu metode iteratif. Jika spektral radius lebih kecil dari satu,
maka metode dijamin stabil dan konvergen.

Salah satu aspek penting lainnya dari stabilitas adalah dalam
simulasi waktu atau pemodelan dinamika sistem yang berlangsung

148 Pemrograman dan Komputasi Numerik

selama periode tertentu. Dalam konteks ini, stabilitas menentukan
apakah solusi numerik akan terus mengikuti perilaku sistem aktual atau
mengalami deviasi seiring waktu. Sebagai contoh, dalam simulasi
pergerakan partikel atau simulasi dinamika fluida, kesalahan kecil pada
posisi atau kecepatan bisa menyebabkan solusi yang menyimpang jauh
jika metode yang digunakan tidak stabil terhadap waktu. Oleh karena itu,
para insinyur dan ilmuwan sering kali melakukan analisis sensitivitas
dan uji kestabilan waktu sebelum menggunakan hasil simulasi untuk
pengambilan keputusan.

Stabilitas solusi juga sangat penting dalam pemrosesan sinyal
dan analisis numerik data eksperimen. Ketika data input mengandung
noise atau gangguan, metode numerik yang tidak stabil dapat
memperbesar efek noise tersebut dan menghasilkan kesimpulan yang
salah. Oleh karena itu, dalam bidang seperti rekonstruksi citra,
pemodelan keuangan, dan pembelajaran mesin, pemilihan metode yang
stabil menjadi keharusan untuk menjaga validitas hasil akhir.

Pada praktiknya, untuk menjamin stabilitas solusi, beberapa
pendekatan umum digunakan: (1) penggunaan metode implisit pada
sistem diferensial, seperti metode Backward Euler yang dikenal lebih
stabil dibandingkan metode eksplisit; (2) penyesuaian parameter
numerik, seperti langkah waktu atau toleransi kesalahan; (3)
pengondisian ulang data atau sistem, untuk menghindari sistem i//-
conditioned; dan (4) penerapan analisis kestabilan teoritis terhadap
metode numerik sebelum diimplementasikan.

3. Studi Kasus Komputasional

Di era modern yang semakin mengandalkan teknologi untuk
mendukung pengambilan keputusan, pendekatan komputasional telah
menjadi elemen penting dalam analisis sistem kompleks, termasuk
dalam isu lingkungan. Salah satu permasalahan yang krusial di banyak
kota besar di dunia adalah polusi udara. Emisi dari kendaraan bermotor,
industri, dan pembakaran sampah memberikan kontribusi signifikan
terhadap pencemaran udara, yang berdampak pada kesehatan manusia
dan lingkungan. Untuk itu, studi kasus ini mengangkat permasalahan
penyebaran polusi udara di kawasan perkotaan dengan menggunakan
pendekatan komputasi numerik berbasis metode Finite Difference dan
pemrograman Python, guna memprediksi distribusi konsentrasi polutan

Buku Referensi 149

dalam suatu wilayah dan membantu pemerintah merumuskan kebijakan
mitigasi yang lebih akurat.

4. Latar Belakang Permasalahan

Kawasan padat penduduk dengan kepadatan kendaraan tinggi
menghasilkan emisi karbon monoksida (CO), nitrogen dioksida (NO2),
dan partikel-partikel berbahaya (PM2.5) dalam jumlah besar. Dalam
banyak kasus, sensor pengukuran polusi udara hanya dipasang di
beberapa titik tertentu, sehingga informasi distribusi spasial dan
temporal polutan bersifat terbatas. Oleh karena itu, dibutuhkan model
simulasi berbasis komputasi untuk memperkirakan bagaimana polutan
menyebar di wilayah tersebut dalam kurun waktu tertentu, dengan
mempertimbangkan pengaruh kecepatan angin, arah angin, dan
perubahan konsentrasi emisi. Simulasi ini tidak hanya berfungsi untuk
menggambarkan kondisi saat ini, tetapi juga digunakan untuk
memprediksi skenario masa depan, seperti dampak pembangunan jalan
baru atau pengurangan volume kendaraan.

5. Formulasi Masalah Secara Matematis
Model dasar yang digunakan dalam studi ini adalah Persamaan

Adveksi-Difusi dua dimensi yang menyatakan perubahan konsentrasi

polutan C(x,y,t) seiring waktu:

ac ac ac D (BEC a*C

+ 1 Fuv_— = + o
at Yo oy Fr? | Oy

)—i—S[;n,y,i}

Di mana:

» (' adalah konsentrasi polutan pada titik ruang dan waktu tertentu.
* udan v adalah kemponen kecepatan angin arah x dan y.

» D) adalah koefisien difusi.

. S[:r:, 1y, L:l adalah fungsi sumber polusi, misalnya dari kendaraan atau industri.

Persamaan ini mencerminkan bahwa polutan menyebar karena
efek adveksi oleh angin, difusi karena perbedaan konsentrasi, dan
bertambah karena sumber emisi.

Untuk menyelesaikannya secara numerik, persamaan diferensial
parsial tersebut didiskretisasi menggunakan skema Finite Difference
eksplisit. Domain wilayah dibagi menjadi grid dua dimensi, dan waktu

150 Pemrograman dan Komputasi Numerik

dipecah dalam langkah-langkah kecil. Komputasi dilakukan untuk
menghitung konsentrasi polutan di setiap titik grid pada setiap langkah
waktu.

6. Implementasi Komputasional

Simulasi ini diimplementasikan menggunakan bahasa
pemrograman Python karena kemudahan dalam manipulasi matriks serta
ketersediaan pustaka ilmiah seperti NumPy dan Matplotlib. Wilayah
simulasi dibuat dalam ukuran 1 km x 1 km yang dibagi menjadi 100 x
100 grid, dengan setiap grid berukuran 10 meter. Kecepatan angin diatur
tetap, misalnya 2 m/s ke arah timur dan 1 m/s ke arah utara. Emisi dari
kendaraan dimodelkan sebagai sumber tetap yang berada di tengah kota.
Potongan kode Python untuk skema numerik eksplisit sebagai berikut:

1 for € in range(nt):
C_new = C.copy()
for 1 in range(l, nx-1):
for j in range(l, ny-1):
advection_x = -u * (C[i+1, j] - c[i-1, 1) / (2 = dx)
advection_y = -v * (C[i, j§+1] - c[i, F-11) / (2 = dy)
diffusion = D * ((C[i#1, J] - 2*c[i, J] + c[i-1, J1} / dx**2 +
(C[L, 3+11 - 2%C[d, 3] + C[i, 3-11) / dy*=2)
C_new[i, j] = C[i, j] + dt * (advection_x + advection_y + diffusion + sS[i, j1)
C = C_new.copy()

Visualisasi distribusi konsentrasi polusi dilakukan dengan
menggunakan Matplotlib. Hasil simulasi menunjukkan bahwa polusi
tertinggi terkonsentrasi di dekat sumber emisi dan menyebar mengikuti
arah angin. Distribusi konsentrasi ini dapat dipetakan dalam bentuk
kontur warna, sehingga memberikan pemahaman spasial yang jelas
kepada pengambil kebijakan.

7. Analisis Hasil dan Validasi

Setelah simulasi dijalankan selama 24 jam waktu simulasi,
diperoleh peta distribusi konsentrasi polusi pada setiap titik grid. Nilai
tertinggi terdeteksi di wilayah pusat kota, sementara nilai terendah
berada di pinggiran kota, mengikuti arah dominan angin. Selain itu,
ketika skenario penurunan emisi sebesar 50% dari sektor kendaraan
diterapkan, konsentrasi polutan menurun secara signifikan, terutama
pada area padat lalu lintas. Untuk memvalidasi model, data sensor nyata
dari stasiun pemantau kualitas udara kota digunakan. Hasil simulasi
dibandingkan dengan data aktual dan menunjukkan deviasi kurang dari
10%, yang menandakan bahwa model cukup akurat dalam memprediksi

Buku Referensi 151

pola sebaran polusi udara. Dalam dunia komputasi lingkungan, selisih di
bawah 15% dianggap masih dalam batas yang bisa diterima untuk model
prediktif.

8. Relevansi dan Implikasi Kebijakan
Studi kasus ini menunjukkan bahwa pendekatan komputasional
berbasis metode numerik dapat memberikan informasi spasial yang jauh
lebih lengkap daripada data pengamatan saja. Pemerintah daerah dapat
memanfaatkan hasil simulasi ini untuk:
a. Menentukan zona emisi rendah (low emission zones).
b. Menyesuaikan arah pembangunan jalan agar tidak memusatkan
lalu lintas di area padat.
c. Menentukan lokasi strategis pemasangan alat pemantau kualitas
udara.
d. Mensimulasikan skenario darurat jika terjadi lonjakan polusi
akibat kebakaran hutan atau kecelakaan industri.
Model ini juga dapat diperluas ke simulasi multi-pollutan dan
integrasi data waktu nyata dari sensor Internet of Things (10T), sehingga
prediksi menjadi lebih responsif dan adaptif terhadap kondisi terkini.

9. Kesimpulan

Studi kasus ini membuktikan bahwa pendekatan komputasi
numerik memiliki peran penting dalam memahami dan mengelola
permasalahan lingkungan yang kompleks seperti polusi udara. Dengan
menggunakan model matematis yang diformulasikan dalam persamaan
diferensial parsial dan diselesaikan menggunakan metode numerik Finite
Difference, simulasi distribusi polutan dapat dilakukan secara efisien dan
akurat. Implementasi berbasis Python membuat proses ini dapat diakses
oleh banyak pihak tanpa memerlukan perangkat lunak mahal. Lebih dari
itu, pendekatan ini memperlihatkan bagaimana teknologi komputasi
dapat berperan langsung dalam mendukung kebijakan berbasis data
(data-driven policy) untuk meningkatkan kualitas hidup masyarakat
perkotaan. Ke depannya, integrasi metode ini dengan data penginderaan
jauh, big data, dan kecerdasan buatan akan memperkuat kapasitas
pemodelan lingkungan yang lebih dinamis dan adaptif.

152 Pemrograman dan Komputasi Numerik

PERSAMAAN

DIFERENSIAL BIASA
(PDB)

Persamaan Diferensial Biasa (PDB) merupakan salah satu pilar
utama dalam matematika terapan yang berperan penting dalam
memahami dan memodelkan dinamika berbagai fenomena alam maupun
rekayasa. Dari gerak planet di langit hingga penyebaran penyakit
menular, dari getaran mekanik hingga dinamika keuangan, PDB menjadi
alat matematis yang tak tergantikan dalam menjelaskan perubahan
variabel terhadap waktu atau parameter lainnya. Dalam konteks
komputasi numerik, penyelesaian PDB secara analitik sering kali tidak
memungkinkan, sehingga pendekatan numerik menjadi solusi yang
sangat vital. Melalui metode seperti Euler, Runge-Kutta, dan multi-step
methods, kita mampu memperoleh pendekatan solusi yang cukup akurat
dengan efisiensi komputasi yang tinggi. Pemahaman terhadap teori
dasar, kestabilan metode, serta implementasi algoritma dalam platform
pemrograman modern seperti Python atau MATLAB menjadi
kompetensi penting bagi mahasiswa, peneliti, dan praktisi.

A. Pengenalan PDB dan Model Aplikatif

Persamaan Diferensial Biasa (PDB) atau Ordinary Differential
Equation (ODE) merupakan salah satu bentuk persamaan matematika
yang melibatkan turunan suatu fungsi terhadap satu variabel bebas.
Dalam bentuk paling umum, PDB menyatakan hubungan antara fungsi
tak diketahui dan turunannya, yang sangat berguna untuk memodelkan

Buku Referensi 153

fenomena dinamis dalam berbagai disiplin ilmu. Tidak hanya terbatas
pada fisika dan teknik, PDB juga banyak diaplikasikan dalam biologi,
ekonomi, ekologi, kedokteran, hingga ilmu sosial.

Menurut Zill dan Wright (2017) dalam bukunya "Differential
Equations with Boundary-Value Problems", Persamaan Diferensial
Biasa adalah persamaan yang mengandung turunan dari suatu fungsi
dengan satu variabel bebas, berbeda dengan Partial Differential
Equations (PDE) yang melibatkan turunan parsial dari fungsi beberapa
variabel. Secara umum, PDB dapat dituliskan dalam bentuk:

atau dalam bentuk eksplisit sebagai fungsi dari turunan:
Flz,yyy" y™) =0

Klasifikasi PDB (Persamaan Diferensial Biasa) didasarkan pada

beberapa kategori:

e Orde: Derajat tertinggi dari turunan yang terdapat dalam persamaan.

e Linearitas: Suatu persamaan dikatakan /inear jika tidak ada
perkalian antara fungsi tak diketahui dan turunannya.

o Homogenitas: Suatu persamaan dikatakan homogen jika semua suku
bergantung pada fungsi dan turunannya, tanpa adanya konstanta
bebas.

1. Fisika dan Teknik

Pada bidang fisika dan teknik, Persamaan Diferensial Biasa
(PDB) merupakan alat fundamental untuk memodelkan berbagai
fenomena dinamis yang melibatkan perubahan terhadap waktu atau
ruang dalam sistem fisis. Salah satu contoh paling mendasar adalah
dalam mekanika klasik, di mana hukum kedua Newton yang berbunyi F

= ma dapat diubah menjadi bentuk PDB orde dua:
d’r
WIE — F{.ﬂ, , ”
Dengan menyusun gaya F sebagai fungsi dari posisi, kecepatan,
dan waktu, kita dapat memodelkan gerak partikel secara lengkap.
Misalnya, dalam sistem pegas-massa tanpa redaman, gaya pemulih

F=—kx menghasilkan persamaan:

154 Pemrograman dan Komputasi Numerik

d*z k _

a2 + Ei =0
yang merupakan PDB linier homogen orde dua dan memiliki solusi
osilasi harmonik.

Pada teknik elektro, PDB juga berperan penting. Sebagai contoh,
analisis rangkaian RLC (Resistor, Induktor, Kapasitor) menghasilkan
persamaan diferensial yang menggambarkan tegangan atau arus dalam
waktu. Untuk rangkaian seri, hukum Kirchoff menyatakan bahwa jumlah
gaya gerak listrik sama dengan jumlah tegangan di tiap komponen,
sehingga diperoleh:

d*q dg g :
a Byt o= E®

yang merupakan PDB orde dua dengan koefisien konstan, di
mana q dalah muatan, dan E(t) adalah tegangan sumber.

Pada teknik mesin, getaran mekanis pada struktur seperti balok
atau jembatan juga dimodelkan dengan PDB. Bahkan dalam sistem
termal dan fluida, meskipun umumnya menggunakan persamaan
diferensial parsial (PDE), pendekatan PDB sering digunakan untuk
penyederhanaan model sistem dinamis seperti lumped parameter
systems. Keseluruhan ini menunjukkan bahwa PDB adalah dasar dari
analisis sistem teknik dan fisika, serta menjadi penghubung antara teori
matematis dan implementasi teknologi nyata.

2. Biologi dan Kedokteran

Pada bidang biologi dan kedokteran, Persamaan Diferensial
Biasa (PDB) berperan penting dalam memodelkan dinamika sistem
biologis yang kompleks dan sering kali tidak dapat diamati secara
langsung. Salah satu aplikasi paling umum adalah dalam model
pertumbuhan populasi, di mana perubahan jumlah individu dalam suatu
populasi dari waktu ke waktu dapat dijelaskan menggunakan PDB.
Model Malthus, yang merupakan model pertumbuhan eksponensial

paling sederhana, dinyatakan sebagai % = rP dengan P sebagai populasi

dan r sebagai laju pertumbuhan. Namun, model ini tidak realistis untuk
jangka panjang karena tidak mempertimbangkan keterbatasan sumber
daya. Oleh karena itu, diperkenalkan model logistik oleh Verhulst:

Buku Referensi 155

ar p (1 P)
at | K
di mana K adalah kapasitas dukung lingkungan. Model ini banyak

digunakan dalam studi ekologi, mikrobiologi, hingga pertumbuhan
tumor.

Di bidang kedokteran dan epidemiologi, PDB menjadi dasar
dalam pengembangan model penyebaran penyakit. Salah satu model
paling terkenal adalah SIR model (Susceptible-Infected-Recovered),
yang terdiri dari sistem PDB yang menggambarkan interaksi antara
populasi yang rentan, terinfeksi, dan sembuh:

das

= —B51,
dt
dl
— = B8T —~1
i ' Lk
dR
— = 1.
dt K

Model ini sangat penting dalam memprediksi dinamika wabah,
merancang intervensi seperti vaksinasi, dan menentukan kebijakan
kesehatan masyarakat.

PDB juga digunakan dalam farmakokinetika, untuk memodelkan
penyerapan, distribusi, dan eliminasi obat dalam tubuh. Misalnya,
perubahan konsentrasi obat dalam plasma darah sering digambarkan
dengan model eksponensial sederhana berdasarkan hukum laju pertama.
Secara keseluruhan, PDB memberikan kerangka matematis yang sangat
kuat untuk menjelaskan, memprediksi, dan mengendalikan fenomena
biologis dan medis yang kompleks secara kuantitatif.

3. Ekonomi dan Keuangan

Pada ekonomi dan keuangan, Persamaan Diferensial Biasa
(PDB) digunakan secara luas untuk memodelkan dinamika sistem
ekonomi yang berkembang terhadap waktu, seperti akumulasi modal,
konsumsi, suku bunga, inflasi, hingga harga aset. Salah satu contoh
paling terkenal adalah model pertumbuhan Solow, yang menjelaskan
bagaimana modal per pekerja berubah seiring waktu:

dk

— = sf(k) — (3 + n)k

156 Pemrograman dan Komputasi Numerik

di mana K adalah modal per pekerja, sss adalah tingkat tabungan,
f(k)f(k)f(k) adalah fungsi produksi, d\deltad adalah tingkat depresiasi
modal, dan nnn adalah laju pertumbuhan penduduk. Model ini
memberikan wawasan penting tentang bagaimana negara-negara dapat
tumbuh secara berkelanjutan dan mengapa ada perbedaan pendapatan
antarnegara.

Pada teori konsumsi antar waktu, PDB digunakan untuk
menggambarkan bagaimana individu merencanakan konsumsi dan
tabungan sepanjang hidupnya berdasarkan preferensi waktu dan suku
bunga. Model Ramsey misalnya, menggunakan PDB untuk merumuskan
dinamika konsumsi optimal dan kapitalisasi dalam jangka panjang.

Pada keuangan matematika, PDB menjadi dasar dalam
penentuan harga opsi dan derivatif. Model Black-Scholes, meskipun
merupakan persamaan diferensial parsial, sering kali direduksi ke bentuk
PDB untuk derivatif sederhana. Selain itu, perubahan nilai portofolio
atau obligasi jangka panjang dapat dimodelkan dengan PDB berbasis
suku bunga acuan dan risiko. Lebih lanjut, dalam analisis makroekonomi
dinamis seperti Dynamic Stochastic General Equilibrium (DSGE), PDB
membentuk kerangka utama untuk menggambarkan ekspektasi agen
ekonomi dan interaksi antar variabel ekonomi. Keseluruhannya, PDB
memberikan alat kuantitatif penting untuk memodelkan dan
memprediksi perilaku ekonomi dalam jangka pendek dan panjang secara
sistematis.

4. Kimia dan Reaksi Biokimia

Pada kimia dan reaksi biokimia, Persamaan Diferensial Biasa
(PDB) merupakan alat penting untuk memodelkan laju perubahan
konsentrasi zat kimia dalam suatu reaksi seiring waktu. PDB digunakan
dalam kinetika kimia untuk menggambarkan bagaimana konsentrasi
reaktan dan produk berubah berdasarkan mekanisme reaksi dan hukum
laju. Sebagai contoh, untuk reaksi berorde satu seperti peluruhan zat A:

A— B,

dengan laju reaksi v = —k[A], maka perubahan konsentrasi A
terhadap waktu dinyatakan dalam bentuk PDB:

ll'i [.*1.
dit

Buku Referensi 157

— kA,

yang memiliki solusi eksponensial [A](t)=[A]oe ™™, menggambarkan
penurunan konsentrasi secara bertahap. Model ini penting dalam studi
reaksi kimia sederhana, termasuk peluruhan radioaktif dan reaksi
pembakaran.

Pada sistem reaksi berantai atau reaksi simultan, seperti dalam
sintesis senyawa kompleks atau degradasi senyawa kimia, dibutuhkan
sistem PDB untuk melacak perubahan konsentrasi beberapa spesies
secara bersamaan. Contohnya adalah reaksi A—B—C, yang
menghasilkan dua PDB terhubung secara simultan.

Lebih kompleks lagi, dalam reaksi enzimatik dan biokimia, PDB
digunakan untuk menggambarkan dinamika sistem biologis seperti
model Michaelis-Menten, yang menyederhanakan interaksi antara enzim
dan substrat:

d[P] Vinax[S]
dt K, +[S]’

di mana [S] adalah konsentrasi substrat, [P] produk, Vmax laju
maksimum, dan Km konstanta Michaelis. PDB semacam ini banyak
diterapkan dalam farmakologi, metabolisme, dan sintesis protein.

5. Lingkungan dan Ekologi

Pada lingkungan dan ekologi, Persamaan Diferensial Biasa
(PDB) merupakan alat analitis penting untuk memodelkan dinamika
ekosistem, perubahan lingkungan, serta interaksi antara komponen biotik
dan abiotik. Salah satu penerapan utama PDB adalah dalam model
transportasi dan peluruhan polutan, misalnya untuk menggambarkan
konsentrasi zat pencemar dalam air atau udara. Jika suatu sungai
menerima limbah dari sumber tertentu, maka perubahan konsentrasi
polutan C(t) dapat dimodelkan sebagai:

dC
dt

di mana k adalah konstanta peluruhan alami dan S(t) adalah laju
suplai polutan. Model ini sangat relevan untuk mengkaji efektivitas
kebijakan pengendalian pencemaran dan memprediksi dampak
lingkungan dalam jangka waktu tertentu.

Pada ekologi populasi, PDB digunakan untuk memodelkan
dinamika predator-mangsa, kompetisi antarspesies, dan keseimbangan

= —kC + S(1),

158 Pemrograman dan Komputasi Numerik

ekosistem. Model klasik Lotka-Volterra menggambarkan interaksi dua
spesies:

1N
e rN —aNP,
dt
E = bNP — mP,
dt

di mana N adalah populasi mangsa, P populasi predator, r laju
pertumbuhan mangsa, a laju konsumsi, b efisiensi konversi energi, dan
m mortalitas predator. Model ini memberikan wawasan tentang fluktuasi
populasi dan titik-titik kestabilan ekosistem.

PDB juga digunakan dalam model perubahan iklim, seperti
dalam menghitung penyerapan karbon oleh hutan, akumulasi gas rumah
kaca di atmosfer, serta respons termal laut dan daratan. Model ini
mendukung penelitian lingkungan jangka panjang dan pengambilan
kebijakan berbasis sains. Dengan demikian, PDB menjadi fondasi
penting dalam upaya memahami dan mengelola perubahan lingkungan
serta menjaga keberlanjutan sumber daya alam melalui pendekatan
kuantitatif dan prediktif.

B. Metode Euler dan Runge-Kutta Orde 4

Menurut Zill dan Wright (2017) dalam Differential Equations
with Boundary-Value Problems, banyak persoalan dalam fisika, teknik,
dan ilmu terapan yang dinyatakan dalam bentuk Persamaan Diferensial
Biasa (PDB) tidak dapat diselesaikan secara analitik karena
kompleksitas bentuknya. Oleh karena itu, pendekatan numerik menjadi
penting untuk memperoleh solusi pendekatan. Dua metode numerik
paling dikenal dan banyak digunakan adalah Metode Euler dan Runge-
Kutta Orde 4 (RK4). Keduanya digunakan untuk menyelesaikan masalah
nilai awal (initial value problems/IVP), yaitu PDB yang memiliki nilai
fungsi diketahui pada titik awal.

Secara umum, masalah nilai awal untuk PDB orde pertama
dinyatakan sebagai:

Buku Referensi 159

di mana f(x,y) adalah fungsi yang diketahui, dan y(x) adalah fungsi tak
diketahui yang akan diaproksimasi secara numerik.

1. Metode Euler

Pada lingkungan dan ekologi, Persamaan Diferensial Biasa
(PDB) berperan krusial dalam membentuk model matematis yang
menjelaskan dinamika sistem alam secara kuantitatif dan prediktif. Alam
merupakan sistem kompleks yang mengalami perubahan seiring waktu,
mulai dari populasi makhluk hidup, penyebaran polutan, hingga
perubahan iklim dan semua dinamika ini dapat dirumuskan dalam bentuk
PDB untuk memungkinkan analisis sistematis serta proyeksi ke depan.
Salah satu contoh paling mendasar adalah dalam model pencemaran
lingkungan, khususnya dalam air dan udara. Misalnya, konsentrasi
polutan kimia dalam sungai atau danau dapat dimodelkan dengan PDB
berbentuk:

dc’
di

di mana C(t) adalah konsentrasi polutan pada waktu t, k adalah
konstanta peluruhan atau degradasi alami, dan S(t) adalah laju input dari
sumber pencemar seperti pabrik atau limbah rumah tangga. Dengan
model ini, para peneliti dapat memperkirakan berapa lama waktu yang
dibutuhkan untuk air kembali ke kualitas normal, serta mengevaluasi

— —kC + 8(1),

skenario intervensi seperti pengurangan sumber pencemar atau
pengolahan limbah.

Pada konteks ekologi, PDB digunakan untuk menggambarkan
pertumbuhan dan interaksi antar populasi. Model pertumbuhan
eksponensial digunakan untuk menjelaskan dinamika populasi tanpa
hambatan, tetapi dalam kenyataannya sumber daya terbatas, sehingga
model logistik yang memperhitungkan kapasitas dukung lingkungan (K)
menjadi lebih realistis:

dN N

Model ini menggambarkan bagaimana populasi tumbuh pesat
pada awalnya namun melambat ketika mendekati batas sumber daya
lingkungan. Dalam ekosistem yang lebih kompleks, interaksi antara

160 Pemrograman dan Komputasi Numerik

spesies, seperti predator dan mangsa, dapat dimodelkan menggunakan
model Lotka-Volterra:

dN

=rN —alNP,
dt
dP
— =bWNP —mP
dt

dengan N sebagai populasi mangsa, P sebagai predator, dan parameter
r,a,b,m mewakili laju reproduksi dan interaksi antar spesies. Model ini
memungkinkan pemahaman fluktuasi populasi dalam jangka panjang
dan penentuan kondisi stabil atau bencana ekologis.

PDB digunakan dalam perubahan iklim dan siklus biogeokimia.
Misalnya, penyerapan karbon oleh tumbuhan dan pelepasannya kembali
ke atmosfer dapat dimodelkan untuk mengkaji keseimbangan karbon
global. PDB juga digunakan untuk mensimulasikan dinamika suhu bumi
berdasarkan masukan energi matahari, emisi gas rumah kaca, dan umpan
balik albedo permukaan. Selain itu, dalam studi konservasi, model
berbasis PDB digunakan untuk mengevaluasi risiko kepunahan spesies
langka dan menentukan kebijakan pengelolaan habitat atau perlindungan
hutan.

Penerapan PDB dalam lingkungan dan ekologi tidak hanya
membantu dalam memahami fenomena kompleks secara teoritis, tetapi
juga memberikan alat praktis untuk pengambilan keputusan berbasis
data. Model numerik yang dibangun dari PDB dapat dimasukkan ke
dalam simulasi komputer untuk memprediksi dampak perubahan iklim,
efek deforestasi, atau keberhasilan program restorasi lingkungan.
Dengan demikian, PDB merupakan fondasi penting bagi sains
lingkungan modern, yang menggabungkan matematika, teknologi, dan
kebijakan untuk mendukung pengelolaan alam yang berkelanjutan dan
adaptif.

dy

. y, y(0)

Gunakan Metode Euler untuk menghitung nilai pendekatan dari
y pada x=0,1dan x=0,2 dengan langkah h=0,1.
Jawaban:

Buku Referensi 161

Metode Euler memiliki rumus umum:

Ynil = Un +h- f{mrn yﬂj

Diketahui:

o flzy)=xz+y
e yo=1Llzg=0h=0,1

flzaw)=0+1=1
Y=o+ h flzo,m)=1+01-1=11

Maka,
f{ml:yl} = Usl + 171 = 152

yp=wy+h flenyp)=11+01-1,2=1,1+0,12 = 1,22

Maka,
Hasil Akhir:
o y(0,1)=1,1
o y(0,2) =z 1,22

2. Metode Runge-Kutta Orde 4 (RK4)

Metode Runge-Kutta Orde 4 (RK4) adalah salah satu metode
numerik paling populer dan andal dalam menyelesaikan Persamaan
Diferensial Biasa (PDB), khususnya pada masalah nilai awal. Metode ini
merupakan bagian dari keluarga Runge-Kutta yang dikembangkan oleh
matematikawan Jerman, Carl Runge dan Martin Wilhelm Kutta, pada
awal abad ke-20. Dibandingkan dengan metode numerik dasar seperti
metode Euler, RK4 menawarkan akurasi jauh lebih tinggi tanpa
menambah kerumitan algoritma secara signifikan, sehingga sangat
cocok digunakan dalam pemrograman komputasi sains dan teknik.

Secara prinsip, RK4 bekerja dengan menghitung estimasi rata-
rata kemiringan fungsi f(x,y) di sekitar titik xn, lalu menggunakannya
untuk memperkirakan nilai yn+1 di titik Xn+1=Xn+h, dengan h sebagai
panjang langkah. Dalam setiap iterasi, RK4 menghitung empat nilai
gradien (kemiringan):

162 Pemrograman dan Komputasi Numerik

h
Ynil = Yn T E“ﬂ + 2ko + 2ka + ky),

yang merupakan rata-rata tertimbang dari keempat kemiringan tersebut.
Strategi ini memberikan galat lokal orde lima dan galat global orde
empat, yang berarti tingkat kesalahan menurun secara signifikan dengan
penambahan jumlah langkah yang lebih halus (nilai h lebih kecil).
Kelebihan RK4 terletak pada kombinasi antara akurasi dan
efisiensi. Dalam praktiknya, RK4 sangat stabil dan mampu menangani
berbagai jenis PDB termasuk yang non-linear, tanpa memerlukan
penurunan turunan tingkat lebih tinggi atau penyesuaian khusus. Oleh
karena itu, metode ini banyak diterapkan dalam berbagai bidang:
simulasi gerak partikel dalam fisika, dinamika populasi dalam ekologi,
perhitungan orbit dalam astronomi, serta model ekonomi dan keuangan.
Metode ini juga memiliki batasan. Karena sifatnya eksplisit, RK4
tidak cocok untuk PDB yang stiff, yaitu sistem yang memiliki laju
perubahan sangat berbeda dalam satu sistem persamaan, di mana metode
implisit seperti Backward Euler atau metode Gear lebih disarankan.
Selain itu, meskipun RK4 cukup akurat, ia memerlukan empat evaluasi
fungsi per langkah, sehingga bisa memakan waktu komputasi lebih lama
dibanding metode eksplisit orde rendah dalam sistem berskala besar.

C. Sistem PDB dan Solusi Numerik

Menurut Zill dan Wright (2017) dalam buku Differential
Equations with Boundary-Value Problems, Persamaan Diferensial Biasa
(PDB) adalah persamaan yang menghubungkan suatu fungsi dengan satu
variabel bebas dan turunannya. Dalam banyak kasus nyata seperti
dinamika sistem fisika, interaksi biologi populasi, atau ekonomi makro
masalah yang muncul tidak hanya terdiri dari satu PDB, melainkan
beberapa persamaan yang saling berkaitan, dikenal sebagai sistem PDB
(system of ordinary differential equations). Sistem ini sangat penting
karena hampir semua sistem dinamis kompleks di dunia nyata
melibatkan beberapa variabel yang berubah secara simultan dan saling
memengaruhi. Sistem PDB adalah himpunan dua atau lebih PDB yang
memiliki keterkaitan satu sama lain dan harus diselesaikan secara
bersamaan. Secara umum, sistem PDB orde pertama dapat dituliskan
sebagai:

Buku Referensi 163

dy,
T = fl“’:yl: Ya. "".-yn}:

dt

d

% — fﬁ(‘f’:yl:yh'"?yﬂ}!
d Tt

[:;, = J‘rn{i': yl'.-yz‘-‘""y"’}’

dengan kondisi awal yi (to)=yio. Sistem seperti ini banyak ditemukan
dalam bidang teknik, epidemiologi, dan astrofisika. Salah satu contoh
klasik adalah model SIR dalam epidemiologi, yang menggambarkan
dinamika tiga populasi: rentan (S), terinfeksi (I), dan pulih (R), sebagai
berikut:

f.iLc; ‘?qI

de — U
dl

— = A8T — ~1
dt ' L
dR I

dt -

1. Penyelesaian Analitik dan Keterbatasannya

Penyelesaian analitik dalam konteks Persamaan Diferensial
Biasa (PDB) merujuk pada proses memperoleh solusi eksplisit dari suatu
persamaan diferensial dalam bentuk fungsi yang memenuhi persamaan
tersebut dan kondisi awal yang diberikan. Menurut Zill dan Wright
(2017), penyelesaian analitik idealnya memberikan representasi eksak
dari fungsi tak diketahui, biasanya dalam bentuk kombinasi fungsi
aljabar, eksponensial, trigonometri, atau logaritmik. Dalam kasus
sederhana seperti PDB linear orde satu, misalnya:

dy
Z—k
ax
solusi analitiknya mudah diperoleh:
y(x)=Ce™

dengan C sebagai konstanta integrasi yang ditentukan dari kondisi awal.
Penyelesaian analitik semacam ini sangat berguna karena memberikan
wawasan langsung mengenai perilaku sistem misalnya, apakah sistem
164 Pemrograman dan Komputasi Numerik

bersifat stabil, apakah solusi akan tumbuh tanpa batas, atau apakah akan
konvergen menuju keadaan tunak.

Seiring bertambahnya kompleksitas sistem, keterbatasan
pendekatan analitik menjadi sangat nyata. Sebagian besar PDB yang
muncul dari model dunia nyata misalnya sistem non-linear, sistem
dengan banyak variabel, atau dengan fungsi koefisien yang kompleks
tidak dapat diselesaikan secara analitik. Hal ini disebabkan oleh
ketidakmampuan metode aljabar konvensional untuk menangani struktur
non-linear atau bentuk turunan yang saling terkait secara kompleks.
Sebagai contoh, dalam model predasi Lotka-Volterra atau model
penyebaran penyakit SIR, meskipun bentuk matematisnya jelas, solusi
eksplisit dalam bentuk tertutup (closed-form solution) jarang tersedia.
Dalam banyak kasus, bahkan jika solusi analitik ada secara teoritis,
bentuknya terlalu rumit atau melibatkan fungsi-fungsi khusus (seperti
fungsi Bessel atau fungsi gamma) yang tidak praktis digunakan dalam
perhitungan teknis atau interpretasi.

Penyelesaian analitik biasanya hanya berlaku dalam domain
terbatas dan sangat sensitif terhadap kondisi awal. Artinya, sedikit
perubahan pada parameter atau kondisi awal dapat mengubah bentuk
solusi secara signifikan. Ini menjadi kendala besar ketika menangani
sistem parameterisasi atau simulasi skenario dalam aplikasi dunia nyata
seperti dinamika fluida, ekosistem kompleks, atau model ekonomi
dinamis, yang sering kali memerlukan evaluasi berulang dengan variasi
parameter.

Keterbatasan lain dari pendekatan analitik adalah
ketidakfleksibelannya dalam mengakomodasi data aktual atau input
tidak kontinu. Dalam kenyataannya, banyak sistem bekerja dengan data
pengamatan atau sinyal tak kontinu yang tidak dapat dicocokkan secara
langsung dengan fungsi analitik. Oleh karena itu, penggunaan metode
numerik menjadi pendekatan dominan dalam praktik modern, karena
mampu mengakomodasi struktur sistem yang kompleks, kondisi batas
arbitrer, dan ketidakteraturan data yang khas dalam pemodelan dunia
nyata.

Dengan demikian, meskipun penyelesaian analitik memiliki
keunggulan dalam hal ketepatan dan kejelasan matematis,
keterbatasannya dalam fleksibilitas, skalabilitas, dan penerapan praktis
menjadikannya kurang memadai untuk banyak aplikasi modern. Di

sinilah pendekatan numerik, seperti metode Euler atau Runge-Kutta,
Buku Referensi 165

mengambil peran penting dalam menghasilkan solusi pendekatan yang
cukup akurat dan dapat diimplementasikan secara luas melalui perangkat
lunak dan simulasi komputer.

2. Solusi Numerik untuk Sistem PDB

Solusi numerik untuk sistem Persamaan Diferensial Biasa (PDB)
merupakan pendekatan komputasional yang sangat penting dalam
menyelesaikan persoalan dinamis yang tidak dapat ditangani secara
analitik. Sistem PDB terdiri dari dua atau lebih persamaan diferensial
yang saling terkait, menggambarkan interaksi antar variabel yang
berubah terhadap satu variabel bebas, biasanya waktu. Dalam dunia
nyata, sistem seperti ini banyak ditemukan, misalnya dalam model
penyebaran penyakit (model SIR), dinamika populasi (model Lotka-
Volterra), interaksi kimia multikomponen, sistem mekanis multibenda,
dan pemodelan lingkungan. Karena sebagian besar sistem ini bersifat
non-linear dan tidak memiliki solusi eksplisit, maka pendekatan numerik
menjadi metode yang paling umum dan efektif.

Menurut Burden dan Faires (2015), metode numerik bekerja
dengan cara mendiskretisasi domain waktu menjadi langkah-langkah
kecil, lalu memperkirakan nilai variabel di setiap langkah berdasarkan
informasi pada langkah sebelumnya. Untuk sistem PDB, metode seperti
Euler dan Runge-Kutta Orde 4 (RK4) dapat diperluas secara langsung.
Dalam metode Euler, misalnya, setiap persamaan dalam sistem diupdate
secara simultan pada setiap langkah waktu menggunakan formula
Ynr1=ynthf (xn,yn). Meskipun metode ini sederhana, akurasinya rendah
dan rentan terhadap instabilitas, terutama untuk sistem yang kompleks
atau "stiff". Sebagai alternatif, RK4 menawarkan peningkatan akurasi
yang signifikan dengan menghitung rata-rata gradien dari beberapa titik
evaluasi di dalam interval waktu yang sama. Untuk sistem PDB, RK4
menghitung empat vektor gradien untuk semua komponen sistem, lalu
menggabungkannya menjadi solusi pendekatan di langkah berikutnya.
Metode ini sangat populer karena memberikan keseimbangan antara
presisi dan efisiensi komputasi.

Solusi numerik sistem PDB juga sangat bergantung pada
pemilihan ukuran langkah (step size). Langkah yang terlalu besar dapat
menghasilkan error yang besar dan solusi tidak stabil, sedangkan langkah
yang terlalu kecil memperlambat komputasi dan meningkatkan

166 Pemrograman dan Komputasi Numerik

kebutuhan memori. Oleh karena itu, dalam praktiknya sering digunakan
metode adaptif seperti Runge-Kutta-Fehlberg atau solver otomatis
seperti ode45 di MATLAB dan solve ivp di Python, yang dapat
menyesuaikan ukuran langkah secara otomatis untuk menjaga kestabilan
dan akurasi.

Pada sistem yang sangat kompleks atau stiff, metode eksplisit
seperti RK4 tidak lagi cukup. Sebagai solusinya, digunakan metode
implisit seperti Backward Euler atau metode BDF (Backward
Differentiation Formula) yang memiliki stabilitas numerik lebih baik.
Metode ini biasanya memerlukan penyelesaian sistem aljabar non-linear
di setiap langkah waktu, tetapi mampu menangani dinamika cepat tanpa
menyebabkan osilasi numerik yang tidak diinginkan.

Solusi numerik sistem PDB telah menjadi tulang punggung
berbagai aplikasi ilmiah dan rekayasa modern. la memungkinkan
simulasi jangka panjang, analisis sensitivitas parameter, dan optimisasi
proses. Keunggulan metode numerik terletak pada fleksibilitasnya dalam
menangani sistem non-linear, batasan waktu arbitrer, dan masukan
berbasis data, menjadikannya alat yang sangat esensial dalam pemodelan
kuantitatif berbasis komputer.

3. Implementasi Komputasi

Implementasi komputasi dalam penyelesaian Persamaan
Diferensial Biasa (PDB) merupakan langkah krusial dalam menerapkan
metode numerik secara praktis untuk berbagai kebutuhan pemodelan
ilmiah dan rekayasa. Karena sebagian besar PDB tidak memiliki solusi
analitik atau memiliki bentuk solusi yang terlalu kompleks untuk
dievaluasi secara langsung, pendekatan numerik berbasis komputasi
menjadi solusi utama untuk memperoleh estimasi solusi secara efisien
dan akurat. Proses ini melibatkan penerjemahan metode numerik seperti
Euler, Runge-Kutta, atau metode implisit ke dalam bentuk algoritma
yang dapat dijalankan oleh komputer, serta mengoptimalkan kecepatan
dan stabilitas perhitungan dalam berbagai platform pemrograman.

Bahasa pemrograman seperti Python, MATLAB, R, Julia, dan
C++ merupakan alat utama dalam implementasi komputasi. Python,
misalnya, sangat populer karena memiliki pustaka numerik yang kaya
seperti NumPy, SciPy, dan Matplotlib, yang memudahkan proses
integrasi numerik, manipulasi data, dan visualisasi hasil. Fungsi odeint

dari pustaka scipy.integrate digunakan untuk menyelesaikan sistem PDB
Buku Referensi 167

berbasis metode LSODA, yang secara otomatis memilih antara metode
stiff dan non-stiff. Untuk penggunaan lanjutan, solve ivp menawarkan
kontrol yang lebih detail terhadap metode integrasi (misalnya RK45,
RK23, BDF), toleransi error, dan pencatatan hasil.

Contoh implementasi sederhana dari model SIR dalam Python
menunjukkan bagaimana PDB diubah menjadi fungsi Python, kemudian
diselesaikan menggunakan odeint dalam beberapa baris kode. Demikian
pula, MATLAB menyediakan fungsi ode45, ode23, dan odel5s untuk
berbagai jenis sistem, dengan dokumentasi luas dan visualisasi
terintegrasi. Keunggulan MATLAB terletak pada antarmuka numerik
yang stabil dan kuat, serta kemudahan dalam menyusun model simulasi
dinamis melalui Simulink untuk sistem kontrol atau mekanika.

Implementasi komputasi juga mencakup visualisasi hasil,
validasi solusi, dan efisiensi pemrosesan. Visualisasi hasil, seperti
plotting grafik y(t) terhadap waktu, sangat membantu dalam memahami
perilaku sistem dinamis, mendeteksi stabilitas, osilasi, atau kondisi
tunak. Validasi hasil dapat dilakukan dengan membandingkan solusi
numerik terhadap solusi analitik (jika tersedia), atau menggunakan
pengujian konsistensi model dan sensitivitas terhadap perubahan
parameter. Sementara itu, efisiensi pemrosesan dapat ditingkatkan
melalui optimasi kode, pemilihan metode integrasi adaptif, atau
penggunaan paralelisasi untuk sistem berdimensi tinggi.

Implementasi komputasi juga sangat penting dalam konteks
simulasi jangka panjang dan sistem real-time, seperti pemodelan
epidemiologi untuk kebijakan kesehatan, sistem kontrol otomatis pada
robotika, atau dinamika struktural dalam teknik sipil. Kemampuan untuk
mengintegrasikan solusi PDB dengan antarmuka pengguna, database,
dan sistem pemantauan menjadikan komputasi numerik tidak hanya
sebagai alat teoritis, tetapi juga bagian integral dari pengambilan
keputusan berbasis sains dan teknologi. Dengan demikian, penguasaan
implementasi komputasi menjadi keterampilan kunci dalam era
pemodelan numerik modern.

168 Pemrograman dan Komputasi Numerik

1 from scipy.integrate impert odeint
import numpy as np
import matplotlib.pyplot as plt

def sir_model(y, t, beta, gamma):

s, I, R=y
dsdt = -beta * 5 * I
didt = beta *# & * I - gamma * I

drRdt = gamma * I
return [dsdt, dIdt, drdt]

Nilai awal

@, I8, R@ = @.99, @8.81, @.8
y@ = [58, I8, Ra]

t = np.linspace({@d, lo@, 108a)
beta = 8.3

gamma = 8.1

so0l = odeint(sir_model, yve, t, args=(beta, gamma})

plt.plet(t, sol[:, @], label="5")
plt.plot(t, sol[:, 1], label="I")
plt.plet{t, sol[:, 2], label="R')
plt.legend{}

plt.xlabel{ 'Time"}
plt.ylabel{"Fraction of Population'}
plt.titlef "Model SIR')

plt.grid()

plt.show()

D. Simulasi Dinamis dalam Sistem Teknik dan Biologi

Menurut Ogata (2010) dalam Modern Control Engineering,
simulasi dinamis adalah proses untuk merepresentasikan perilaku sistem
fisik dalam bentuk model matematika yang disimulasikan terhadap
waktu menggunakan komputer. Dalam konteks ini, sistem dinamis
berarti sistem yang perilakunya berubah terhadap waktu dan dipengaruhi
oleh kondisi awal serta input tertentu. Baik di bidang teknik maupun
biologi, simulasi dinamis berbasis persamaan diferensial biasa (PDB)
menjadi pendekatan utama untuk memahami dan memprediksi perilaku
sistem kompleks yang tidak bisa dianalisis secara statis atau linear.

Buku Referensi 169

1. Simulasi Dinamis dalam Sistem Teknik

Simulasi dinamis dalam sistem teknik merupakan pendekatan
komputasi yang digunakan untuk memodelkan dan menganalisis
perilaku sistem teknik yang berubah terhadap waktu. Menurut Ogata
(2010) dalam Modern Control Engineering, simulasi dinamis
memungkinkan insinyur untuk merepresentasikan sistem fisis seperti
mekanika, elektrikal, termal, dan sistem kendali dalam bentuk
persamaan diferensial biasa (PDB) yang kemudian diselesaikan secara
numerik menggunakan perangkat lunak komputasi. Tujuan utama dari
simulasi ini adalah untuk memahami respons sistem terhadap masukan,
mengevaluasi stabilitas, efisiensi, dan kinerja, serta menguji desain
sebelum direalisasikan dalam bentuk fisik. Dalam era teknik modern,
simulasi dinamis telah menjadi bagian integral dari proses perancangan
dan pengujian sistem teknik di berbagai sektor industri.

Pada rekayasa mekanik, sistem dinamis muncul dalam bentuk
gerakan benda, osilasi, getaran, dan interaksi gaya. Salah satu contoh
klasik adalah sistem massa-pegas-redaman, yang dirumuskan sebagai
PDB orde dua:

d*x dx
mE—FCE—'_kf:F“}’

dengan m sebagai massa, C koefisien redaman, K konstanta pegas, dan
F(t) sebagai gaya luar. Simulasi dinamis memungkinkan insinyur untuk
mengevaluasi bagaimana sistem merespon terhadap impuls, osilasi, atau
gangguan. Dalam analisis struktur dan kendaraan, simulasi ini digunakan
untuk menilai ketahanan terhadap getaran, prediksi resonansi, dan
pengujian sistem suspensi. Dengan pemodelan yang akurat, pengujian
fisik yang mahal dapat diminimalkan, serta peningkatan desain dapat
dilakukan lebih efisien.

Di bidang teknik elektro dan kontrol, simulasi dinamis digunakan
untuk menganalisis sistem listrik seperti rangkaian RLC, motor listrik,
dan sistem kendali tertutup. Misalnya, rangkaian RLC seri dijelaskan
oleh PDB:

d*q

dyg
L— +R—
dt? + dt

q
— = Et
C (}!

di mana q adalah muatan, dan E(t) tegangan masukan. Dalam konteks
sistem kendali, persamaan tersebut digabungkan dengan elemen kendali

170 Pemrograman dan Komputasi Numerik

seperti pengendali PID (Proportional-Integral-Derivative) untuk
mengatur keluaran agar mengikuti masukan referensi. Simulasi
digunakan untuk menganalisis respon transien (waktu naik, waktu turun,
overshoot), respon mantap, serta kestabilan sistem. Software seperti
MATLAB/Simulink sangat populer di kalangan insinyur kontrol karena
menyediakan lingkungan visual dan numerik untuk memodelkan sistem
dinamis, melakukan tuning parameter, serta melakukan simulasi real-
time dan hardware-in-the-loop (HIL).

Simulasi dinamis juga penting dalam sistem termal dan energi,
termasuk analisis perpindahan panas, efisiensi sistem pendinginan, dan
desain pembangkit listrik. Contohnya, pendinginan sistem elektronik
dapat dimodelkan dengan PDB:

dT
dt
yang menggambarkan perubahan suhu terhadap waktu berdasarkan
perpindahan panas ke lingkungan dan sumber panas internal. Dengan
simulasi, insinyur dapat mengevaluasi bagaimana suhu sistem bereaksi
terhadap perubahan beban, ventilasi, atau desain heatsink. Dalam
konteks yang lebih besar, simulasi termal digunakan dalam desain sistem
HVAC (Heating, Ventilation, and Air Conditioning) untuk bangunan
hemat energi dan efisien secara lingkungan.
Pada bidang robotika dan mekatronika, simulasi dinamis sangat
penting untuk mengembangkan kontrol gerak robot, lengan manipulator,

= _k{T - Tlingkmaga.u} + Q{L}:

atau kendaraan otomatis. Sistem ini umumnya memiliki banyak derajat
kebebasan dan dinamika non-linier yang kompleks. PDB yang mewakili
sistem robot sering kali mencakup interaksi gaya, torsi, percepatan, dan
kontrol feedback. Dengan simulasi dinamis, desainer dapat
mengevaluasi jalur lintasan, konsumsi energi, dan respons kontrol
terhadap perubahan lingkungan, bahkan sebelum perangkat keras robot
dibangun. Hal ini mempercepat iterasi desain dan mengurangi kesalahan
saat implementasi fisik.

Simulasi dinamis dalam teknik sipil digunakan untuk
menganalisis respons struktur terhadap beban dinamis seperti gempa
bumi, angin, atau kendaraan yang melintas. Model struktur bangunan
atau jembatan dapat direpresentasikan sebagai sistem massa-terdistribusi
dan diredam, yang kemudian dianalisis menggunakan metode numerik

Buku Referensi 171

berbasis PDB. Simulasi ini sangat penting dalam desain bangunan tahan
gempa dan infrastruktur yang aman terhadap gangguan lingkungan.

Secara implementatif, simulasi dinamis dilakukan melalui
perangkat lunak seperti MATLAB/Simulink, ANSYS, OpenModelica,
atau platform pemrograman seperti Python yang menggunakan pustaka
scipy.integrate untuk menyelesaikan sistem PDB. Pendekatan numerik
seperti Runge-Kutta orde 4 (RK4) atau solver adaptif seperti ode45 dan
solve ivp digunakan untuk menyelesaikan sistem secara akurat dengan
kontrol terhadap galat numerik dan kestabilan solusi. Visualisasi hasil
simulasi berupa grafik waktu terhadap posisi, kecepatan, suhu, atau
tegangan memungkinkan insinyur mengevaluasi performa sistem dan
melakukan optimasi desain.

Dengan demikian, simulasi dinamis dalam sistem teknik tidak
hanya memperkuat pemahaman teoritis tentang perilaku sistem, tetapi
juga menjadi alat praktis untuk eksperimen virtual, pengujian desain, dan
validasi sistem. la menggabungkan teori matematika, algoritma numerik,
dan implementasi komputasi dalam satu kerangka kerja yang sangat
penting bagi perkembangan rekayasa modern. Seiring dengan
berkembangnya teknologi komputasi dan sensor cerdas, simulasi
dinamis akan semakin terintegrasi dalam proses rekayasa canggih seperti
sistem kendali adaptif, perancangan berbasis model (model-based
design), dan digital twin.

2. Simulasi Dinamis dalam Sistem Biologi

Simulasi dinamis dalam sistem biologi merupakan pendekatan
matematis dan komputasional yang digunakan untuk memahami dan
memprediksi perilaku sistem biologis yang kompleks, yang berubah
seiring waktu. Sistem-sistem ini mencakup berbagai skala, mulai dari
dinamika molekuler di dalam sel hingga interaksi antarpopulasi dalam
ekosistem. Menurut Murray (2002), simulasi dinamis pada dasarnya
dibangun di atas persamaan diferensial biasa (PDB), yang digunakan
untuk menggambarkan laju perubahan variabel-variabel biologis seperti
populasi, konsentrasi molekul, atau penyebaran penyakit terhadap
waktu. Dengan simulasi ini, para ilmuwan dapat melakukan eksperimen
virtual yang mendekati realitas biologis, menguji hipotesis, dan
merancang intervensi medis atau ekologis tanpa harus langsung
melakukan uji laboratorium yang mahal dan rumit.

172 Pemrograman dan Komputasi Numerik

Salah satu aplikasi paling awal dan luas dari simulasi dinamis
dalam biologi adalah dalam model populasi dan ekologi. Model
pertumbuhan eksponensial dan logistik, misalnya, menggambarkan
bagaimana populasi makhluk hidup bertambah dengan

mempertimbangkan sumber daya lingkungan. Model logistik, yang

menggunakan PDB i—l: =rN(1- g) mampu menangkap fenomena

batas kapasitas lingkungan (carrying capacity) yang menjadi pembatas
alami dalam pertumbuhan populasi. Model ini diperluas dalam bentuk
model Lotka-Volterra, yang mensimulasikan interaksi predator-mangsa.
Dalam model 1ini, dua PDB saling terkait digunakan untuk
merepresentasikan perubahan jumlah populasi mangsa dan predator,
menghasilkan dinamika fluktuatif yang menyerupai pola-pola yang
diamati di alam.

Simulasi dinamis juga sangat penting dalam bidang
epidemiologi, yaitu studi tentang penyebaran penyakit menular. Model
klasik yang digunakan adalah model SIR (Susceptible-Infected-
Recovered) yang menggunakan sistem PDB:

fiLg
= —3851.
el : '
el
— = AB8T — ~1
it ' L
dR
H - 'TI:

di mana S, I, dan R masing-masing mewakili jumlah individu yang
rentan, terinfeksi, dan sembuh. Parameter B adalah tingkat penularan,
dan y adalah tingkat pemulihan. Dengan simulasi numerik terhadap
sistem ini, para ahli kesehatan dapat memperkirakan kapan puncak
wabah akan terjadi, berapa jumlah maksimum kasus, serta mengevaluasi
dampak strategi intervensi seperti vaksinasi, karantina, atau pembatasan
sosial. Selama pandemi COVID-19, model seperti ini menjadi dasar
berbagai simulasi skenario yang membantu pengambilan kebijakan di
seluruh dunia.

Simulasi dinamis juga digunakan dalam farmakokinetika dan
farmakodinamika, yaitu studi tentang bagaimana obat bekerja di dalam
tubuh dan bagaimana tubuh mempengaruhi obat. Misalnya, dalam model
satu kompartemen, konsentrasi obat dalam darah sering digambarkan
dengan persamaan
Buku Referensi 173

dc
di mana C adalah konsentrasi dan k adalah laju eliminasi. Simulasi model
ini membantu menentukan dosis optimal, durasi pemberian obat, serta
mengevaluasi efek samping yang mungkin terjadi akibat akumulasi obat
di dalam tubuh. Model ini dapat diperluas menjadi model multi-
kompartemen yang mempertimbangkan jaringan dan organ berbeda,
serta interaksi kompleks antara metabolisme dan ekskresi.

Pada skala molekuler dan seluler, simulasi dinamis menjadi alat
penting dalam biologi sistem, yaitu studi tentang jaringan interaksi gen,
protein, dan metabolit. Model regulasi genetik, misalnya, dapat
menggunakan PDB untuk menggambarkan ekspresi dan supresi gen,
serta osilasi dalam sistem biologis seperti jam biologis sirkadian. Salah
satu contoh adalah model Goodwin yang menggambarkan osilasi
konsentrasi protein yang mengatur ritme harian organisme. Di sini,
simulasi membantu memprediksi efek dari mutasi genetik, pengaruh
obat, dan interaksi sinyal biokimia dalam sel. Simulasi juga mendukung
desain terapi berbasis genetik, serta rekayasa jaringan dan sintesis sistem
biologis baru (biologi sintetik).

Perangkat lunak yang umum digunakan dalam simulasi dinamis
sistem biologi mencakup Python dengan pustaka SciPy dan NumPy,
MATLAB, serta perangkat khusus seperti COPASI, CellDesigner, dan
BioNetGen. Simulasi dilakukan dengan menyelesaikan sistem PDB
menggunakan metode numerik seperti Runge-Kutta Orde 4 (RK4) atau
solver adaptif seperti odeint dan solve ivp. Dalam model dengan banyak
variabel dan parameter, teknik seperti analisis sensitivitas dan estimasi
parameter digunakan untuk mengevaluasi seberapa kuat model terhadap
variasi input, dan untuk menyesuaikan model dengan data eksperimen.

Secara umum, keunggulan utama dari simulasi dinamis dalam
sistem biologi adalah kemampuannya untuk menangani kompleksitas
sistem hidup, baik dalam skala mikro (seluler) maupun makro (populasi
atau ekosistem), yang hampir mustahil dipecahkan secara analitik.
Dengan simulasi, para peneliti dapat mengamati konsekuensi dari
intervensi yang belum pernah diuji, mengevaluasi ketidakpastian
biologis, dan merancang sistem biologis baru berdasarkan prinsip
dinamika dan kontrol. Namun demikian, tantangan utama tetap ada,

174 Pemrograman dan Komputasi Numerik

terutama dalam hal ketersediaan data parameter, validasi eksperimental,
serta ketidakpastian biologis yang sulit dimodelkan secara deterministik.

Dengan demikian, simulasi dinamis telah menjadi bagian integral
dari biologi modern. Tidak hanya sebagai alat bantu visualisasi dan
prediksi, tetapi juga sebagai kerangka konseptual yang memungkinkan
integrasi berbagai tingkat informasi biologis dari genetik hingga
populasi ke dalam satu sistem yang bisa dianalisis, dimodifikasi, dan
diaplikasikan secara nyata dalam riset kesehatan, konservasi, dan
bioteknologi. Seiring berkembangnya teknologi komputasi dan integrasi
data biologis berbasis omik, simulasi dinamis diperkirakan akan terus
berperan sentral dalam inovasi biomedis dan bioinformatika masa depan.

Buku Referensi 175

KOMPUTASI MATRIKS
DAN ALJABAR LINIER
LANJUT

Matriks dan transformasi linier bukan hanya bagian dari teori
matematika, melainkan juga alat komputasi yang sangat kuat dalam
menyelesaikan berbagai persoalan di bidang teknik, fisika, data science,
dan pemodelan numerik. Dalam bab ini, pembaca akan diperkenalkan
pada topik-topik lanjutan seperti dekomposisi matriks (LU, QR, dan
SVD), eigenvalue-eigenvector, serta sistem persamaan linier berskala
besar yang menuntut pendekatan algoritmik efisien. Penekanan
diberikan pada bagaimana teori aljabar linier dapat diimplementasikan
secara numerik melalui pemrograman, serta bagaimana kestabilan
numerik dan efisiensi algoritma menjadi pertimbangan utama dalam
aplikasi dunia nyata. Pendekatan yang digunakan dalam bab ini bersifat
praktis namun tetap memperhatikan landasan teoritis, sehingga pembaca
tidak hanya mampu memahami konsep, tetapi juga menguasai cara
penerapannya secara langsung.

A. Eigenvalue dan Eigenvector

Eigenvalue dan eigenvector adalah konsep fundamental dalam
aljabar linier yang memiliki peranan penting dalam banyak bidang sains
dan teknik, termasuk fisika, rekayasa, ilmu komputer, pembelajaran
mesin, serta pemrosesan citra dan suara. Konsep ini memungkinkan kita
memahami bagaimana transformasi linier mempengaruhi ruang vektor
dan bagaimana sistem dapat direduksi atau disederhanakan menjadi

Buku Referensi 177

bentuk yang lebih terstruktur untuk analisis atau komputasi. Saat
merujuk pada Lay, D.C. (2012) Linear Algebra and Its Applications,
Pearson dijelaskan bahwa eigenvalue (nilai eigen) dan eigenvector
(vektor eigen) adalah solusi dari transformasi linier berbasis matriks.
Secara formal, diberikan sebuah matriks persegi

A € R™™,
vektor tak nol
v ER"
dan skalar
LER

maka v disebut sebagai eigenvector dari A, dan A adalah eigenvalue yang
sesuai jika memenuhi:

Av = Av

Artinya, jika suatu vektor dikenai transformasi oleh matriks A, hasilnya

tetap searah dengan vektor semula, hanya mengalami perubahan skala
oleh faktor A.

1. Interpretasi Geometris

Interpretasi geometris dari eigenvalue dan eigenvector
merupakan fondasi visual yang kuat dalam memahami bagaimana suatu
transformasi linier bekerja terhadap ruang vektor. Jika kita
membayangkan sebuah matriks A sebagai suatu transformasi linier
dalam ruang dua atau tiga dimensi, maka eigenvector dapat dipahami
sebagai arah tertentu dalam ruang tersebut yang tetap tidak berubah arah
ketika dikenai transformasi oleh A; hanya panjangnya yang berubah,
diperbesar, diperkecil, atau bahkan dibalik arah tergantung pada nilai
eigenvalue-nya. Pandangan ini sangat penting dalam memahami struktur
sistem dinamis, deformasi spasial, dan perilaku asimtotik dari banyak
sistem matematika dan fisik.

Bayangkan bidang dua dimensi R?, dan vektor v adalah suatu
panah yang menunjuk ke suatu arah tertentu dari titik asal. Ketika kita
menerapkan transformasi linier dengan matriks A terhadap vektor ini,
hasilnya adalah vektor baru Av. Untuk vektor biasa, arah dari Av akan
berubah tergantung pada bagaimana matriks A bertindak terhadap
komponen-komponen x dan y dari vektor tersebut. Namun, jika v adalah

178 Pemrograman dan Komputasi Numerik

sebuah eigenvector dari A, maka arah Av tetap searah atau berlawanan
arah dengan v. Perubahan yang terjadi hanyalah skala panjangnya, yang
diatur oleh eigenvalue A sehingga:
Av =Av

Ini berarti transformasi oleh A "memanjangkan", "memendekkan", atau
"membalik" vektor tersebut tanpa mengubah orientasinya di dalam
ruang. Sebagai contoh konkret, pertimbangkan matriks dua dimensi
sederhana seperti:

3 0
A= L} 2}

Matriks ini adalah transformasi skala (stretching) terhadap
sumbu x sebesar faktor 3 dan sumbu y sebesar faktor 2. Dalam hal ini,

vektor vi =[(1)] dan v2 = [(1)] adalah eigenvector dari A karena ketika

dikalikan oleh A, masing-masing hanya mengalami perubahan panjang:

= [p 4[]

1’11’2 = 21«"2

Dari sini, kita dapat memahami bahwa kedua arah x dan y adalah
arah "khusus" yang tidak berubah arah ketika dikenai transformasi oleh
A. Inilah yang dimaksud dengan arah tetap dari transformasi linier. Jika
kita mengambil vektor sembarang yang bukan kombinasi linear dari
vektor eigen ini, maka hasil transformasi tidak akan searah dengan
vektor semula, arahnya akan berubah karena komponennya mengalami
transformasi yang berbeda di setiap sumbu.

Interpretasi ini menjadi semakin menarik ketika kita berhadapan
dengan transformasi rotasi, refleksi, atau shearing (geseran). Misalnya,
dalam kasus rotasi murni pada bidang dua dimensi, tidak ada vektor
(selain nol) yang tetap pada arah yang sama setelah transformasi; oleh
karena itu, tidak ada eigenvector nyata untuk rotasi murni dengan sudut
bukan kelipatan 180°. Sebaliknya, dalam refleksi terhadap garis tertentu,
maka garis refleksi itu sendiri adalah arah eigenvector dengan eigenvalue
1, dan garis tegaknya adalah arah eigenvector dengan eigenvalue -1,
karena arah tegak lurus tersebut dibalik oleh transformasi.

Buku Referensi 179

Interpretasi geometris ini juga sangat berguna dalam memahami
. dx
sistem dinamik. Dalam sistem dinamis linier, misalnya i Ax, arah

vektor eigen menggambarkan arah mode pertumbuhan atau peluruhan
sistem. Eigenvalue positif menunjukkan arah di mana sistem tumbuh
secara eksponensial seiring waktu, sedangkan eigenvalue negatif
menunjukkan arah peluruhan. Eigenvalue kompleks dengan bagian
imajiner menggambarkan rotasi atau osilasi dalam sistem, dengan bagian
real menentukan apakah amplitudo osilasi meningkat, menurun, atau
tetap.

Pada tiga dimensi (R?), interpretasi serupa berlaku. Eigenvector
direpresentasikan sebagai arah tertentu dalam ruang tiga dimensi yang
tidak berubah arah setelah dikenai transformasi. Eigenvalue menentukan
perubahan panjang sepanjang arah tersebut. Visualisasi dalam ruang tiga
dimensi umumnya lebih sulit, namun secara konseptual sama vektor
tetap pada garis yang sama dari asal, hanya jaraknya dari titik asal yang
berubah.

Interpretasi geometris ini juga mendasari teknik komputasional
seperti Principal Component Analysis (PCA). Dalam PCA, kita mencari
arah (komponen utama) dalam data multidimensi di mana varians
(penyebaran data) paling besar. Arah ini merupakan eigenvector dari
matriks kovarian data, dan besarnya penyebaran di sepanjang arah
tersebut diwakili oleh eigenvalue-nya. Dengan kata lain, PCA
merepresentasikan data ke dalam sumbu-sumbu baru (basis baru) yang
ditentukan oleh arah geometri intrinsik dari distribusi data itu sendiri
sebuah aplikasi langsung dari interpretasi geometris eigenvalue dan
eigenvector.

Dengan pemahaman geometris ini, kita dapat lebih intuitif
mengenali dan menjelaskan bagaimana sistem bekerja dan berubah
dalam ruang vektor. Daripada hanya melihat eigenvalue dan eigenvector
sebagai hasil aljabar, interpretasi ini membawa kita lebih dekat pada
pemahaman fungsional dalam dunia nyata mulai dari arah getaran dalam
struktur teknik, rotasi dalam grafik komputer, hingga pola dominan
dalam data statistik.

2. Cara Menentukan Eigenvalue dan Eigenvector
Menentukan eigenvalue dan eigenvector dari sebuah matriks
merupakan salah satu proses inti dalam aljabar linier yang banyak

180 Pemrograman dan Komputasi Numerik

diterapkan dalam komputasi ilmiah, teknik, statistik, dan berbagai
cabang matematika terapan. Proses ini melibatkan dua langkah utama:
pertama, menemukan nilai-nilai eigen (eigenvalue) dari matriks; dan
kedua, mencari vektor-vektor yang sesuai (eigenvector) untuk masing-
masing nilai tersebut. Meskipun secara konseptual sederhana,
perhitungannya bisa menjadi kompleks, tergantung pada ukuran dan sifat
matriks yang dianalisis.

Langkah pertama dalam menentukan eigenvalue dimulai dengan
menyusun persamaan karakteristik dari matriks tersebut. Misalkan
diberikan sebuah matriks kuadrat A berukuran nxn, maka kita mencari
nilai skalar A dan vektor tak nol v yang memenuhi hubungan:

Av = v
Dengan menyusun ulang bentuk tersebut, kita mendapatkan:

(A—AX)v=0

di mana I adalah matriks identitas berukuran nxn. Agar persamaan ini
memiliki solusi non-trivial (selain solusi vektor nol), maka matriks
(A—Al) harus bersifat singular, yaitu memiliki determinan nol. Oleh
karena itu, kita harus menyelesaikan persamaan determinan berikut:

det(A — AI) =0

Inilah yang disebut persamaan karakteristik, dan penyelesaian
dari persamaan ini memberikan kita nilai-nilai eigen dari matriks A.
Persamaan ini umumnya berupa polinomial berderajat n, dan solusinya
bisa berupa bilangan real, kompleks, atau bahkan berulang (multiplikitas
lebih dari satu). Sebagai contoh, misalkan kita memiliki matriks dua

dimensi berikut:
4 1
A= [2 :;]

Langkah pertama adalah menyusun matriks A — Al:

4— A 1
A—M_[Z 3_‘1]

Buku Referensi 181

Kemudian hitung determinannya:
det(A—A)=(4—-X)(3—-XN)—2-1=2—-7A+10

Menyelesaikan persamaan karakteristik A2 — TA + 10 = 00 memberikan dua nilai eigen:

Al =5dan A = 2.

Langkah berikutnya adalah mencari eigenvector untuk masing-masing nilai eigen. Untuk

tiap A, kita substitusikan kembali ke dalam:
(A—Av =0

dan menyelesaikan sistem persamaan linier homogen tersebut. Misalnya, untuk A = 5,

kita susun:

Kemudian, kita selesaikan sistem:

= -l

Sistem ini bersifat dependen, dan memiliki solusi tak hingga.
Kita bisa memilih vi =1 maka v2 = q, sehingga salah satu eigenvector-

nya adalah v; = [ﬂ Hal yang sama dilakukan untuk A=2 dan kita

dapatkan eigenvector lainnya, misalnya v, = B] Secara umum, sistem

(A—AI)v=0 adalah sistem linier homogen yang selalu memiliki solusi
non-trivial jika dan hanya jika A adalah nilai eigen dari A.
Penyelesaiannya dapat dilakukan menggunakan eliminasi Gauss,
substitusi, atau dengan bantuan perangkat lunak matematika seperti
MATLAB, Python (NumPy/SciPy), Mathematica, atau R.

Pada kasus ketika nilai eigen memiliki multiplikitas lebih dari
satu, kita juga perlu memperhatikan dimensi dari ruang eigennya. Ini
berkaitan dengan jumlah vektor eigen linier independen yang dapat
dihasilkan untuk satu nilai eigen. Jika jumlah ini sama dengan
multiplicity-nya, maka matriks tersebut dapat didiagonalisasi, yaitu
direpresentasikan sebagai A=PDP"!, di mana D adalah matriks diagonal
dari eigenvalue dan P adalah matriks yang kolom-kolomnya terdiri dari
eigenvector yang bersesuaian.

Prosedur di atas menjadi lebih kompleks untuk matriks
berdimensi besar atau matriks dengan elemen kompleks. Dalam banyak

182 Pemrograman dan Komputasi Numerik

kasus praktis, terutama untuk matriks berukuran besar, pendekatan
numerik digunakan untuk menghitung nilai eigen secara efisien. Metode
populer meliputi Power Iteration untuk mencari nilai eigen terbesar, QR
Algorithm untuk menemukan semua nilai eigen, dan Jacobi Method
untuk matriks simetris.

Cara menentukan eigenvalue dan eigenvector memerlukan
pemahaman aljabar linier yang mendalam, penguasaan terhadap
manipulasi matriks, serta keterampilan komputasional dalam
menyelesaikan sistem linier. Proses ini bukan sekadar manipulasi
simbolik, tetapi berakar pada pemahaman struktur dan dinamika sistem
linier, serta penting dalam banyak aplikasi mulai dari stabilitas struktur
dalam teknik sipil, analisis data dalam statistik, hingga pembelajaran
mesin dan pencitraan digital.

3. Aplikasi Eigenvalue dan Eigenvector

Eigenvalue dan eigenvector memiliki peran penting dalam
berbagai bidang sains dan teknik karena kemampuannya dalam
menyederhanakan analisis sistem yang kompleks melalui pendekatan
struktural. Konsep ini tidak hanya relevan dalam matematika murni,
tetapi juga menjadi tulang punggung banyak metode numerik dan teknik
komputasi modern. Dalam dunia nyata, banyak fenomena fisika, sistem
mekanik, jaringan sosial, pemrosesan sinyal, serta pembelajaran mesin
dapat dimodelkan dan diselesaikan lebih efisien dengan memahami
struktur eigennya. Berikut ini adalah uraian mendalam mengenai
beberapa aplikasi utama dari eigenvalue dan eigenvector dalam berbagai
konteks.

Pada bidang rekayasa struktur dan mekanika, eigenvalue
digunakan dalam analisis getaran. Ketika sebuah struktur seperti
jembatan, gedung pencakar langit, atau pesawat mengalami gangguan
atau gaya luar, sistem tersebut akan berosilasi pada frekuensi-frekuensi
tertentu yang disebut frekuensi alami (natural frequencies). Frekuensi
ini adalah akar dari eigenvalue dari sistem matriks massa dan kekakuan
(mass and stiffness matrices). Misalnya, dalam analisis mode getar suatu
bangunan, setiap eigenvalue merepresentasikan kuadrat dari frekuensi
alami, dan eigenvectornya menunjukkan bentuk mode (mode shape) dari
getaran tersebut. Dengan demikian, memahami eigenstructure dari
sistem mekanik sangat penting untuk desain struktur yang aman terhadap

resonansi atau beban dinamis.
Buku Referensi 183

Pada fisika kuantum, konsep eigenvalue sangat fundamental.
Persamaan Schrédinger, yang menggambarkan perilaku sistem kuantum,
secara matematis merupakan persamaan eigen. Fungsi gelombang
kuantum (wavefunction) dari suatu partikel merupakan eigenvector, dan
energi-energi diskrit yang dapat dimiliki oleh partikel tersebut adalah
nilai eigen. Setiap operator fisika seperti momentum, energi, dan spin
direpresentasikan sebagai operator linier, dan hasil pengukuran nilai-
nilainya adalah nilai eigen dari operator tersebut. Oleh karena itu, seluruh
struktur teori kuantum dibangun di atas landasan eigenvalue-
eigenvector.

Pada analisis data dan pembelajaran mesin, eigenvalue dan
eigenvector menjadi alat utama dalam teknik reduksi dimensi, terutama
dalam Principal Component Analysis (PCA). PCA adalah metode
statistik yang digunakan untuk mengurangi kompleksitas data
berdimensi tinggi dengan menemukan sumbu-sumbu utama (principal
components) dari distribusi data. Sumbu-sumbu ini ditentukan oleh
eigenvector dari matriks kovarian data, dan sumbu-sumbu dengan
eigenvalue terbesar mewakili arah dengan variasi data paling signifikan.
Dengan memilih beberapa komponen utama pertama, kita dapat
mengurangi dimensi data tanpa kehilangan informasi penting secara
signifikan. Ini sangat berguna dalam pengolahan citra, pengenalan pola,
dan kompresi data.

Pada graf'teori dan analisis jaringan, eigenvalue digunakan dalam
banyak aspek, salah satunya adalah algoritma PageRank milik Google.
Dalam pendekatan ini, halaman web direpresentasikan sebagai simpul
(nodes) dalam graf terarah, dan hubungan antar halaman sebagai sisi
(edges). Matriks transisi dari graf ini digunakan untuk membentuk sistem
Markov, dan peringkat halaman ditentukan oleh eigenvector dominan
dari matriks tersebut. Halaman dengan bobot (komponen) terbesar dalam
eigenvector tersebut dianggap paling penting. Selain itu, dalam analisis
jaringan sosial atau jaringan biologis, spektrum eigen dari matriks
ketetanggaan (adjacency matrix) atau matriks Laplacian jaringan
memberikan informasi penting tentang struktur jaringan, seperti
keterhubungan, jumlah komunitas, dan ketahanan terhadap gangguan.

Pada sistem dinamik dan kontrol, terutama sistem diferensial

. . d
linier seperti d—f = Ax, eigenvalue dari matriks A menentukan perilaku

jangka panjang sistem tersebut. Jika semua eigenvalue memiliki bagian

184 Pemrograman dan Komputasi Numerik

real negatif, maka sistem bersifat stabil karena semua solusi cenderung
ke nol. Jika ada eigenvalue dengan bagian real positif, sistem bersifat
tidak stabil. Di sinilah peran penting analisis eigensistem untuk
memastikan kestabilan sistem kontrol, baik dalam robotika, pesawat
terbang, maupun sistem otomatisasi industri.

Di bidang komputasi citra dan pemrosesan sinyal, transformasi
yang melibatkan matriks kovarian atau matriks transformasi sering kali
memanfaatkan eigenvalue dan eigenvector. Misalnya, dalam face
recognition (pengenalan wajah), metode seperti Eigenfaces membangun
basis wajah dari kumpulan gambar pelatthan dengan mencari
eigenvector dari matriks citra. Setiap gambar wajah kemudian dapat
direpresentasikan sebagai kombinasi linear dari basis ini, sehingga
identifikasi dan klasifikasi wajah menjadi lebih efisien dan akurat.

Pada bidang ekonomi dan ekonometri, eigenvalue digunakan
dalam analisis input-output antar sektor, serta dalam model stokastik
seperti analisis Markov Chain, di mana matriks transisi menyimpan
probabilitas perpindahan antara keadaan-keadaan sistem. Eigenvector
stasioner dari matriks transisi menggambarkan distribusi jangka panjang
dari sistem ekonomi tersebut. Di bidang biologi matematika, terutama
dalam model populasi, eigenvalue membantu menentukan pertumbuhan
populasi jangka panjang dan stabilitas ekosistem. Contohnya, dalam
model Leslie matrix (model pertumbuhan populasi terstruktur menurut
usia), nilai eigen terbesar (dominant eigenvalue) merepresentasikan
tingkat pertumbuhan populasi, sedangkan eigenvectornya memberi
distribusi populasi dalam keadaan stabil.

Gambar 5. Big Data

COLLECTION STORAGE

—3 -
?@y \’—L\<.

RESEARCH

@/\ BIG DATA /LA

CLOUD

TECHNOLOGY
1 ANALYSIS

VISUALIZATION

Sumber: Dglab
Buku Referensi 185

Dari berbagai bidang ini, dapat disimpulkan bahwa eigenvalue
dan eigenvector menyediakan kerangka kerja matematis untuk
mengevaluasi dan menyederhanakan sistem yang kompleks. Kekuatan
utama dari konsep ini adalah kemampuannya dalam mengubah sistem
menjadi bentuk diagonal atau hampir-diagonal, di mana analisis dan
perhitungan menjadi jauh lebih sederhana. Dalam era big data dan
komputasi intensif, pemanfaatan struktur eigen menjadi semakin penting
karena efisiensinya dalam menangani persoalan berdimensi besar dan
kompleks. Oleh karena itu, penguasaan terhadap konsep dan aplikasi
eigenvalue dan eigenvector adalah keterampilan esensial bagi ilmuwan,
insinyur, dan analis data modern.

B. Dekomposisi LU, QR, dan SVD

Dekomposisi matriks merupakan teknik fundamental dalam
aljabar linier numerik yang digunakan untuk menyederhanakan berbagai
perhitungan matematis, seperti penyelesaian sistem persamaan linier,
komputasi nilai eigen, dan reduksi dimensi. Tiga metode dekomposisi
paling penting dan sering digunakan adalah LU decomposition (Lower-
Upper decomposition), QR decomposition, dan Singular Value
Decomposition (SVD). Masing-masing memiliki peran dan keunggulan
tertentu dalam penerapan praktis dan komputasi numerik.

1. Dekomposisi LU (Lower-Upper Decomposition)

Dekomposisi LU (Lower-Upper Decomposition) adalah teknik
aljabar linier yang memfaktorkan sebuah matriks persegi A menjadi hasil
perkalian dua matriks segitiga: matriks segitiga bawah L (Lower) dan
matriks segitiga atas U (Upper), sehingga diperoleh bentuk A=LU.
Konsep ini sangat penting dalam komputasi numerik karena
menyederhanakan berbagai perhitungan, terutama dalam penyelesaian
sistem persamaan linier, invers matriks, dan perhitungan determinan.
Dengan mendekomposisi matriks ke dalam bentuk segitiga, kita dapat
memanfaatkan sifat-sifat sederhana dari sistem linier segitiga untuk
menyelesaikan masalah dengan efisien dan stabil.

Secara umum, dekomposisi LU hanya berlaku untuk matriks
persegi nxn, dan tidak semua matriks memiliki dekomposisi LU tanpa
modifikasi. Untuk menjamin dekomposisi ini bisa dilakukan secara

stabil, sering kali diperlukan pivoting, yaitu pertukaran baris untuk
186 Pemrograman dan Komputasi Numerik

menghindari pembagian oleh nol atau bilangan sangat kecil. Dalam
kasus ini, dekomposisi menjadi PA=LU, di mana P adalah matriks
permutasi yang menyatakan posisi baris yang ditukar. Proses
dekomposisi dilakukan melalui metode eliminasi Gauss, di mana
elemen-elemen di bawah diagonal utama diubah menjadi nol
menggunakan operasi baris elementer, dan koefisien yang digunakan
untuk operasi tersebut disimpan dalam matriks L.
Dekomposisi LU memiliki keuntungan besar dalam
menyelesaikan sistem persamaan linier:
Ax=b
Setelah matriks A didekomposisi menjadi LU, kita dapat menyelesaikan
sistem tersebut dalam dua tahap:
1. Menyelesaikan
Ly=b
menggunakan substitusi maju (forward substitution), karena L
adalah matriks segitiga bawah;
2. Menyelesaikan
Ux=y
menggunakan substitusi mundur (back substitution), karena U
adalah matriks segitiga atas. Proses ini jauh lebih efisien
dibandingkan langsung menggunakan invers matriks atau eliminasi
Gauss berulang untuk setiap vektor b.
Dekomposisi LU juga sangat berguna dalam konteks faktorisasi
matriks untuk perhitungan determinan. Jika:
A=LU
maka determinan det(A) = det(L) - det(U). Karena determinan dari
matriks segitiga adalah hasil kali elemen diagonalnya, maka perhitungan
determinan menjadi sangat cepat dan stabil.
Pada implementasi komputasi, dekomposisi LU tersedia dalam
berbagai bahasa dan pustaka numerik seperti:
e MATLAB ([L,U,P] =Iu(A)”
e Python melalui SciPy (scipy.linalg.lu)
e Julia
Keunggulannya adalah dapat digunakan secara efisien dalam
perhitungan berskala besar, misalnya dalam simulasi struktur teknik,
analisis jaringan listrik, atau model-model numerik fisika dan kimia.

Buku Referensi 187

2. Dekomposisi QR

Dekomposisi QR adalah salah satu metode faktorisasi matriks
yang sangat penting dalam aljabar linier numerik dan memiliki beragam
aplikasi dalam penyelesaian sistem overdetermined (jumlah persamaan
lebih banyak dari variabel), pencarian solusi least squares, serta dalam
algoritma komputasi nilai eigen. Dalam dekomposisi ini, sebuah matriks
A € R™" (dengan m>n) difaktorkan menjadi hasil perkalian dua matriks,
yaitu matriks ortogonal QQQ dan matriks segitiga atas RRR, sehingga
diperoleh bentuk:

A=QR

Matriks Q € R™™ memiliki sifat ortogonal, yang berarti kolom-
kolomnya adalah vektor ortonormal dan memenuhi Q'? = I, sementara
matriks R € R™" adalah matriks segitiga atas, yang menyimpan
koefisien kombinasi linier dari kolom-kolom vektor asli pada A. Salah
satu aplikasi utama dekomposisi QR adalah dalam penyelesaian masalah
least squares. Ketika sistem linier Ax = b tidak memiliki solusi eksak
karena sistemnya overdetermined, solusi terbaik dalam arti minimum
kesalahan kuadrat dapat dicari dengan mengubahnya menjadi sistem
normal: ATAx = ATb.

Namun, pendekatan ini bisa menghasilkan instabilitas numerik
karena meningkatkan kondisi numerik yang buruk. Alternatif yang lebih
stabil adalah dengan menggunakan dekomposisi QR. Jika A = QR, maka
Ax = QRx = b, dan dengan mengalikan kedua sisi dengan Q, diperoleh
sistem sederhana Rx = Q'b, yang kemudian diselesaikan dengan
substitusi mundur karena RRR berbentuk segitiga atas.

Secara praktis, dekomposisi QR dapat dilakukan dengan
beberapa metode, antara lain metode Gram-Schmidt, Householder
reflections, dan Givens rotations. Metode Gram-Schmidt menggunakan
proses ortonormalisasi vektor dan lebih intuitif secara konsep, tetapi
kurang stabil secara numerik. Metode Householder, yang menggunakan
refleksi ortogonal, lebih stabil dan sering digunakan dalam perangkat
lunak numerik seperti MATLAB dan SciPy. Givens rotations, di sisi
lain, lebih cocok untuk matriks besar dan jarang (sparse matrices) karena
memodifikasi dua baris pada satu waktu.

Pada algoritma komputasi nilai eigen, QR decomposition
menjadi komponen utama dalam algoritma QR iferation, yang

188 Pemrograman dan Komputasi Numerik

digunakan untuk menghitung spektrum eigen suatu matriks. Keuntungan
dari metode ini adalah kemampuannya menangani matriks non-simetri
dan mengkonsolidasikan informasi struktural dari matriks melalui proses
berulang.

Dekomposisi QR juga digunakan dalam analisis numerik,
pemrosesan sinyal, dan pembelajaran mesin, terutama ketika stabilitas
numerik dan ortogonalitas menjadi penting. Karena kemampuan QR
decomposition dalam menjaga kestabilan komputasi dan struktur
geometri data, metode ini menjadi alat utama dalam berbagai bidang
ilmiah dan teknis. Dengan berbagai metode implementasinya dan
dukungan dari perangkat lunak komputasi ilmiah, dekomposisi QR
merupakan teknik faktorisasi yang tak tergantikan dalam praktik
komputasi numerik modern.

3. Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) adalah salah satu teknik
dekomposisi matriks paling kuat dan serbaguna dalam aljabar linier
numerik. Berbeda dengan dekomposisi LU atau QR yang hanya berlaku
pada matriks dengan syarat tertentu (seperti matriks persegi atau penuh-
rangking), SVD dapat diterapkan pada semua jenis matriks, baik persegi,
persegi panjang, penuh-rangking maupun rangking rendah. Secara
formal, jika diberikan matriks AER™", maka SVD memfaktorkan
matriks tersebut menjadi hasil perkalian tiga matriks:

A=UxVvT

Di sini, UER™™ adalah matriks ortogonal yang kolom-
kolomnya disebut left singular vectors.

YeRm™™

adalah matriks diagonal (atau hampir diagonal) yang elemen-elemen
diagonalnya adalah bilangan non-negatif dan disebut singular values.

VTieR»n®

adalah transpose dari matriks ortogonal V, dengan kolom-kolom V
disebut right singular vectors. Nilai-nilai dalam X biasanya disusun

Buku Referensi 189

dalam urutan menurun dan memberikan ukuran kontribusi dari masing-
masing komponen basis terhadap struktur asli data.

Keunggulan utama SVD terletak pada stabilitas numerik dan
fleksibilitasnya, sehingga sangat cocok untuk pemrosesan matriks yang
tidak simetris, tidak persegi, bahkan ketika tidak memiliki invers. Dalam
konteks reduksi dimensi dan kompresi data, SVD memungkinkan kita
melakukan aproksimasi matriks dengan hanya mempertahankan
beberapa singular values terbesar dan mengabaikan yang kecil, sehingga
informasi utama tetap terjaga sementara kompleksitas dikurangi. Teknik
ini menjadi dasar dalam Principal Component Analysis (PCA), di mana
vektor-vektor singular dari SVD digunakan sebagai sumbu baru
(komponen utama) yang memaksimalkan variansi data.

Pada kompresi citra digital, misalnya, SVD dapat digunakan
untuk menyimpan representasi gambar dalam basis singular vectors.
Dengan hanya menyimpan sejumlah kecil singular values dan vektor
terkait, gambar dapat direkonstruksi dengan kualitas yang masih baik
namun ukuran file jauh lebih kecil. Selain itu, dalam Natural Language
Processing (NLP), SVD digunakan dalam metode Latent Semantic
Analysis (LSA) untuk menemukan struktur laten dalam dokumen teks,
dengan cara mengurai matriks term-document menjadi komponen
semantik dominan. SVD juga berperan penting dalam pseudoinvers
matriks (Moore-Penrose inverse), yaitu ketika kita ingin menyelesaikan
sistem Ax=b namun A tidak memiliki invers atau berbentuk tidak
persegi. Dengan SVD, kita dapat menghitung solusi terkecil dalam
norma Euclidean dengan cara yang stabil dan akurat.

C. Aplikasi dalam Pemrosesan Data dan Machine Learning

Pemrograman dan komputasi numerik menjadi fondasi utama
dalam pengolahan data dan pengembangan metode machine learning
(ML) modern. Dalam konteks ini, teknik-teknik komputasi numerik,
seperti dekomposisi matriks, optimasi numerik, dan algoritma statistik,
berperan penting dalam mengolah data besar, membangun model
prediktif, serta meningkatkan akurasi dan efisiensi pembelajaran mesin
(Goodfellow, Bengio, & Courville, 2016). Dengan ketersediaan data
yang masif dan kebutuhan analisis yang kompleks, pemrograman
numerik memungkinkan transformasi data mentah menjadi informasi

bermakna serta model yang dapat diandalkan.
190 Pemrograman dan Komputasi Numerik

1. Pemrosesan Data

Pemrosesan data adalah rangkaian aktivitas yang bertujuan untuk
mengubah data mentah menjadi informasi yang bermakna dan berguna
untuk pengambilan keputusan, analisis, dan berbagai aplikasi lanjutan.
Proses ini sangat penting dalam era digital di mana data dihasilkan secara
masif dari berbagai sumber seperti sensor 10T, transaksi bisnis, media
sosial, dan sistem informasi lainnya. Data mentah yang tidak terstruktur,
bising, dan berdimensi tinggi harus diolah melalui serangkaian tahap
agar dapat diekstrak pola, insight, atau model prediktif yang akurat. Oleh
karena itu, pemrosesan data menjadi fondasi utama dalam bidang data
science dan machine learning.

Tahap awal dalam pemrosesan data adalah pengumpulan data, di
mana data dikumpulkan dari berbagai sumber dengan berbagai format.
Data tersebut kemudian mengalami pembersihan (data cleaning) untuk
mengatasi masalah seperti nilai yang hilang (missing values), duplikasi,
dan kesalahan input. Pembersihan data penting karena data yang tidak
konsisten atau rusak dapat menghasilkan model yang bias dan tidak
akurat (Rahm & Do, 2000). Selanjutnya, data mengalami transformasi
dan normalisasi. Transformasi mencakup pengubahan format,
pengkodean variabel kategorikal menjadi numerik, dan penanganan
outlier. Normalisasi, seperti skala min-max atau standardisasi, dilakukan
agar fitur-fitur data berada pada rentang yang sama, sehingga algoritma
machine learning dapat bekerja lebih efektif dan cepat konvergen (Han,
Kamber, & Pei, 2011).

Reduksi dimensi juga merupakan tahap penting dalam
pemrosesan data, terutama untuk dataset berdimensi tinggi yang dapat
menyebabkan masalah curse of dimensionality. Teknik seperti Principal
Component Analysis (PCA) dan Singular Value Decomposition (SVD)
digunakan untuk mereduksi fitur menjadi komponen-komponen utama
yang mewakili variansi terbesar dari data tanpa kehilangan informasi
penting. Dengan cara ini, kompleksitas data berkurang, yang
mempercepat proses pelatihan model sekaligus meningkatkan
interpretabilitas (Jolliffe, 2002). Setelah data siap, dilakukan eksplorasi
data (Exploratory Data Analysis, EDA) untuk memahami karakteristik
data, distribusi, korelasi antar variabel, dan pola tersembunyi. Visualisasi
data seperti histogram, scatter plot, dan heatmap sangat membantu dalam
tahap ini untuk mengidentifikasi tren dan anomali (Tukey, 1977).

Buku Referensi 191

Pemrosesan data juga mencakup teknik feature engineering,
yaitu proses menciptakan fitur baru yang lebih representatif berdasarkan
fitur asli. Misalnya, menggabungkan beberapa fitur menjadi indeks atau
menghitung rata-rata per periode waktu tertentu dalam data waktu (time-
series). Feature engineering yang baik dapat meningkatkan performa
model secara signifikan (Kuhn & Johnson, 2013). Dalam konteks data
streaming dan big data, pemrosesan data harus dilakukan secara real-
time dan skalabel. Teknologi seperti Apache Hadoop dan Apache Spark
memungkinkan pemrosesan paralel dan distribusi data yang efisien di
cluster komputer besar. Pendekatan ini sangat penting untuk menangani
volume data yang sangat besar dengan kecepatan tinggi (Zaharia et al.,
2010). Pemrosesan data juga mengantisipasi aspek keamanan dan
privasi, dengan menerapkan teknik seperti enkripsi data dan anonimasi
agar data sensitif tidak disalahgunakan selama proses analisis (Dwork,
2008).

2. Machine Learning

Machine learning (ML) merupakan cabang dari kecerdasan
buatan (artificial intelligence) yang memungkinkan sistem komputer
untuk belajar dari data dan meningkatkan performa tanpa diprogram
secara eksplisit. ML berfokus pada pengembangan algoritma dan model
matematis yang dapat mengidentifikasi pola, membuat prediksi, dan
mengambil keputusan berdasarkan data yang tersedia. Konsep inti ML
adalah bahwa sistem belajar dengan mengenali pola dalam data dan
menggeneralisasi pola tersebut ke data baru yang belum pernah ditemui
sebelumnya (Mitchell, 1997).

ML dapat dibagi menjadi beberapa kategori utama berdasarkan
jenis data dan cara belajar, yaitu supervised learning, unsupervised
learning, dan reinforcement learning. Pada supervised learning, model
dilatih menggunakan data berlabel, di mana input dan output yang
diinginkan sudah diketahui. Contoh algoritma supervised learning
meliputi regresi linier, pohon keputusan, dan neural networks. Model
bertujuan mempelajari hubungan antara input dan output agar dapat
memprediksi output pada data baru dengan akurat (Hastie et al., 2009).
Sebaliknya, pada unsupervised learning, data yang digunakan tidak
berlabel, sehingga model mencoba menemukan struktur atau pola
tersembunyi dalam data. Teknik umum termasuk clustering seperti k-

means dan hierarchical clustering, serta reduksi dimensi seperti PCA.
192 Pemrograman dan Komputasi Numerik

Unsur utama di sini adalah mengenali kelompok data atau fitur penting
tanpa panduan output (Aggarwal, 2015).

Reinforcement learning berbeda dengan kedua pendekatan
sebelumnya karena sistem belajar melalui interaksi dengan lingkungan
dan mendapatkan umpan balik berupa reward atau penalti. Pendekatan
ini banyak digunakan dalam pengembangan agen cerdas untuk
permainan dan robotika (Sutton & Barto, 2018). Model ML modern
semakin kompleks dengan hadirnya deep learning, yaitu subbidang yang
menggunakan jaringan saraf tiruan bertingkat (deep neural networks).
Deep learning mampu mengolah data yang sangat besar dan kompleks,
seperti gambar, suara, dan teks, dengan tingkat akurasi yang tinggi.
Jaringan saraf konvolusional (CNN) untuk pengolahan citra dan jaringan
saraf rekuren (RNN) untuk data urutan adalah contoh aplikasi deep
learning yang sangat populer (Goodfellow et al., 2016).

Proses machine learning umumnya melibatkan beberapa
tahapan: pengumpulan data, pembersihan dan praproses data, pemilihan
dan ekstraksi fitur, pemilihan model, pelatihan model, validasi, dan
evaluasi performa. Pemilihan fitur yang relevan sangat penting karena
dapat meningkatkan efisiensi dan akurasi model. Selain itu, teknik
validasi seperti cross-validation digunakan untuk menghindari
overfitting, yaitu kondisi di mana model terlalu menghafal data latih
sehingga gagal menggeneralisasi ke data baru (Kuhn & Johnson, 2013).
ML juga memanfaatkan metode optimasi numerik untuk meminimalkan
fungsi kerugian (loss function) selama pelatihan. Algoritma optimasi
seperti gradient descent dan variannya berperan penting dalam
mempercepat proses pelatithan dan menemukan solusi optimal (Bottou,
2010). Aplikasi machine learning sangat luas dan berkembang pesat di
berbagai bidang. Dalam kesehatan, ML digunakan untuk diagnosis
penyakit dan analisis citra medis. Dalam bisnis, ML mendukung analisis
pelanggan, prediksi penjualan, dan sistem rekomendasi. Di bidang
transportasi, ML menggerakkan teknologi kendaraan otonom dan
prediksi lalu lintas (Jordan & Mitchell, 2015).

D. Optimasi Performa Komputasi Matriks

Optimasi performa komputasi matriks merupakan aspek penting
dalam komputasi numerik, ilmu komputer, dan berbagai aplikasi teknik

serta ilmiah. Matriks adalah struktur data dasar yang digunakan secara
Buku Referensi 193

luas dalam pemodelan matematis, pemrosesan sinyal, pembelajaran
mesin, grafik komputer, dan simulasi ilmiah. Namun, komputasi matriks,
terutama pada skala besar, bisa sangat intensif secara komputasi dan
memori. Oleh karena itu, mengoptimalkan kinerja operasi matriks sangat
penting untuk mengurangi waktu komputasi dan pemakaian sumber daya
komputer (Demmel, 1997).

1. Pemilihan Algoritma yang Efisien

Pemilihan algoritma yang efisien merupakan aspek krusial dalam
optimasi performa komputasi matriks karena algoritma menentukan
bagaimana operasi matematika dijalankan dan berdampak langsung pada
kecepatan serta penggunaan sumber daya komputasi. Dalam konteks
komputasi matriks, efisiensi algoritma terutama diukur dari
kompleksitas waktu (time complexity) dan kompleksitas ruang (space
complexity) yang diperlukan untuk menyelesaikan operasi, seperti
perkalian matriks, invers matriks, dekomposisi, dan penyelesaian sistem
linear (Demmel, 1997).

Misalnya, perkalian matriks standar menggunakan metode
iteratif dengan kompleksitas O(n?) untuk matriks berukuran nxn.
Algoritma ini cukup sederhana dan mudah diimplementasikan, tetapi
menjadi sangat lambat untuk matriks besar. Oleh karena itu, algoritma
alternatif seperti algoritma Strassen yang memiliki kompleksitas lebih
rendah yaitu O(n"2.81) dapat dipilih untuk mempercepat komputasi,
meskipun implementasinya lebih rumit dan memiliki overhead yang
signifikan pada matriks berukuran kecil (Strassen, 1969). Algoritma
yang lebih canggih, seperti algoritma Coppersmith-Winograd, bahkan
menurunkan kompleksitas perkalian matriks hingga sekitar O(n"2.37),
tetapi biasanya hanya digunakan dalam penelitian dan aplikasi khusus
karena kompleksitas implementasi yang tinggi (Williams, 2012).

Pemilihan algoritma juga harus mempertimbangkan karakteristik
matriks, seperti kepadatan elemen (dense vs sparse). Untuk matriks
jarang, algoritma khusus yang mengabaikan elemen nol dapat
mengurangi komputasi dan penggunaan memori secara drastis.
Contohnya adalah penggunaan metode iteratif seperti Conjugate
Gradient atau GMRES yang lebih efisien untuk sistem linear sparse
dibandingkan metode langsung seperti eliminasi Gauss (Saad, 2003).
Selain itu, algoritma harus diadaptasi dengan arsitektur perangkat keras

yang digunakan. Algoritma yang mendukung paralelisasi atau yang
194 Pemrograman dan Komputasi Numerik

dioptimalkan untuk memanfaatkan cache dan instruksi SIMD akan jauh
lebih efisien pada sistem modern (Kirk & Hwu, 2016). Dengan
demikian, pemilihan algoritma yang efisien adalah keputusan strategis
yang menggabungkan analisis kompleksitas, karakteristik data, dan
pemahaman terhadap perangkat keras agar hasil komputasi matriks dapat
dicapai secara optimal dan efektif.

2. Pengelolaan Memori

Pengelolaan memori adalah salah satu faktor kunci dalam
optimasi performa komputasi matriks karena kecepatan akses data
sangat menentukan efisiensi keseluruhan operasi. Dalam komputasi
matriks, data biasanya disimpan dalam array dua dimensi yang
ukurannya bisa sangat besar, sehingga cara penyimpanan dan
pengaksesan data harus diatur sedemikian rupa agar dapat memanfaatkan
hirarki memori komputer secara optimal (Hennessy & Patterson, 2017).

Komputer modern memiliki beberapa tingkat memori, mulai dari
register, cache (L1, L2, L3), RAM, hingga penyimpanan sekunder.
Cache, yang berukuran kecil tetapi sangat cepat, sangat penting dalam
mempercepat akses data. Oleh karena itu, strategi pengelolaan memori
seperti blocking atau tiling diterapkan untuk memecah operasi matriks
menjadi sub-bagian kecil yang dapat dimuat sekaligus ke dalam cache.
Teknik ini mengurangi cache miss dan latensi akses memori, sehingga
meningkatkan throughput komputasi (Gustavson, 1997).

Pola akses memori juga penting. Pengaksesan data secara
kontigu (sekuensial) lebih cepat dibandingkan akses acak karena prinsip
spatial locality yang dimanfaatkan oleh sistem cache. Oleh sebab itu,
dalam operasi matriks seperti perkalian atau dekomposisi, pengaturan
iterasi yang memprioritaskan akses baris demi baris atau kolom demi
kolom sangat dianjurkan agar data dapat diakses secara efisien.
Pengelolaan memori juga mempertimbangkan format penyimpanan
matriks. Untuk matriks padat, penyimpanan secara row-major atau
column-major mempengaruhi cara data diakses. Sementara pada matriks
jarang, format seperti CSR (Compressed Sparse Row) dan CSC
(Compressed Sparse Column) menghemat ruang memori dan
mengurangi waktu akses elemen non-nol saja, sehingga meningkatkan
performa operasi (Saad, 2003).

Buku Referensi 195

3. Paralelisasi Komputasi

Paralelisasi komputasi merupakan teknik penting dalam optimasi
performa operasi matriks yang memanfaatkan kemampuan perangkat
keras modern untuk menjalankan banyak proses secara bersamaan. Pada
dasarnya, paralelisasi membagi tugas komputasi besar menjadi bagian-
bagian kecil yang dapat dikerjakan secara simultan oleh beberapa inti
(core) prosesor atau unit pemrosesan grafis (GPU). Pendekatan ini sangat
efektif mengingat operasi matriks, seperti perkalian atau dekomposisi,
sering kali dapat diparalelisasi karena setiap elemen hasil biasanya
dihitung secara independen (Kirk & Hwu, 2016).

Komputasi paralel dapat dilakukan pada berbagai tingkatan. Pada
level CPU, model pemrograman seperti OpenMP memungkinkan
pembagian pekerjaan ke beberapa core melalui threading. Sementara
pada skala lebih besar, MPI (Message Passing Interface) digunakan
untuk mengkoordinasi komputasi di cluster komputer, mendistribusikan
data dan tugas ke banyak node. Di sisi lain, GPU dengan ribuan core
kecil yang dirancang untuk komputasi paralel massal, menjadi sangat
populer untuk mempercepat operasi matriks besar dengan menggunakan
platform seperti CUDA atau OpenCL (Nickolls ef al., 2008).

Efektivitas paralelisasi sangat bergantung pada bagaimana tugas
dibagi dan komunikasi antar unit dilakukan. Pembagian tugas harus
seimbang agar tidak ada core yang idle terlalu lama, dan overhead
komunikasi antar unit harus diminimalkan agar keuntungan paralelisasi
tidak hilang. Teknik seperti data parallelism yang membagi data menjadi
potongan-potongan kecil dan task parallelism yang membagi proses
menjadi tugas-tugas berbeda sering digunakan dalam optimasi
komputasi matriks (Grama et al., 2003).

Paralelisasi juga memungkinkan pemrosesan matriks yang
sangat besar yang tidak mungkin dilakukan secara efisien oleh satu core
saja. Banyak perpustakaan numerik populer, seperti Intel MKL dan
cuBLAS, sudah mengimplementasikan paralelisasi secara otomatis
untuk memanfaatkan perangkat keras modern sehingga pengguna dapat
merasakan peningkatan performa tanpa perlu menulis kode paralel
secara eksplisit.

4. Instruksi SIMD
Instruksi SIMD (Single Instruction, Multiple Data) adalah fitur

pada prosesor modern yang memungkinkan eksekusi satu instruksi yang
196 Pemrograman dan Komputasi Numerik

sama secara simultan pada beberapa data sekaligus. Konsep SIMD
sangat efektif dalam mempercepat komputasi matriks dan operasi vektor
karena banyak dari operasi ini melibatkan penerapan fungsi yang sama
pada elemen-elemen data yang berbeda secara paralel (Williams et al.,
2009). Dengan SIMD, misalnya, sebuah prosesor dapat melakukan
penjumlahan pada empat atau delapan pasangan elemen matriks
sekaligus dalam satu siklus instruksi, dibandingkan dengan memproses
satu elemen per siklus pada arsitektur tradisional.

Pemanfaatan instruksi SIMD memerlukan dukungan perangkat
keras serta compiler yang mampu menghasilkan kode mesin yang
menggunakan instruksi ini. Contoh arsitektur yang mendukung SIMD
antara lain Intel SSE (Streaming SIMD Extensions), AVX (Advanced
Vector Extensions), dan ARM NEON untuk prosesor mobile. Instruksi
SIMD umumnya bekerja dengan register khusus yang dapat menampung
data vektor berukuran 128-bit, 256-bit, atau lebih, memungkinkan
operasi simultan pada banyak elemen data (Fog, 2016).

Penggunaan SIMD sangat cocok untuk algoritma yang
berstruktur data paralel, seperti perkalian matriks, transformasi Fourier,
dan operasi filter dalam pemrosesan sinyal. Dengan SIMD, jumlah
instruksi yang harus dieksekusi berkurang drastis, sehingga
meningkatkan throughput dan mengurangi latensi. Namun, optimalisasi
dengan SIMD memerlukan penyesuaian pola akses data agar data
tersimpan secara kontigu di memori dan alignment yang tepat agar tidak
terjadi penalti performa (Hennessy & Patterson, 2017).

Meski SIMD meningkatkan performa secara signifikan, ada
beberapa keterbatasan seperti ukuran register terbatas dan kebutuhan
data yang terstruktur rapi. Oleh karena itu, pemrogram perlu
mempertimbangkan desain algoritma dan struktur data agar sesuai
dengan model SIMD. Banyak perpustakaan matematika dan multimedia
sudah memanfaatkan instruksi SIMD secara transparan sehingga
pengguna dapat merasakan peningkatan performa tanpa pengetahuan
detail tentang instruksi ini.

5. Pemilihan Format Penyimpanan Matriks

Pemilihan format penyimpanan matriks merupakan aspek
penting dalam optimasi komputasi numerik karena berpengaruh
langsung pada efisiensi penggunaan memori dan kecepatan akses data

selama operasi matriks. Format penyimpanan matriks yang tepat sangat
Buku Referensi 197

bergantung pada karakteristik matriks itu sendiri, terutama apakah
matriks tersebut padat (dense) atau jarang (sparse) (Saad, 2003). Untuk
matriks padat, format penyimpanan yang umum digunakan adalah
penyimpanan secara row-major atau column-major, di mana elemen-
elemen disimpan secara berurutan berdasarkan baris atau kolom. Format
ini memudahkan akses sekuensial yang efisien pada memori, sehingga
cocok untuk operasi matriks yang membutuhkan pembacaan elemen
secara linear, seperti perkalian matriks konvensional atau dekomposisi
LU (Golub & Van Loan, 2013).

Untuk matriks jarang yang sebagian besar elemennya bernilai
nol, penyimpanan dalam format padat akan sangat membuang-buang
ruang memori dan memperlambat komputasi. Oleh karena itu, format
penyimpanan khusus seperti Compressed Sparse Row (CSR),
Compressed Sparse Column (CSC), atau Coordinate (COO) digunakan.
Format-format ini hanya menyimpan elemen non-nol dan indeks
posisinya, sehingga secara signifikan mengurangi kebutuhan memori
dan mempercepat operasi yang hanya fokus pada elemen non-nol (Saad,
2003).

Pemilihan format juga mempertimbangkan jenis operasi yang
akan dilakukan. Misalnya, CSR lebih efisien untuk operasi perkalian
matriks dengan vektor karena akses baris yang cepat, sedangkan CSC
lebih optimal untuk operasi yang membutuhkan akses kolom. Selain itu,
format penyimpanan harus kompatibel dengan perpustakaan numerik
dan perangkat keras yang digunakan agar bisa memanfaatkan optimasi
paralelisasi dan instruksi SIMD (Kirk & Hwu, 2016).

198 Pemrograman dan Komputasi Numerik

STUDI KASUS DAN
PROYEK APLIKASI

Bab Studi Kasus dan Proyek Aplikasi hadir sebagai bagian
penting dalam buku ini untuk menjembatani teori dan praktik dalam
pemrograman serta komputasi numerik. Pada bab ini, pembaca diajak
untuk melihat secara langsung bagaimana konsep-konsep matematis dan
algoritma numerik yang telah dipelajari dapat diterapkan dalam
menyelesaikan masalah nyata dari berbagai bidang, seperti teknik, fisika,
biologi, ekonomi, dan lain-lain. Melalui serangkaian studi kasus yang
dipilih secara representatif, pembaca akan memahami proses
pengembangan solusi numerik mulai dari perumusan masalah, pemilihan
metode yang tepat, hingga implementasi menggunakan bahasa
pemrograman populer seperti Python dan MATLAB. Proyek-proyek
aplikasi yang disajikan juga bertujuan untuk mengasah keterampilan
analisis, pemrograman, serta kemampuan interpretasi hasil komputasi,
sehingga pembaca tidak hanya memahami teori, tetapi juga mampu
mengaplikasikannya secara efektif dalam konteks dunia nyata.

A. Simulasi Perpindahan Panas

Perpindahan panas adalah proses di mana energi panas berpindah
dari satu bagian ke bagian lain akibat perbedaan suhu. Dalam teknik dan
ilmu terapan, simulasi perpindahan panas sangat penting untuk
merancang sistem termal, seperti pendingin elektronik, sistem pemanas,
hingga proses manufaktur. Pada studi kasus ini, kita akan membahas
perpindahan panas dalam sebuah batang logam satu dimensi yang
mengalami perubahan suhu sepanjang batang seiring waktu. Model

Buku Referensi 199

matematis yang digunakan adalah Persamaan Difusi Panas 1D (Heat
Equation):

du u

—_— = F—

ot 2

dengan
. ul[a:._, .'l] = suhu pada posisi & dan waktu £,

s ¢ = diffusivity termal batang (konstanta material).

1. Kondisi Awal dan Batas
a. Panjang batang: L meter
b. Waktu simulasi: T detik
c. Kondisi awal suhu batang: misal suhu awal seragam, u(x,0) =
Ug
d. Kondisi batas: suhu pada kedua ujung batang tetap konstan,
misalnya u(0,t) = u(L,t) =T,

2. Metode Numerik: Metode Elemen Hingga atau Finite
Difference
Untuk menyelesaikan persamaan ini secara numerik, metode
finite difference sering digunakan. Misalnya, metode eksplisit Euler
maju:

nll 'LI!.“—|- aAl I[?_Eﬂ 2'1.[-“4-1_{“)
1 - % [:.&E]z il 1 i1

u
Dimana:
« u; = suhu dititik grid ke-i pada waktu ke-n
e A = jarak antar titik grid

» At = interval waktu simulasi

Untuk stabilitas metode ini, berlaku kondisi:

oAl
(Az)? =

",

[

200 Pemrograman dan Komputasi Numerik

Implementasi dalam Python

1 import numpy as np
import matplotlib.pyplot as plt

Parameter

L=1.2 # panjang batang (m)

T = 8.5 # waktu simulasi (s)

alpha = 8.81 # diffusivity termal (m*2/s)}

nx = 52 # jumlah grid spatial
de = L S (nx - 1)

dt = .08 # imterval waktu

nt = inkt(T / dt)

Inisialisasl suhu

U = np.ones{nx} * 28 # suhu awal 28 derajat Celsius
u[a] = 1ee # suhu ujung kiri 18e C

u[-1] = =& # suhu ujung kanan S8 C

u_new = u.copy(}

~ for n in range(nt):
" for i in range(l, mnx-1):
u_new[i] = u[i] + alpha * dt / dx®*=2 * (u[i+1] - 2*u[i] + u[i-1])
ul:] = u_new[:]

Visualisasi

¥ = np.linspace{@, L, nx)

plt.plot(x, u, label="Suhu akhir"}

plt.xlabel{ 'Posisi {m)"}

plit.ylabel{'Suhu (°C)'})

plt.title("simulasi Perpindahan Panas pada Batang 1D'}
plt.legend()

plt.show(}

Buku Referensi 201

Implementasi dalam MATLAB
1 L = 1.8, ¥ panjang batamg {m)
T = A.5; % waktu simulasi {s)
alpha = 8.e1; X diffusivity termal {m"2/5)

nx = 58; % jumlah grid spatial
de = LS{mx-1);

dt = @.8@a5; X interval wakiu

nt = floor{T/dt};

u = 2&*anes{mx,1); X suhu awal 28 C
u{l) = 198; % ujung kiri 188 C
u{end} = 58; £ ujung kanan 5@ C
U_new = u;

for n=1:nt

for i=2:nx-1
u_new(i} = u{i) + alpha*dt/dx*2¥{u{i=+1) - 2*u(i) + u{i-1));
end
U = u_new;
end

¥ = linspace(d,L,nx};

plot{x,u,"-o")

®1label{ 'Posisi {m)"}

ylabel{ 'Suhu (*C)')

title('simulasi Perpindahan Pamas pada Batang 1D')
grid on

Simulasi ini menggambarkan bagaimana suhu dalam batang
logam berubah dari kondisi awal dan batas yang ditetapkan sampai
mencapai distribusi suhu akhir yang stabil. Hasil visualisasi dari Python
dan MATLAB menunjukkan grafik suhu terhadap posisi sepanjang
batang setelah waktu simulasi tertentu. Pada kedua bahasa, pendekatan
numeriknya sama, yaitu metode beda hingga eksplisit dengan stabilitas
dipastikan lewat pemilihan At dan Ax sesuai aturan numerik. Perbedaan
utama terletak pada sintaks dan cara pengelolaan array atau vektor.

Studi kasus ini dapat diperluas ke dimensi lebih tinggi atau
dengan kondisi batas dan sumber panas yang lebih kompleks. Selain itu,
teknik numerik lain seperti metode implisit atau Crank-Nicolson dapat
digunakan untuk mendapatkan kestabilan yang lebih baik dengan
interval waktu yang lebih besar.

Simulasi perpindahan panas merupakan contoh klasik aplikasi
komputasi numerik yang penting dalam berbagai disiplin. Pemahaman

202 Pemrograman dan Komputasi Numerik

teori dan keterampilan pemrograman dalam berbagai bahasa sangat
membantu untuk mengembangkan solusi sesuai kebutuhan praktis.
Melalui contoh implementasi di Python, MATLAB, dan C++, pembaca
dapat memahami cara menyusun model numerik, mengimplementasikan
algoritma, dan melakukan analisis hasil simulasi secara efektif.

Gunakan metode selisih hingga (Finite Difference) untuk mendekati
solusi dari persamaan diferensial orde dua berikut:

d%y .
5= Y dengan y(0) =0, y(1)=0

Langkah 1: Diskretisasi

Panjang interval: @ = (), b = 1, dibagi 4 — h = (0,25
Titike-titik: g = [], &I = U,EE, Ee = ﬂ,EI,, Iq = U,?E, Ey = 1

Gunakan pendekatan selisih hingga untuk turunan kedua:

d*y i — 2y i
dz? h?
Substitusi ke persamaan:

Yirl — 24 + ¥ 1
12

= —yi= - 2+A)ty 1=0

Karena i = 00,25, maka h? = 0,0625, sehingga:

i1 — 2,0625y; +4; 1 =10

Langkah 2: Sistem Persamaan Linear
Gunakan kondisi batas: yp = 0,54 = 0

s Persamaan 1 (untuk { = 1} yo — 2,0626y) + 4y = 0 = o — 2,06254, =0
» Persamaan 2 (untuk { = 2% y3 — 2,06258 + 3 =0
* Persamaan 3 {untuk § = 3): g4 — 2,062033 + 42 = 0 = —2,0620y3 + 4o =0

Buku Referensi 203

Langkah 3: Penyelesaian Sistem

s Dari (1) y2 = 2,06251y,
s Dari (3): y2 = 2,0625y3
* Makay, =y

Substitusi: Misal y; = A, maka:
oy = 2,06254
s y; =4

B. Pemodelan Populasi dan Epidemi

Pemodelan populasi dan epidemi merupakan alat penting dalam
ilmu kesehatan masyarakat untuk memahami dan memprediksi
penyebaran penyakit menular. Salah satu model dasar yang populer
adalah model SIR, yang membagi populasi ke dalam tiga kategori utama:
Susceptible (rentan terinfeksi), Infected (terinfeksi), dan Recovered
(sembuh dan kebal). Model ini membantu para ilmuwan dan pembuat
kebijakan mengantisipasi laju penyebaran penyakit dan merancang
strategi pengendalian.

Contoh nyata adalah pandemi COVID-19 yang melanda dunia
sejak akhir 2019. Model SIR digunakan untuk memprediksi puncak
kasus, durasi wabah, serta efek intervensi seperti pembatasan sosial dan
vaksinasi. Dalam studi kasus ini, kita akan memodelkan dinamika
penyebaran COVID-19 menggunakan model SIR dengan parameter
yang disesuaikan dari data epidemiologi awal. Persamaan diferensial
model SIR adalah:

s ﬁSI
dt N
dI 8T
S g5 AT
o PN
AR
T
a !

204 Pemrograman dan Komputasi Numerik

o S(t) : Jumlah individu rentan pada waktu ¢

o I(t) : Jumlah individu terinfeksi pada waktu ¢

e R(t) : Jumlah individu sembuh/kebal pada waktu ¢
e N=S+1+R :Total populasi (diasumsikan konstan)

e S : Laju penularan

e vy : Laju pemulihan

Parameter kunci yang digunakan untuk COVID-19 berdasarkan literatur

awal adalah:

e [:0.3 per hari (menunjukkan rata-rata tiap orang menularkan virus
ke 0.3 orang per hari)

e ¥ :0.1 per hari (rata-rata durasi infeksi 10 hari)

1. Kondisi Awal
a. Total populasi N = 1.000.000
b. Awal infeksi lo= 1 orang
c. Rentan So = N—Io =999.999
d. Sembuh Ro=0

2. Metode Numerik

Untuk menyelesaikan sistem persamaan diferensial ini, kita
gunakan metode Euler maju dengan diskritisasi waktu At. Secara
numerik:

SH-III
m—.-

Sn l='t-:"wn._.'5I At

Sﬂ.IIr
In. 1 = In + (.8 -N- _r:l"In) &L

Rn 1= Rn + r:'rjn-&!’

Buku Referensi 205

Implementasi Python

1 import numpy as np
import matplotlib.pyplot as plt

Parameter

N = 1_g8a_gea
beta = 8.3
gamma = 8.1
dt = 8.1
t_max = 158

Waktu simulasi
steps = int(t_max / dt)
t = np.linspace{@, t_max, steps)

Inisialisasi

= np.zeros(steps)
= np.zeros(steps)
= np.zeros(steps)

Mo e

s[e]
18]
R[8]

n n
i
[

n
m = =

Iterasi Euler
« for n in range{steps - 1}:
ds = -beta * 5[n] = I[n] / N
dI = beta * 5[n] * I[n] / N - gamma
dR = gamma * I[n]

S[n+1]
I[n+1]
R[n+1]

S[n] + ds5 * dt
I[n] + dI * dt
B[n] + dR * dt

Wisualisasi

plt.plot{t, 5, label="Rentan {5)')
plt.plet{t, I, label='Terinfeksi (I}"}
plt.plet{t, R, label='"Sembuh {R}')
plt.xlabel{"Hari")

plt.ylabel{"Jumlah Orang"}

plt.title('model SIR Penyebaran COVID-19')
plt.legend(}

plt.grid()

plt.show()

206 Pemrograman dan Komputasi Numerik

Implementasi MATLAB

1

N = 16;
beta = B8.3;
gamma = @8.1;
dt = B.1;

16@;

-+
3
o
=
n

steps = floor{t_max / di);
t = linspace(a, t_max, steps);

S = zeros{1l, steps);
I = zeros{1, steps);
R = zeros{1, steps);

5(1)
I{1)
R(1)

" n n
ah=
]
&

for n = 1l:steps-1
ds = -beta * s(n) * I(n) / N;
dI = beta * s{n} * I{n) / N - gamma * I{n);
dR = gamma * I{nj);

S{n+l) = s(m) + ds = dt;

I(n+l) = I{n) + dI * dt;

R{n+1} R{n) + dr * dt;
end

plot{t, s, "-b', t, I, '-r', t, R, '-2');
x1label{'Hari')};

ylabel({'lumlah Orang'};

title("Model SIR Penyebaran COVID-19'});

legend('Rentan {5)", 'Terinfeksi (I}", 'Sembuh (R}"};

grid on;

Buku Referensi

207

Implementasi C++
1 #1include <lostream:

#include <vector:»
#include «<fstream:

using namespace std;

» int main{) {
const double N = 1ee;
const double beta = 8.3
const double gamma = @8.1;
const double dt = @.1;
const double t_max = lee@;
int steps = static_cast<int>(t_max 7 dt);

vectorcdouble> s(steps, @), I{steps, 8}, R{steps, 8);
s[8] = N - 1;

i[e] = 1;
rR[8] = &;
v for {int n = @; n < steps - 1; ++n) {
double ds = -beta * s[n] * I[m] / Nj
double dI = beta * 5[n] * I[n] / N - gamma * I[n];

double drR = gamma * I[n];

S[n+#1] = s[n] + ds * dt;

I[n+1] = I[n] + dI * di;

R[n+1] = R[n] + dr * dt;
H

ofstream file{"SIR_putput.txt");
o for (int 1 = @; i < steps; ++i} {
file << 1*dL << "\I" «<¢ S[1] << "™ <¢ I[1] << "\t" <« R[1] << "\n";
H

file.close(};

}

file.close();

cout << "Simulasi selesai. Data disimpan di "SIR_output.txt'." << endl;
return @;

Simulasi model SIR ini menggambarkan bagaimana jumlah
populasi yang rentan, terinfeksi, dan sembuh berubah selama 160 hari.
Grafik yang dihasilkan umumnya menunjukkan:

1. Awal wabah, jumlah terinfeksi meningkat tajam, sementara populasi
rentan menurun.

2. Setelah mencapai puncak infeksi, jumlah pasien terinfeksi mulai
menurun karena bertambahnya populasi yang sembubh.

208 Pemrograman dan Komputasi Numerik

3. Populasi sembuh meningkat secara konsisten, menandakan
akumulasi kekebalan.

Model ini sangat berguna untuk memperkirakan beban sistem
kesehatan, merencanakan intervensi, dan mengukur dampak kebijakan
pembatasan sosial atau vaksinasi. Namun, model SIR sederhana
memiliki keterbatasan karena mengasumsikan populasi homogen dan
konstan serta tidak memasukkan faktor-faktor seperti mobilitas, mutasi
virus, atau perilaku manusia. Model lebih kompleks seperti SEIR, agent-
based, atau metapopulasi dapat dipakai untuk analisis lebih rinci.

C. Optimasi Portofolio dan Pemodelan Finans

Optimasi portofolio adalah proses memilih kombinasi aset
investasi yang optimal untuk memaksimalkan return yang diharapkan
dengan risiko yang dapat diterima. Salah satu pendekatan klasik adalah
model Mean-Variance yang diperkenalkan oleh Harry Markowitz pada
tahun 1952. Model ini menjadi dasar teori portofolio modern (Modern
Portfolio Theory, MPT). Pada konteks nyata, investor di Bursa Efek
Indonesia (BEI) sering dihadapkan pada pilihan beragam saham dengan
return dan risiko yang berbeda. Studi ini mengaplikasikan model
Markowitz untuk menentukan bobot optimal pada portofolio terdiri dari
beberapa saham unggulan di BEI dengan tujuan meminimalkan risiko
untuk tingkat return yang diharapkan.

Misalkan kita menggunakan data return historis bulanan selama 3 tahun
terakhir dari 4 saham unggulan di BEI:

1. Saham A (contoh: PT Telekomunikasi Indonesia Tbk)

2. Saham B (contoh: PT Bank Central Asia Tbk)

3. Saham C (contoh: PT Unilever Indonesia Tbk)

4. Saham D (contoh: PT Astra International Tbk)
Data return bulanan (dalam persen) disederhanakan sebagai berikut
(dalam bentuk matriks):

Buku Referensi 209

Bulan A B C D

1 1.2 1.0 0.8 1.5
2 0.5 1.1 07 1.3
36 1.3 0.9 1.0 1.4

1. Implementasi Python (menggunakan library cvxpy)
1 import numpy as np
import cwxpy as cp

Data return bulanan saham {simplifikasi)
w returns = np.array([
[@.812, @.818, @.888, @.815],
[@.085, 8.811, 8.887, ©.813],
... data lain selama 25 bulan ...
[8.013, 8.089, 8.818, ©.814]
13

Hitung rata-rata return dan kovarians
mu = np.mean{returns, axis=a)
Sigma = np.cov{returns.T)

Target return portofolic
R_target = 8.81

Variabel bobot
W = cp.Variable{len{mu))

Fungsi tujuan (minimize risiko)
risk = cp.quad_form{w, Sigma)
cbjective = cp.Minimize{risk)

Constraints
w constraints = [
cp.sum{w} == 1,
w @ mu »= R_target,
W »= @

210 Pemrograman dan Komputasi Numerik

Problem optimasi
prob = cp.Problem{cbjective, constralints)
prob.solve()

print("status:", prob.status)

print("Bobot optimal portefolio:™, w.value}
print("Risike porteofolic (varians):", risk.value)
print("Return portocfolio:™, w.value @ mu)

2. Implementasi MATLAB

1 % Data return bulanam saham
returns = [
2.212 2.21@ 0.228 0.815;
2.885 2.211 o.887 4.813;
% ... data lain selama 26 bulan ...
2.213 2.28% 0.218 9.214
1

mu = mean{returns);
Sigma = cov{returns};

R_target = @.81;
n = length{mu);

% Optimasi kuadratik dengan quadprog

H=2 % Sigma; ¥ quadprcg mengharapkan 172 x" H x
f = zeros{n, 1);
Aeq = [ones{l,n); mu];

beq = [1; R_target];
1b = zeros{n,1);

options = optimopticns("quadprog’, 'Display”, 'off");
[w, risk] = quadprog{H, f, [1, [1, Aeq, beq, lb, [1, [], options});

fprintf{ 'Bcbot optimal portofolio:’n'd;

disp{w"};

fprintf{ 'Risiko portofolic (varians): X.&f\wn', risk);
fprintf{ 'Return portofolic: X.&f'n', w' * mu');

Buku Referensi 211

3. Implementasi C++ (menggunakan pustaka Eigen untuk matriks
dan optimasi sederhana)

1 #include <iostream:
#include <Eigen/Densesr
#include <vectors

// Implementasi QP sederhana tidak mudah tanpa pustaka khusus.
// Berikut hanya contoh ilustrasi perhitungan rata-rata dan kovarians.

using namespace Eigen;
using namespace std;
int main{) {
// Data return saham (misal 2 bulan, 4 saham)
Matrixxd returns(2,4};
returns << @.e12, 2.819, 2.808, ©.815,
8.885, 9.811, 2.987, 8.813,
8.913, @.803, 9.81@, 8.914;

/! Hitung rata-rata return tiap saham
vectorXd mu = returns.colwise().mean();

/f Hitung kovarians
Matrix¥d centered = returns.rowwise() - mu.transpose();

Matrixxd sigma = {centered.adjoint() * centered) / double(returns.rows() - 1};

cout << "Rata-rata return tiap saham:" << endl << mu << endl
cout << "Matriks kovarians:" << endl << Sigma << endl

cout << "Untuk optimasi portofolic di C++, disarankan menggunakan pustaka optimasi QP seperti

return 2;

Studi kasus ini menggambarkan aplikasi nyata optimasi
portofolio di pasar saham Indonesia. Dengan model Markowitz, investor
dapat menentukan distribusi investasi yang meminimalkan risiko untuk
tingkat return yang diinginkan. Python dan MATLAB memudahkan
implementasi melalui pustaka optimasi bawaan, sedangkan di C++
implementasi lengkap memerlukan pustaka tambahan untuk solusi QP.

Optimasi portofolio juga bisa dikembangkan dengan
menambahkan batasan realistik, seperti batas bobot maksimum per
saham, biaya transaksi, serta model risiko lain seperti CVaR
(Conditional Value at Risk). Penggunaan model ini mendukung
pengambilan keputusan investasi yang lebih rasional dan berbasis data
historis, meningkatkan peluang return optimal dengan risiko terkendali.

212 Pemrograman dan Komputasi Numerik

rt "../index.css";

Atkinson, K. (1989). An Introduction to Numerical Analysis (2nd ed.). John
Wiley & Sons.

Atkinson, K. E. (1989). An Introduction to Numerical Analysis (2nd ed.).
John Wiley & Sons.

Atkinson, K. E. (1989). An Introduction to Numerical Analysis. Wiley.

Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.).
Brooks/Cole Cengage Learning.

Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9th ed.).
Brooks/Cole, Cengage Learning.

Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9th ed.).
Brooks/Cole.

Chapra, S. C., & Canale, R. P. (2010). Numerical Methods for Engineers
(6th ed.). McGraw-Hill Education.

Chapra, S. C., & Canale, R. P. (2010). Numerical Methods for Engineers
(6th ed.). McGraw-Hill.

Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers
(7th ed.). McGraw-Hill Education.

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press.

Heath, M. T. (2002). Scientific Computing: An Introductory Survey (2nd
ed.). McGraw-Hill.

Higham, D., & Higham, N. (2016). MATLAB Guide (3rd Ed.). SIAM.

IEEE Spectrum. (2023). The Top Programming Languages 2023. Retrieved
from https://spectrum.ieee.org/top-programming-languages-2023

Jolliffe, I. T. (2002). Principal Component Analysis. Springer.

Kurniawan, D., Subekti, R., & Wardani, S. (2021). Pemilihan Bahasa
Pemrograman untuk Komputasi Numerik. Jurnal Teknologi dan
Sistem Komputer, 9(2), 111-120.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436-444.

Mallat, S. (2008). A Wavelet Tour of Signal Processing. Academic Press.

MathWorks. (2024). Why MATLAB?. Retrieved from
https://www.mathworks.com/discovery/matlab.html

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (2nd ed.).
Springer.

Buku Referensi 213

Oliphant, T. E. (2006). A Guide to NumPy. Trelgol Publishing.

Paszke, A., et al. (2019). PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances in Neural Information Processing
Systems (NeurIPS).

Patricia, K., & Goldberg, D. (1991). What Every Computer Scientist Should
Know About Floating-Point Arithmetic. ACM Computing Surveys.

Quarteroni, A., Sacco, R., & Saleri, F. (2007). Numerical Mathematics (2nd
ed.). Springer.

Runge, C. (1901). Uber empirische Funktionen und die Interpolation
zwischen dquidistanten Ordinaten. Bishop, C. M. (2006). Pattern
Recognition and Machine Learning. Springer.

Schwarz, S., Trefethen, L. N., & Higham, N. (2018). Numerical Computing
with IEEE Floating point Arithmetic. SIAM.

Stroustrup, B. (2013). The C++ Programming Language (4th Ed.). Addison-
Wesley.

Sundararajan, S. (2015). Fixed Point vs Floating point Representation.
Embedded Systems Journal.

Xu, R., & Wunsch, D. (2005). Clustering. Wiley-IEEE Press.

Zaharia, M., et al. (2016). Apache Spark: A Unified Engine for Big Data
Processing. Communications of the ACM, 59(11), 56—
65.Zeitschrift fiir Mathematik und Physik.

214 Pemrograman dan Komputasi Numerik

App-logod 3
R . - ; it Ot
Sk e —————————— T - }
rt"./index.css"; - ' ~ = = = &= } ; -
rt { ReactComponent as Arrowicon } from
rt { ReactComponentas Boiticon } from./a
rt { ReactComponent as RightArrowlcon } fro

App-header {
1282c34; —————mmmmm
min-height: 100vh;
display: flex;

rt React; {useState;useEffect;useRef}from "react} —=mEaane a1 1 . flex-direction: column;
rt { CSSTransition} from“react=transition-grou -__ Y =1 .= . - z align-items: center;
\ ‘)3 - justify-content: center; e —
~font-size: caic{10px+ 2vmin);=———

- —Qcolor: white;
}

m‘:j‘ < y ' T

Bit Unit terkecil dalam representasi data digital,
bernilai 0 atau 1, yang menjadi dasar dalam
operasi logika komputer dan komunikasi biner.

Bug Kesalahan dalam penulisan kode program yang
menyebabkan gangguan fungsi atau hasil yang
tidak sesuai dengan yang diharapkan.

Loop Struktur ~ kontrol dalam program yang
memungkinkan pengulangan perintah selama
kondisi tertentu masih terpenuhi.

Flag Variabel khusus yang digunakan untuk
menandai status tertentu dalam eksekusi
program, biasanya berupa nilai logika.

Code Kumpulan instruksi tertulis dalam bahasa
pemrograman yang dapat diterjemahkan oleh
mesin untuk menjalankan tugas tertentu.

Byte Unit data yang terdiri dari 8 bit, digunakan untuk
menyimpan satu karakter atau nilai kecil dalam
memori komputer.

Plot Representasi visual dari data numerik atau fungsi
matematis dalam bentuk grafik untuk tujuan
analisis dan interpretasi.

Hash Teknik konversi data menjadi nilai unik tetap
menggunakan fungsi matematika, sering
digunakan dalam pencarian cepat dan keamanan
data.

Buku Referensi 215

Bool

Char

Read

Mean

Scan

Call

Heap

216

Tipe data logika yang hanya memiliki dua nilai,
yaitu benar (true) dan salah (false), esensial
dalam pengambilan keputusan.

Tipe data primitif yang merepresentasikan satu
karakter, seperti huruf, angka, atau simbol dalam
sistem pengkodean.

Operasi untuk mengambil atau memperoleh data
dari sumber luar seperti file, sensor, atau
perangkat masukan.

Nilai rata-rata dari sekumpulan angka, diperoleh
dengan menjumlahkan semua nilai dan
membaginya dengan jumlah data.

Proses membaca setiap elemen data atau struktur
dengan urutan tertentu untuk tujuan evaluasi atau
pencarian.

Instruksi untuk memanggil fungsi atau prosedur
tertentu dalam program agar menjalankan
serangkaian perintah tertentu.

Struktur data berbasis pohon biner yang

digunakan dalam pengelolaan memori dan
pengurutan prioritas.

Pemrograman dan Komputasi Numerik

App-logodi
~ }
rt'../index.css"; : } >

rt { ReactComponent as Arrowlicon } from "../a: Appilsendant

SCripts ™

rt { ReactComponentas Boiticon } from"::/ass:
rt { ReactComponent as RightArrowlcon } fro

rt React{useState-useEffect; useRef} from "reac
rt { CSSTransition} fromreact=transition-group

background-color: #282c34;

min-height: 100vh;
display: flex;

flex-direction: column;——

align-items: center;
justify-content: center;

font-size: calc{ 10px + 2vmin);=—

color: white;

akademik, &, 16, 17, 18, 19, 23,
49

B
big data, 137, 170, 176

C
cloud, 52

D

diferensiasi, 2, 11, 89, 103

diskonto, 128

distribusi, 35, 36, 38, 84, 87,
88,92,102, 109, 111, 112,
113,116,117, 134, 136, 137,
142,164, 168, 169, 176, 187,
196

E

ekonomi, 1, 3, 5, 7, 53, 56, 69,
72,79, 82,97,99, 118, 120,
126, 128, 139, 142, 143, 148,
150, 169, 183

ekspansi, 12

emisi, 134, 135, 136, 147

empiris, 9, 123, 128

Buku Referensi

F

fleksibilitas, 9, 16, 21, 22, 24,
29, 30, 42, 62, 66, 72, 73, 74,
76, 81, 150

fluktuasi, 76, 86, 87, 145, 147

fundamental, 2, 10, 22, 26, 55,
69, 71,79,92,102, 129, 140,
161,167, 170

G
geografis, 4

inflasi, 142

infrastruktur, 116, 157

inovatif, 16

integrasi, 2, 8, 11, 16, 17, 21,
22,24, 38,43, 89,93, 95,97,
98, 100, 101, 103, 105, 106,
114, 115, 137, 149, 153, 160

integritas, 18, 38

interaktif, 19, 22, 23, 37

internet of things, 115

investasi, 7, 193, 196

investor, 193, 196

K

kolaborasi, 32
komparatif, 36

217

App-link { g
. color:#61: e

komputasi, 1, 2, 3,4,5,6,7,9,
10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22, 23, 24, 25, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51,
52,53, 54, 56, 58, 59, 60, 61,
63, 64, 66, 69, 70, 71, 72, 77,
78,79, 83, 84,90, 91, 92, 93,
94,95, 97, 98, 99, 101, 102,
103, 104, 106, 107, 108, 111,
112,118,120, 121, 123, 126,
129, 130, 132, 134, 136, 137,
139, 147, 148, 151, 152, 153,
155, 157, 160, 161, 164, 167,
168, 170, 171,172, 173, 174,
178, 179, 180, 181, 182, 183,
188

konkret, 162

konsistensi, 19, 49, 131, 153

L
legacy, 17

M

manipulasi, 8, 9, 16, 17, 22, 23,
46, 51, 54, 55, 58, 76, 135,
153, 166

manufaktur, 114, 183

P
proyeksi, 146

R

rasional, 196

real-time, 17,23, 37,42, 115,
153, 156, 176

regulasi, 159

robotika, 6, 114, 115, 153, 156,
168, 177

S

stabilitas, 3, 11, 15, 19, 38, 42,
45,59, 61,94,104, 108, 110,
119, 128, 129, 131, 132, 133,
134, 152, 153, 155, 167, 169,
173, 187

suku bunga, 120, 142, 143

T

teoretis, 101

transformasi, 8, 15, 22, 35, 44,
55,58,62,79, 87,114, 161,
162, 163, 164, 168, 175, 181

transparansi, 20

218 Pemrograman dan Komputasi Numerik

App-logod
animation:

‘App-iogo-spin infinite 20s linear:
t"../index.css"; - -~ }
t { ReactComponent as Arrowicon } from ““./a
{ ReactComponentas-Boiticon } from*:/ass v ; sApERSeachen
S .o 1wl background-color: #282c34;
t { ReactComponent as RightArrowlcon } fro o min-height: 100vh;
— display: flex; B
t React-{fuseState-useEffect;useRef}from "re P A S —
{ CSSTransition} fromreact=transition-groupd—y B Y align-items: center;
justify-content: center;
| 4 e calc{ 10px-+ 2vmin);
h white;

>

- |
SCrpts

r ¥ App-link { 4
- - - - 4 Y / color: #61 ;
- == ‘ —_—

——

Zunaida Sitorus, S.Si., M.Si.

Lahir di Kisaran, 9 Juni 1982, Lulus S2 di Program
Studi Matematika Fakultas Matematika dan Ilmu
Pengetahuan Alam Universitas Sumatera Utara Tahun
2010. Saat ini sebagai Dosen di Universitas Asahan
Program Studi Teknik Informatika.

Buku Referensi 219

BUKU
REFERENSI

PEMROGRAMAN
D[N ROMPUTASI
[UMERIR

DARI TEORI KE APLIKASI

Buku referensi “Pemrograman dan Komputasi Numerik: Dari Teori
ke Aplikasi” ini membahas teknik-teknik numerik dalam
pemrograman modern. Ditujukan bagi mahasiswa, dosen, peneliti,
dan praktisi di bidang teknik, sains, maupun ilmu komputer, buku
referensi ini menggabungkan landasan teoritis yang kuat dengan
pendekatan aplikatif berbasis bahasa pemrograman. Buku referensi
ini membahas berbagai konsep penting dalam komputasi numerik
seperti metode interpolasi, integrasi numerik, penyelesaian sistem
persamaan linier, dan solusi persamaan diferensial, dengan
penekanan pada keakuratan, efisiensi, dan stabilitas numerik. Buku
referensi ini membahas penjabaran algoritma, pseudocode, serta
penerapan nyata menggunakan Python dan MATLAB sebagai alat
bantu utama.

@ mediapenerbitindonesia.com

Y | 060
\) Il G 0 A O

/ 9 786347 305848
PT MEDIA PENERBIT INDONESIA @pt mediapenerbitidn

