

BUKU REFERENSI

 PEMROGRAMAN DAN

KOMPUTASI NUMERIK
DARI TEORI KE APLIKASI

Zunaida Sitorus, S.Si., M.Si.

PEMROGRAMAN DAN KOMPUTASI NUMERIK
DARI TEORI KE APLIKASI

Ditulis oleh:

Zunaida Sitorus, S.Si., M.Si.

Hak Cipta dilindungi oleh undang-undang. Dilarang keras memperbanyak,

menerjemahkan atau mengutip baik sebagian ataupun keseluruhan isi buku

tanpa izin tertulis dari penerbit.

ISBN: 978-634-7305-84-8

IV + 219 hlm; 18,2 x 25,7 cm.

Cetakan I, Oktober 2025

Desain Cover dan Tata Letak:

Ajrina Putri Hawari, S.AB.

Diterbitkan, dicetak, dan didistribusikan oleh

PT Media Penerbit Indonesia

Royal Suite No. 6C, Jalan Sedap Malam IX, Sempakata

Kecamatan Medan Selayang, Kota Medan 20131

Telp: 081362150605

Email: ptmediapenerbitindonesia@gmail.com

Web: https://mediapenerbitindonesia.com

Anggota IKAPI No.088/SUT/2024

mailto:ptmediapenerbitindonesia@gmail.com
https://mediapenerbitindonesia.com/

 i Buku Referensi

KATA PENGANTAR

Perkembangan teknologi informasi dan sains komputasi telah

membawa transformasi besar dalam berbagai bidang ilmu pengetahuan.

Dalam konteks ini, pemrograman dan komputasi numerik berperan vital

sebagai jembatan antara model matematis dan penyelesaian praktis terhadap

persoalan kompleks yang tidak selalu dapat diselesaikan secara analitik.

Mulai dari simulasi teknik, pemodelan ekonomi, hingga analisis data

berskala besar, kemampuan untuk menerapkan algoritma numerik dalam

bentuk program komputer menjadi keterampilan yang semakin dibutuhkan.

Buku referensi “Pemrograman dan Komputasi Numerik: Dari Teori

ke Aplikasi” membahas berbagai konsep dasar dan lanjutan dalam

komputasi numerik, mulai dari representasi bilangan dan analisis kesalahan,

hingga penyelesaian persamaan aljabar linear, interpolasi, integrasi, dan

diferensial numerik. Selain itu, buku referensi ini membahas bahasa

pemrograman seperti Python dan MATLAB sebagai alat implementasi

algoritma numerik. Buku referensi ini juga membahas seperti optimisasi,

komputasi matriks, serta aplikasi dalam bidang teknik, sains, dan keuangan

juga disertakan, dilengkapi studi kasus dan latihan untuk memperkuat

pemahaman dan keterampilan praktis pembaca.

Semoga buku referensi ini dapat menjadi sumber pengetahuan yang

bermanfaat bagi para pembaca dalam memahami dan menguasai konsep

serta aplikasi pemrograman dan komputasi numerik.

Salam Hangat

Penulis

ii Pemrograman dan Komputasi Numerik

DAFTAR ISI

KATA PENGANTAR ... i

DAFTAR ISI ... ii

BAB I PENGANTAR PEMROGRAMAN DAN KOMPUTASI

NUMERIK ... 1

A. Definisi dan Ruang Lingkup Komputasi Numerik 1

B. Perbedaan Metode Analitik vs. Numerik............................. 8

C. Jenis Kesalahan: Trunkasi, Pembulatan, dan Presisi 12

D. Peran Pemrograman dalam Pemecahan Masalah Numerik 15

BAB II BAHASA PEMROGRAMAN UNTUK KOMPUTASI 21

A. Pemilihan Bahasa: Python, MATLAB, atau C++ 21

B. Struktur Dasar Pemrograman: Variabel, Tipe Data, dan

Struktur Kontrol ... 26

C. Fungsi dan Modularisasi Program 31

D. Visualisasi Data Numerik (Plotting dan Grafik) 35

BAB III REPRESENTASI BILANGAN DAN ARITMETIKA

KOMPUTASI ... 39

A. Representasi Bilangan Floating point dan Biner 39

B. Stabilitas dan Propagasi Kesalahan 42

C. Operasi Aritmetika dan Pembulatan dalam Mesin 45

D. Standard IEEE 754 .. 48

BAB IV PENYELESAIAN PERSAMAAN ALJABAR LINEAR . 53

A. Sistem Persamaan Linear dan Matriks Koefisien 53

B. Eliminasi Gauss dan Pivoting .. 58

C. Metode Iteratif: Jacobi dan Gauss-Seidel 61

D. Implementasi dalam Python/MATLAB 65

 iii Buku Referensi

BAB V INTERPOLASI DAN APROKSIMASI FUNGSI 71

A. Interpolasi Polinomial (Lagrange, Newton) 71

B. Interpolasi Spline dan Kurva Halus 77

C. Least Squares dan Regresi Polinomial 82

D. Visualisasi dan Evaluasi Aproksimasi 89

BAB VI DIFERENSIASI DAN INTEGRASI NUMERIK 97

A. Metode Selisih Hingga (Finite Difference) 97

B. Metode Trapezoid, Simpson, dan Romberg 104

C. Evaluasi Akurasi dan Estimasi Kesalahan 114

D. Aplikasi pada Persoalan Teknik 119

BAB VII PENYELESAIAN PERSAMAAN NONLINEAR 129

A. Metode Bagi Dua dan Regulafalsi 129

B. Metode Newton-Raphson dan Secant 136

C. Konvergensi dan Stabilitas Solusi 143

BAB VIII PERSAMAAN DIFERENSIAL BIASA (PDB) 153

A. Pengenalan PDB dan Model Aplikatif 153

B. Metode Euler dan Runge-Kutta Orde 4 159

C. Sistem PDB dan Solusi Numerik 163

D. Simulasi Dinamis dalam Sistem Teknik dan Biologi 169

BAB IX KOMPUTASI MATRIKS DAN ALJABAR LINIER

LANJUT ... 177

A. Eigenvalue dan Eigenvector .. 177

B. Dekomposisi LU, QR, dan SVD 186

C. Aplikasi dalam Pemrosesan Data dan Machine Learning

 ... 190

D. Optimasi Performa Komputasi Matriks 193

BAB X STUDI KASUS DAN PROYEK APLIKASI 199

A. Simulasi Perpindahan Panas .. 199

B. Pemodelan Populasi dan Epidemi 204

C. Optimasi Portofolio dan Pemodelan Finans 209

iv Pemrograman dan Komputasi Numerik

DAFTAR PUSTAKA ... 213

GLOSARIUM ... 215

INDEKS ... 217

BIOGRAFI PENULIS .. 219

 1 Buku Referensi

BAB I

PENGANTAR

PEMROGRAMAN DAN

KOMPUTASI NUMERIK

Pemrograman bukan hanya tentang menulis baris-baris kode,

tetapi tentang bagaimana menyusun logika dan algoritma yang efisien

untuk menyelesaikan permasalahan nyata secara sistematis. Sementara

itu, komputasi numerik hadir sebagai jawaban atas keterbatasan metode

analitik dalam menyelesaikan persoalan matematika yang rumit dan

tidak memiliki solusi eksak. Dalam bab ini, membahas konsep dasar

komputasi numerik, sejarah perkembangannya, serta peran strategisnya

dalam berbagai bidang seperti teknik, sains, ekonomi, hingga data

science. Pendahuluan ini juga memberikan gambaran mengenai

bagaimana komputer merepresentasikan angka dan bagaimana

kesalahan dalam perhitungan numerik dapat muncul serta memengaruhi

hasil akhir. Dengan pendekatan yang sederhana namun mendalam, bab

ini bertujuan untuk membuka wawasan pembaca bahwa komputasi

numerik bukan sekadar teori matematis, melainkan alat yang sangat

berguna dalam menyelesaikan masalah-masalah nyata yang menuntut

ketelitian, kecepatan, dan efisiensi dalam perhitungannya.

A. Definisi dan Ruang Lingkup Komputasi Numerik

Menurut Chapra dan Canale (2010) dalam Numerical Methods

for Engineers, komputasi numerik didefinisikan sebagai bidang ilmu

yang berkaitan dengan formulasi, pengembangan, dan implementasi

2 Pemrograman dan Komputasi Numerik

algoritma numerik untuk menyelesaikan permasalahan matematis

melalui pendekatan komputasi. Komputasi numerik menggabungkan

prinsip-prinsip matematika, ilmu komputer, dan teknik rekayasa dalam

menyusun metode-metode yang memungkinkan pemecahan masalah

matematika kompleks secara mendekati (aproksimasi), khususnya ketika

solusi eksak secara analitik sulit diperoleh. Dalam dunia nyata, banyak

permasalahan yang melibatkan data besar, model non-linear, atau bentuk

fungsi yang tidak dapat diselesaikan dengan metode analitik

konvensional. Di sinilah peran komputasi numerik menjadi sangat vital.

Tujuan utama dari komputasi numerik adalah memperoleh solusi

numerik yang mendekati kebenaran aktual dengan tingkat kesalahan

yang dapat diterima, serta memastikan metode tersebut dapat diterapkan

dalam waktu dan sumber daya komputasi yang efisien. Dengan kata lain,

komputasi numerik tidak berusaha menggantikan metode eksak, tetapi

melengkapi dan memperluas cakupan penyelesaian masalah matematis

yang realistis dan kompleks. Seperti dijelaskan oleh Atkinson (1989)

dalam An Introduction to Numerical Analysis, pendekatan numerik

bertumpu pada keterbatasan sistem digital dalam merepresentasikan

bilangan real dan fungsi kontinu. Oleh karena itu, seluruh proses numerik

mencakup pengubahan bentuk matematis ke bentuk diskret dan

operasional, yang selanjutnya dapat dihitung oleh komputer

menggunakan algoritma tertentu. Komputasi numerik mencakup

berbagai ruang lingkup yang luas dan beragam. Secara umum, ruang

lingkup tersebut dapat dikelompokkan ke dalam beberapa kategori besar

berikut:

1. Representasi Bilangan dan Analisis Kesalahan

Pada komputasi numerik, representasi bilangan dan analisis

kesalahan merupakan aspek fundamental yang memengaruhi akurasi dan

keandalan hasil perhitungan. Komputer tidak dapat merepresentasikan

semua bilangan real secara presisi karena keterbatasan dalam sistem

bilangan biner dan panjang bit. Sebagaimana dijelaskan oleh Chapra dan

Canale (2010), komputer menggunakan sistem floating point untuk

merepresentasikan bilangan real, yang terdiri dari mantissa dan

eksponen. Representasi ini menyebabkan munculnya round-off error,

yaitu kesalahan akibat pembulatan bilangan yang tidak dapat ditulis

secara tepat dalam sistem biner. Sebagai contoh, bilangan desimal seperti

0.1 tidak dapat direpresentasikan secara akurat dalam biner, sehingga

 3 Buku Referensi

terjadi deviasi kecil yang bisa terakumulasi dalam operasi numerik

berulang.

Terdapat pula truncation error, yaitu kesalahan yang muncul

karena pendekatan suatu metode numerik terhadap bentuk matematis

yang sebenarnya. Menurut Burden dan Faires (2011), kesalahan ini

sering muncul dalam metode diferensiasi dan integrasi numerik ketika

fungsi kontinu diganti dengan aproksimasi diskrit. Pentingnya analisis

kesalahan terletak pada kemampuannya untuk memprediksi dan

mengendalikan dampak dari ketidakakuratan dalam algoritma numerik.

Oleh karena itu, metode numerik yang baik harus memperhitungkan

stabilitas numerik yakni kemampuan algoritma untuk membatasi

propagasi kesalahan kecil agar tidak menjadi besar secara eksponensial

selama proses komputasi.

2. Penyelesaian Persamaan Aljabar

Penyelesaian persamaan aljabar merupakan salah satu fokus

utama dalam komputasi numerik karena banyak persoalan dalam sains

dan teknik dapat dimodelkan dalam bentuk sistem persamaan, baik linier

maupun non-linier. Sistem persamaan linier, seperti Ax=b, sering

muncul dalam simulasi struktur, aliran fluida, maupun pemodelan

ekonomi. Untuk menyelesaikan sistem ini secara numerik, digunakan

berbagai metode seperti eliminasi Gauss, dekomposisi LU, dan metode

iteratif seperti Jacobi dan Gauss-Seidel. Menurut Chapra dan Canale

(2010), metode eliminasi Gauss merupakan pendekatan langsung (direct

method) yang efisien untuk sistem ukuran kecil hingga menengah,

namun kurang cocok untuk sistem sangat besar karena kompleksitas

komputasi dan kebutuhan memori yang tinggi.

Pada kasus sistem non-linier, penyelesaian persamaan semacam

f(x)=0 memerlukan pendekatan iteratif, karena bentuk analitiknya sering

kali tidak tersedia. Metode numerik yang umum digunakan meliputi

metode bisection, secant, dan Newton-Raphson. Menurut Burden dan

Faires (2011), metode Newton-Raphson sangat populer karena

konvergensinya yang cepat, tetapi memerlukan turunan fungsi dan

tebakan awal yang cukup dekat dengan akar sebenarnya agar hasilnya

akurat. Di sisi lain, metode bisection lebih stabil tetapi konvergensinya

lambat.

Pentingnya penyelesaian persamaan aljabar dalam komputasi

numerik terletak pada aplikasinya yang luas di berbagai bidang.

4 Pemrograman dan Komputasi Numerik

Misalnya, dalam simulasi mekanika struktur, gaya dan respons sistem

dirumuskan dalam bentuk sistem persamaan linier. Dalam pemodelan

non-linier, seperti perambatan panas atau reaksi kimia, persamaan non-

linier menjadi dasar dari model numeriknya. Oleh karena itu,

pemahaman tentang metode-metode ini dan perilakunya sangat penting

untuk memastikan hasil komputasi yang akurat, stabil, dan efisien.

3. Interpolasi dan Aproksimasi Fungsi

Interpolasi dan aproksimasi fungsi merupakan dua teknik penting

dalam komputasi numerik yang digunakan untuk mendekati fungsi-

fungsi matematis berdasarkan sejumlah titik data terbatas. Interpolasi

bertujuan untuk mencari fungsi yang melewati seluruh titik data yang

diberikan secara tepat, sedangkan aproksimasi berusaha mencari fungsi

yang "mendekati" data secara keseluruhan, meskipun tidak harus melalui

semua titik tersebut. Teknik ini sangat bermanfaat ketika fungsi eksak

tidak diketahui, namun tersedia data hasil pengukuran atau simulasi.

Metode interpolasi yang umum digunakan antara lain interpolasi

polinomial (seperti interpolasi Lagrange dan Newton) dan interpolasi

spline. Interpolasi polinomial bekerja dengan membangun satu

polinomial derajat tinggi yang melewati seluruh titik data, tetapi metode

ini rentan terhadap fenomena Runge, yaitu osilasi ekstrem pada tepi

interval ketika jumlah titik meningkat. Sebagai solusi, interpolasi spline

kubik menawarkan alternatif dengan membagi interval menjadi segmen

kecil dan menggunakan polinomial derajat rendah pada tiap segmen,

sehingga hasilnya lebih halus dan stabil.

Pada aproksimasi, metode least squares sering digunakan untuk

mencari fungsi yang meminimalkan selisih kuadrat antara nilai fungsi

dan data yang tersedia. Pendekatan ini sangat berguna dalam analisis

regresi dan pemodelan data eksperimental. Interpolasi dan aproksimasi

tidak hanya digunakan dalam matematika murni, tetapi juga dalam

berbagai aplikasi praktis seperti rekonstruksi sinyal digital, pemetaan

geografis, grafika komputer, dan pengolahan citra. Keduanya menjadi

alat penting dalam menghubungkan data diskrit menjadi representasi

fungsi kontinu yang dapat dianalisis lebih lanjut atau digunakan dalam

simulasi numerik yang lebih kompleks.

 5 Buku Referensi

4. Penyelesaian Persamaan Diferensial

Penyelesaian persamaan diferensial secara numerik merupakan

komponen penting dalam komputasi ilmiah, karena banyak fenomena

alam dan teknik yang dimodelkan menggunakan persamaan diferensial.

Persamaan diferensial menggambarkan hubungan antara suatu fungsi

dengan turunannya, dan digunakan untuk merepresentasikan perubahan

dinamis dalam sistem fisik seperti gerak, panas, pertumbuhan populasi,

hingga sirkuit listrik. Dalam praktiknya, persamaan ini terbagi menjadi

dua jenis utama: persamaan diferensial biasa (ODE) dan persamaan

diferensial parsial (PDE).

Untuk ODE, yaitu persamaan diferensial yang melibatkan satu

variabel bebas, metode numerik seperti metode Euler, Runge-Kutta, dan

metode Adams-Bashforth digunakan secara luas. Metode Euler, yang

paling sederhana, menghitung nilai fungsi ke titik berikutnya

menggunakan turunan lokal, namun memiliki tingkat akurasi yang

rendah. Sebaliknya, metode Runge-Kutta orde keempat (RK4)

menawarkan akurasi yang jauh lebih tinggi dengan tetap menjaga

kestabilan komputasi, sehingga lebih banyak digunakan dalam simulasi

sistem dinamis.

PDE melibatkan lebih dari satu variabel bebas dan sering

digunakan untuk memodelkan fenomena dua atau tiga dimensi, seperti

perpindahan panas dalam ruang atau perambatan gelombang.

Penyelesaiannya memerlukan pendekatan numerik yang lebih kompleks

seperti metode beda hingga (finite difference method), elemen hingga

(finite element method), dan volume hingga (finite volume method).

Metode-metode ini mengubah persamaan diferensial menjadi sistem

persamaan aljabar yang dapat diselesaikan secara iteratif oleh komputer.

5. Optimisasi Numerik

Optimisasi numerik merupakan cabang penting dalam komputasi

numerik yang fokus pada pencarian nilai minimum atau maksimum dari

suatu fungsi, baik dalam ruang satu variabel maupun multivariat.

Optimisasi ini sangat relevan dalam berbagai bidang, seperti teknik,

ekonomi, sains data, dan machine learning, di mana banyak

permasalahan nyata yang memerlukan solusi optimal dari suatu model

matematis. Misalnya, dalam perencanaan produksi, kita ingin

meminimalkan biaya dengan tetap memenuhi permintaan; dalam

6 Pemrograman dan Komputasi Numerik

machine learning, algoritma pelatihan bertujuan meminimalkan loss

function.

Gambar 1. Machine Learning

Sumber: Codepolitan

Optimisasi numerik terbagi menjadi dua kelompok utama:

unconstrained optimization (tanpa kendala) dan constrained

optimization (dengan kendala). Untuk kasus tanpa kendala, metode

seperti gradient descent, Newton-Raphson, dan conjugate gradient

banyak digunakan. Metode gradient descent bekerja dengan mengikuti

arah turunan (gradien) fungsi secara iteratif menuju titik minimum, dan

sering digunakan dalam pelatihan model AI. Di sisi lain, metode Newton

lebih cepat karena menggunakan informasi turunan kedua (Hessian),

tetapi lebih mahal secara komputasi.

Untuk optimisasi dengan kendala, seperti pembatasan sumber

daya atau batas nilai variabel, metode seperti Lagrange multipliers dan

metode pemrograman kuadrat digunakan. Dalam pendekatan numerik,

solusi sering kali tidak diperoleh secara eksak melainkan secara iteratif,

sehingga penting untuk memperhatikan aspek konvergensi dan

kestabilan algoritma. Penerapan optimisasi numerik sangat luas dan

berkembang seiring kemajuan teknologi. Dalam perencanaan kota,

optimisasi digunakan untuk mengatur lalu lintas; dalam keuangan, untuk

portofolio optimal; dan dalam robotika, untuk menentukan jalur

 7 Buku Referensi

pergerakan paling efisien. Dengan kemampuan komputer modern,

optimisasi numerik telah menjadi alat yang sangat kuat dalam

pengambilan keputusan berbasis data dan perancangan sistem yang

kompleks dan adaptif.

6. Aplikasi Interdisipliner

Aplikasi interdisipliner dalam komputasi numerik mencerminkan

peran vital metode numerik dalam menjembatani berbagai bidang ilmu

untuk menyelesaikan persoalan kompleks yang tidak dapat dipecahkan

secara analitik. Karena banyak sistem dalam dunia nyata bersifat

dinamis, non-linear, dan berbasis data, maka komputasi numerik menjadi

kunci dalam membangun model, melakukan simulasi, serta

mengevaluasi hasil dalam beragam konteks ilmiah dan praktis.

Pada teknik sipil dan mesin, misalnya, metode numerik

digunakan untuk menganalisis tegangan dan deformasi struktur

bangunan dengan pendekatan elemen hingga (finite element method),

serta simulasi aliran fluida dengan metode volume hingga (finite volume

method). Di bidang fisika dan kimia, komputasi numerik digunakan

untuk mensimulasikan dinamika partikel, reaksi kimia, atau perambatan

gelombang elektromagnetik. Dalam biologi dan kedokteran, pendekatan

numerik diterapkan pada pemodelan penyebaran penyakit, analisis

jaringan biologis, hingga simulasi organ virtual untuk keperluan bedah

presisi.

Di ranah ekonomi dan keuangan, komputasi numerik sangat

berperan dalam pemodelan harga opsi (seperti model Black-Scholes),

optimisasi portofolio investasi, serta analisis sensitivitas terhadap

perubahan pasar. Bahkan di bidang lingkungan dan geografi, metode

numerik dimanfaatkan untuk mensimulasikan pola perubahan iklim,

pergerakan tanah, atau aliran air dalam sistem hidrologi. Selain itu,

dengan kemunculan bidang data science dan kecerdasan buatan, metode

numerik menjadi tulang punggung dalam pelatihan model pembelajaran

mesin melalui optimisasi, regresi, dan aproksimasi fungsi. Kolaborasi

lintas disiplin inilah yang menjadikan komputasi numerik tidak hanya

sebagai alat matematis, tetapi juga sebagai fondasi teknologi modern

yang mengintegrasikan sains, teknik, dan kebijakan dalam pengambilan

keputusan yang berbasis data dan simulasi.

8 Pemrograman dan Komputasi Numerik

B. Perbedaan Metode Analitik vs. Numerik

Menurut Chapra dan Canale (2010) dalam Numerical Methods

for Engineers, metode analitik dan metode numerik merupakan dua

pendekatan utama dalam penyelesaian persoalan matematika dan

rekayasa. Keduanya memiliki karakteristik, keunggulan, dan

keterbatasan masing-masing. Pemahaman akan perbedaan mendasar

antara keduanya sangat penting, terutama dalam memilih pendekatan

yang paling sesuai untuk suatu jenis permasalahan dalam konteks

akademik maupun praktis.

Metode analitik (analytical methods) atau dikenal juga sebagai

metode eksak, merupakan pendekatan penyelesaian yang menghasilkan

solusi dalam bentuk tertutup (closed-form solution). Artinya, solusi

diperoleh melalui manipulasi simbolik menggunakan kaidah-kaidah

matematika yang telah terdefinisi secara formal. Misalnya, untuk

menyelesaikan integral atau turunan, kita dapat menggunakan rumus

kalkulus klasik, seperti

∫ 𝑥2𝑑𝑥 =
1

3
𝑥3 + 𝐶

Pada konteks persamaan diferensial, metode analitik mencakup

teknik seperti pemisahan variabel, transformasi Laplace, dan integrasi

faktor. Solusi yang diperoleh biasanya dalam bentuk fungsi eksplisit

yang dapat dievaluasi untuk nilai tertentu dengan presisi sempurna.

Burden dan Faires (2011) dalam Numerical Analysis menyatakan bahwa

metode analitik cocok untuk sistem yang relatif sederhana dan linier, di

mana model matematis dapat dinyatakan dalam bentuk fungsi-fungsi

dasar (eksponensial, trigonometri, logaritma, dll.). Sebaliknya, metode

numerik (numerical methods) adalah pendekatan aproksimatif yang

mencari solusi mendekati (approximate solution) dari suatu

permasalahan matematika, dengan memanfaatkan algoritma dan

perhitungan numerik berbasis komputer. Pendekatan ini digunakan

ketika solusi analitik sulit atau bahkan mustahil untuk diperoleh.

Contoh klasiknya adalah menyelesaikan persamaan non-linier

seperti e−x = x, yang tidak memiliki solusi analitik dalam bentuk fungsi

eksplisit. Dalam kasus seperti ini, digunakan metode numerik seperti

Newton-Raphson atau bisection method untuk mencari nilai x yang

mendekati solusi sejati. Menurut Atkinson (1989) dalam An Introduction

to Numerical Analysis, metode numerik sangat berguna dalam konteks

 9 Buku Referensi

perhitungan numerik yang kompleks, besar skala, atau tidak dapat

dipecahkan secara simbolik. Komputasi numerik memanfaatkan

algoritma rekursif, iterasi, dan teknik pendekatan diskrit untuk

menggantikan analisis simbolik.

1. Perbandingan Karakteristik Utama

Perbandingan karakteristik utama antara metode analitik dan

metode numerik mencerminkan dua pendekatan yang berbeda dalam

menyelesaikan permasalahan matematika dan ilmiah, baik dari segi

prinsip dasar, teknik eksekusi, hasil yang diperoleh, hingga tingkat

fleksibilitasnya. Metode analitik dikenal sebagai pendekatan matematis

yang menghasilkan solusi eksak melalui manipulasi simbolik terhadap

persamaan yang ada. Misalnya, dalam menyelesaikan turunan suatu

fungsi, metode analitik akan menghasilkan bentuk fungsi turunan secara

langsung, seperti
d

dx
(x2) = 2x. Sebaliknya, metode numerik

menghasilkan solusi aproksimasi melalui pendekatan diskrit dan

perhitungan iteratif yang dapat dijalankan menggunakan komputer,

misalnya dengan memanfaatkan metode finite difference untuk

menghampiri nilai turunan suatu fungsi berdasarkan data numerik yang

terbatas.

Salah satu karakteristik pembeda utama terletak pada jenis solusi

yang dihasilkan. Solusi analitik berbentuk tertutup (closed-form) dan

eksak, sementara solusi numerik bersifat pendekatan (approximate) dan

bergantung pada nilai awal, parameter langkah, serta struktur algoritma.

Oleh karena itu, dalam hal akurasi, metode analitik secara teori lebih

unggul karena tidak mengandung kesalahan pembulatan maupun

pemotongan, selama manipulasi simbolik dilakukan dengan benar.

Namun demikian, metode numerik memungkinkan pengendalian tingkat

kesalahan melalui pemilihan ukuran langkah (step size), jumlah iterasi,

atau tingkat presisi floating point.

Dari sisi fleksibilitas dan skalabilitas, metode numerik jauh lebih

unggul. Metode analitik hanya dapat diterapkan pada sistem yang bentuk

matematikanya relatif sederhana, linier, dan terdefinisi secara simbolik.

Ketika berhadapan dengan sistem yang sangat besar, non-linier, atau

mengandung data empiris yang tidak berbentuk fungsi eksplisit, metode

analitik sering kali gagal. Di sisi lain, metode numerik dapat menangani

sistem non-linier, multidimensi, bahkan yang berbasis data diskrit,

10 Pemrograman dan Komputasi Numerik

seperti yang sering dijumpai dalam pemodelan iklim, rekayasa struktur,

atau sistem keuangan.

Pada sumber daya yang dibutuhkan, metode analitik lebih ringan

karena hanya membutuhkan keterampilan matematis dan alat tulis,

sedangkan metode numerik membutuhkan dukungan komputasi, baik

perangkat lunak seperti MATLAB, Python, atau C++, maupun perangkat

keras dengan kapasitas pemrosesan tinggi. Hal ini menjadikan metode

numerik lebih bergantung pada perkembangan teknologi dan algoritma

komputasi.

Kestabilan solusi juga menjadi faktor penting yang membedakan

keduanya. Solusi numerik rentan terhadap instabilitas numerik, yaitu

situasi di mana kesalahan kecil yang terjadi dalam perhitungan dapat

berkembang secara signifikan, menyebabkan hasil yang menyimpang.

Oleh karena itu, dalam metode numerik, analisis kestabilan dan

konvergensi sangat penting, sedangkan dalam metode analitik, hal ini

relatif tidak menjadi isu utama.

Secara umum, metode analitik lebih cocok untuk persoalan

sederhana dan sebagai dasar pemahaman matematis, sedangkan metode

numerik unggul dalam menangani permasalahan kompleks yang

melibatkan banyak variabel, bentuk non-linier, dan pengolahan data

besar. Dalam praktik modern, keduanya tidak saling menggantikan tetapi

justru saling melengkapi, di mana metode analitik digunakan untuk

validasi atau pembuktian konsep, sementara metode numerik digunakan

untuk eksplorasi dan simulasi dalam skala besar serta berorientasi pada

hasil praktis.

2. Analisis Kesalahan dan Akurasi

Pada komputasi numerik, analisis kesalahan dan akurasi

merupakan aspek fundamental yang menentukan seberapa dapat

dipercaya hasil perhitungan numerik yang diperoleh. Tidak seperti

metode analitik yang menghasilkan solusi eksak, metode numerik hanya

memberikan solusi pendekatan yang rentan terhadap berbagai jenis

kesalahan. Oleh karena itu, pemahaman mendalam terhadap sumber-

sumber kesalahan, cara mengukurnya, serta strategi untuk

meminimalkan dampaknya sangat penting dalam praktik komputasi

numerik.

Secara umum, kesalahan dalam komputasi numerik dapat

diklasifikasikan ke dalam dua jenis utama, yaitu kesalahan pembulatan

 11 Buku Referensi

(round-off error) dan kesalahan pemotongan (truncation error).

Kesalahan pembulatan terjadi karena komputer hanya mampu

merepresentasikan bilangan dalam presisi terbatas, biasanya dalam

format floating point. Misalnya, bilangan desimal seperti 0.1 tidak dapat

direpresentasikan secara tepat dalam biner, sehingga setiap operasi

aritmetika dapat menimbulkan deviasi kecil yang terakumulasi selama

proses komputasi. Dalam kasus iterasi yang panjang, akumulasi

kesalahan pembulatan ini dapat memengaruhi hasil akhir secara

signifikan. Sebaliknya, kesalahan pemotongan terjadi ketika suatu proses

matematis yang seharusnya berlanjut tanpa batas seperti deret tak hingga

atau proses diferensiasi/integrasi, dihentikan pada titik tertentu demi

kepraktisan perhitungan. Sebagai contoh, metode numerik seperti

metode Euler untuk penyelesaian persamaan diferensial menghampiri

solusi dengan interval diskrit, yang pasti berbeda dari solusi kontinu

yang sebenarnya.

Untuk mengevaluasi sejauh mana hasil numerik mendekati solusi

yang benar, digunakan ukuran seperti galat absolut (absolute error) dan

galat relatif (relative error). Galat absolut adalah selisih antara nilai

eksak dan nilai numerik, sedangkan galat relatif menunjukkan proporsi

kesalahan terhadap nilai eksaknya. Analisis ini membantu menentukan

apakah suatu metode numerik menghasilkan solusi yang cukup akurat

untuk tujuan tertentu. Selain itu, konsep kondisioning dan stabilitas

numerik menjadi bagian penting dalam analisis kesalahan. Kondisioning

mengacu pada sensitivitas masalah terhadap perubahan kecil pada data

input, sedangkan stabilitas berkaitan dengan bagaimana kesalahan input

atau pembulatan memengaruhi hasil dalam proses algoritma. Sebuah

metode disebut stabil jika tidak memperbesar kesalahan kecil menjadi

besar selama iterasi.

Pada desain algoritma numerik, perhatian terhadap orde akurasi

juga krusial. Metode dengan orde yang lebih tinggi umumnya

memberikan hasil yang lebih akurat dengan langkah yang lebih kecil.

Misalnya, metode Runge-Kutta orde keempat dalam penyelesaian ODE

memberikan akurasi yang lebih tinggi daripada metode Euler dengan

langkah yang sama. Namun, akurasi yang tinggi tidak selalu berarti

efisien, karena sering kali memerlukan komputasi lebih banyak. Oleh

karena itu, dalam praktik, analis numerik harus menyeimbangkan antara

akurasi, efisiensi komputasi, dan stabilitas.

12 Pemrograman dan Komputasi Numerik

C. Jenis Kesalahan: Trunkasi, Pembulatan, dan Presisi

Di dunia komputasi numerik, kesalahan (error) adalah hal yang

tidak dapat dihindari. Komputer sebagai alat komputasi digital memiliki

keterbatasan dalam merepresentasikan bilangan real dan melakukan

operasi matematika yang kompleks secara presisi. Oleh karena itu, hasil

dari metode numerik umumnya merupakan aproksimasi terhadap solusi

eksak, dan mengandung berbagai jenis kesalahan. Menurut Chapra dan

Canale (2010) dalam Numerical Methods for Engineers, kesalahan

dalam komputasi numerik dapat dikelompokkan ke dalam tiga jenis

utama, yaitu kesalahan trunkasi (truncation error), kesalahan

pembulatan (round-off error), dan kesalahan presisi (precision error).

Masing-masing jenis kesalahan ini memiliki sumber, sifat, dan dampak

yang berbeda terhadap hasil akhir komputasi.

1. Kesalahan Trunkasi (Truncation Error)

Kesalahan trunkasi (truncation error) adalah jenis kesalahan

numerik yang muncul akibat pemotongan atau penyederhanaan dari

proses matematis yang seharusnya dilakukan secara lengkap atau tak

hingga. Dalam konteks komputasi numerik, kesalahan ini terjadi ketika

metode analitik yang kompleks, seperti deret tak hingga atau proses

kalkulus kontinu, diubah menjadi bentuk diskrit atau dipangkas untuk

membuatnya lebih mudah dihitung oleh komputer. Menurut Burden dan

Faires (2011) dalam Numerical Analysis, kesalahan trunkasi bukan

berasal dari representasi bilangan seperti pada kesalahan pembulatan,

melainkan dari penggunaan aproksimasi terhadap ekspresi matematis,

seperti menghentikan deret Taylor pada suku tertentu atau mengganti

integral eksak dengan metode pendekatan numerik seperti trapezoid atau

Simpson.

Sebagai contoh, pendekatan turunan pertama dari suatu fungsi

f(x) menggunakan metode beda hingga (finite difference):

𝑓′(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

Mengandung kesalahan trunkasi karena hanya menggunakan

sebagian informasi dari ekspansi Taylor, tanpa memperhitungkan suku-

suku berikutnya yang juga memengaruhi nilai turunan sebenarnya.

Semakin besar nilai h (interval diskret), semakin besar kesalahan

trunkasi yang terjadi. Oleh karena itu, salah satu cara untuk mengurangi

 13 Buku Referensi

kesalahan ini adalah dengan memperkecil nilai h, atau menggunakan

metode orde lebih tinggi yang mempertimbangkan lebih banyak suku

dalam deret Taylor.

Kesalahan trunkasi juga muncul dalam metode numerik

penyelesaian persamaan diferensial, seperti metode Euler atau Runge-

Kutta. Misalnya, metode Euler hanya menggunakan gradien pada titik

awal untuk memperkirakan nilai berikutnya, dan mengabaikan

perubahan gradien yang terjadi sepanjang langkah tersebut. Ini

menimbulkan perbedaan antara solusi eksak dan hasil numerik. Analisis

terhadap kesalahan trunkasi penting dilakukan untuk menilai seberapa

akurat suatu metode numerik dalam menghampiri solusi sebenarnya.

Dalam praktiknya, terdapat kompromi antara akurasi dan efisiensi

komputasi: semakin kecil kesalahan trunkasi yang diinginkan, semakin

kompleks atau banyak komputasi yang dibutuhkan. Oleh karena itu,

pemilihan metode dan parameter numerik yang tepat sangat penting

untuk menjaga akurasi sambil tetap efisien secara komputasi.

2. Kesalahan Pembulatan (Round-off Error)

Kesalahan pembulatan (round-off error) adalah kesalahan

numerik yang terjadi akibat keterbatasan komputer dalam

merepresentasikan bilangan real secara presisi penuh. Komputer modern

menggunakan sistem bilangan biner dan format floating point (misalnya,

IEEE 754) untuk menyimpan dan memproses angka. Karena hanya

tersedia sejumlah digit terbatas untuk menyimpan bilangan, maka nilai-

nilai desimal yang tidak dapat diwakili secara tepat dalam bentuk biner

harus dibulatkan ke angka terdekat yang masih dapat ditampung. Hal ini

menyebabkan terjadinya deviasi kecil dari nilai sebenarnya, yang dapat

terakumulasi dan berdampak signifikan dalam proses komputasi

berulang atau kompleks (Overton, 2001).

Sebagai contoh klasik, bilangan desimal seperti 0.1 tidak dapat

dinyatakan secara eksak dalam sistem biner, sehingga saat digunakan

dalam perhitungan komputer, nilainya hanya mendekati 0.1 tetapi tidak

persis sama. Kesalahan kecil ini mungkin terlihat sepele dalam satu

operasi, namun dalam algoritma numerik yang melibatkan ribuan atau

bahkan jutaan iterasi, seperti simulasi numerik atau pemrosesan citra

digital, akumulasi dari kesalahan pembulatan ini bisa menghasilkan hasil

yang keliru secara signifikan. Terutama dalam operasi aritmatika yang

sensitif, seperti pengurangan antara dua bilangan yang hampir sama,

14 Pemrograman dan Komputasi Numerik

fenomena yang disebut loss of significance dapat terjadi, di mana

sebagian besar digit penting menghilang akibat pembulatan.

Kesalahan pembulatan juga dipengaruhi oleh jenis presisi yang

digunakan: single precision (biasanya 32 bit) dan double precision (64

bit). Double precision memungkinkan representasi angka dengan lebih

banyak digit signifikan, sehingga mengurangi kesalahan pembulatan.

Namun, penggunaan presisi lebih tinggi juga memerlukan lebih banyak

sumber daya komputasi. Untuk memitigasi dampak kesalahan

pembulatan, perancang algoritma numerik dapat melakukan berbagai

strategi, seperti mengatur ulang urutan operasi (menghindari

penjumlahan antara angka besar dan kecil secara langsung),

menggunakan teknik compensated summation, atau memilih algoritma

yang stabil secara numerik. Dengan memahami dan mengelola kesalahan

pembulatan secara cermat, hasil komputasi numerik dapat dibuat lebih

andal dan akurat dalam berbagai aplikasi ilmiah dan rekayasa.

3. Kesalahan Presisi (Precision Error)

Kesalahan presisi (precision error) adalah jenis kesalahan

numerik yang berkaitan erat dengan batas kemampuan komputer dalam

membedakan dua bilangan yang sangat dekat nilainya, terutama akibat

keterbatasan representasi bilangan dalam sistem floating point.

Komputer menyimpan angka dalam bentuk biner dengan jumlah bit

tertentu, seperti single precision (32 bit) atau double precision (64 bit).

Setiap format memiliki batas presisi yang disebut machine epsilon, yaitu

nilai terkecil yang dapat ditambahkan ke 1 sehingga menghasilkan angka

berbeda dari 1 dalam sistem floating point tersebut. Dalam sistem double

precision IEEE 754, machine epsilon bernilai sekitar 22.2 × 10−16,

yang menunjukkan bahwa setiap perbedaan nilai di bawah angka ini bisa

diabaikan oleh komputer (Overton, 2001).

Kesalahan presisi muncul secara nyata ketika kita berurusan

dengan angka-angka yang sangat kecil atau sangat besar, atau ketika

melakukan operasi antara bilangan yang memiliki magnitudo berbeda

secara signifikan. Misalnya, jika dua bilangan seperti

1.000000000000000 dan 1.000000000000001 dikurangkan dalam

sistem dengan presisi terbatas, hasil pengurangannya bisa saja menjadi

nol karena komputer tidak mampu membedakan keduanya. Fenomena

 15 Buku Referensi

ini dikenal sebagai cancellation error, dan sering terjadi dalam algoritma

yang tidak dirancang untuk mempertimbangkan batas presisi tersebut.

Kesalahan presisi juga memengaruhi hasil dari iterasi numerik,

di mana hasil dari satu langkah digunakan sebagai input untuk langkah

berikutnya. Jika kesalahan presisi terjadi di awal proses, maka hasil yang

terus digunakan dalam iterasi bisa menyebarkan atau bahkan

memperbesar kesalahan tersebut. Hal ini menjadi sangat penting dalam

metode numerik seperti solusi persamaan diferensial, sistem linier besar,

dan optimisasi. Untuk mengurangi dampak kesalahan presisi, beberapa

langkah yang dapat diambil antara lain: menggunakan format double

precision untuk perhitungan sensitif, menghindari pengurangan antara

bilangan yang hampir sama, dan memilih algoritma yang dirancang

dengan stabilitas numerik tinggi. Dengan memahami sifat kesalahan

presisi, pengguna komputasi numerik dapat merancang solusi yang lebih

akurat dan tahan terhadap keterbatasan representasi bilangan digital.

D. Peran Pemrograman dalam Pemecahan Masalah Numerik

Menurut Chapra dan Canale (2010) dalam Numerical Methods

for Engineers, pemecahan masalah numerik memerlukan serangkaian

langkah sistematis yang sering kali tidak dapat dilakukan secara manual,

terutama ketika masalah tersebut berskala besar, melibatkan ribuan

variabel, atau membutuhkan iterasi kompleks. Dalam konteks ini,

pemrograman menjadi perantara yang sangat krusial antara konsep

matematika numerik dan implementasi praktisnya. Pemrograman

memungkinkan transformasi algoritma matematis ke dalam bentuk yang

dapat dijalankan oleh komputer, sehingga mempercepat, mempermudah,

dan memperluas cakupan penyelesaian masalah numerik dalam berbagai

bidang seperti sains, teknik, keuangan, hingga ilmu data.

1. Pemrograman sebagai Sarana Implementasi Algoritma

Numerik

Pemrograman memiliki peran krusial sebagai sarana utama

dalam implementasi algoritma numerik, yakni metode matematis yang

digunakan untuk menyelesaikan masalah yang tidak dapat diselesaikan

secara eksak atau analitik. Algoritma numerik seperti metode bisection,

Newton-Raphson, Gauss-Seidel, atau Runge-Kutta memerlukan proses

iteratif dan perhitungan yang kompleks, yang secara manual sangat sulit,

16 Pemrograman dan Komputasi Numerik

lambat, dan rawan kesalahan. Dengan adanya pemrograman, algoritma-

algoritma tersebut dapat diubah menjadi rangkaian instruksi logis yang

dieksekusi oleh komputer dengan cepat, akurat, dan efisien.

Pemrograman memungkinkan pengguna untuk membuat fungsi

modular, mengatur struktur data, melakukan pengulangan (looping), dan

mengatur logika percabangan, yang semuanya sangat penting dalam

menjalankan algoritma numerik. Sebagai contoh, dalam metode

Newton-Raphson untuk mencari akar suatu fungsi non-linier,

pemrograman memungkinkan proses iteratif dilakukan otomatis dengan

toleransi galat yang dapat disesuaikan. Hal ini membuat algoritma dapat

digunakan secara luas dalam berbagai permasalahan, cukup dengan

mengganti fungsi yang ingin diselesaikan.

Bahasa pemrograman seperti Python, MATLAB, C++, atau R

menyediakan berbagai fitur untuk mempermudah implementasi metode

numerik. Python, misalnya, memiliki pustaka NumPy dan SciPy yang

menyediakan fungsi bawaan untuk operasi numerik kompleks seperti

penyelesaian sistem linier, interpolasi, integrasi numerik, hingga

pemodelan diferensial. MATLAB dikenal dengan kemampuannya dalam

manipulasi matriks dan visualisasi yang sangat mendukung eksperimen

numerik.

Pemrograman juga mendukung proses eksperimen dan validasi

algoritma. Pengguna dapat dengan mudah menguji performa algoritma

pada berbagai parameter, mengamati konvergensi, dan mengevaluasi

kestabilan numerik. Ini memberikan ruang untuk eksplorasi yang luas

dalam dunia akademik maupun profesional. Oleh karena itu, penguasaan

pemrograman tidak hanya memperkuat kemampuan analisis numerik,

tetapi juga membuka jalan untuk pengembangan solusi inovatif berbasis

komputasi dalam berbagai bidang ilmu dan teknologi.

2. Bahasa Pemrograman Populer untuk Komputasi Numerik

Di dunia komputasi numerik, pemilihan bahasa pemrograman

yang tepat sangat berpengaruh terhadap efisiensi, fleksibilitas, dan

keakuratan implementasi algoritma. Beberapa bahasa pemrograman

telah terbukti sangat efektif dalam menyelesaikan persoalan numerik

karena menyediakan pustaka khusus, kemampuan pemrosesan numerik

tinggi, serta kemudahan dalam manipulasi data dan visualisasi. Di antara

bahasa yang paling populer digunakan adalah Python, MATLAB,

C/C++, dan Fortran.

 17 Buku Referensi

Python telah menjadi pilihan utama dalam berbagai komunitas

ilmiah dan teknik karena sintaksisnya yang sederhana serta dukungan

pustaka numerik yang sangat luas. Pustaka seperti NumPy dan SciPy

menyediakan fungsi-fungsi penting untuk aljabar linier, kalkulus

numerik, statistik, dan integrasi diferensial, yang membuat implementasi

algoritma numerik menjadi lebih mudah dan efisien. Python juga

mendukung visualisasi hasil perhitungan melalui Matplotlib atau

Seaborn, serta terintegrasi dengan pustaka lain seperti Pandas untuk

analisis data dan SymPy untuk komputasi simbolik. Kelebihan utama

Python adalah kemampuannya untuk beradaptasi lintas disiplin, mulai

dari teknik hingga sains data.

MATLAB merupakan bahasa yang secara khusus dirancang

untuk perhitungan matriks dan analisis numerik. Dengan lingkungan

interaktifnya yang kuat, MATLAB memudahkan pengguna untuk

menulis skrip, menguji algoritma numerik, dan memvisualisasikan hasil

dalam bentuk grafik atau animasi. MATLAB sangat populer di

lingkungan akademik dan industri teknik, khususnya dalam simulasi

kontrol, sistem dinamis, dan pemrosesan sinyal.

C dan C++ digunakan ketika performa dan kecepatan eksekusi

menjadi prioritas utama, seperti dalam simulasi numerik berskala besar

atau real-time. Bahasa ini memungkinkan akses langsung ke memori dan

prosesor, serta kompatibel dengan pustaka numerik seperti BLAS dan

LAPACK yang mendukung operasi numerik tingkat lanjut. Untuk

aplikasi besar dan kompleks, C++ sering dikombinasikan dengan Python

(melalui bindings) agar memperoleh keseimbangan antara performa dan

kemudahan coding.

Fortran, meskipun tergolong bahasa lama, masih banyak

digunakan dalam komputasi ilmiah, khususnya dalam pemodelan fisik

dan simulasi cuaca. Bahasa ini dirancang untuk efisiensi dalam

pemrosesan numerik dan masih menjadi tulang punggung banyak sistem

legacy yang digunakan di institusi riset dan badan antariksa. Setiap

bahasa memiliki keunggulan dan kekhususannya, sehingga pemilihan

bahasa pemrograman dalam komputasi numerik sangat tergantung pada

kebutuhan aplikasi, skala data, serta tingkat kompleksitas algoritma yang

akan digunakan.

18 Pemrograman dan Komputasi Numerik

3. Automasi dan Reproduksibilitas Proses Numerik

Automasi dan reproduksibilitas merupakan dua aspek penting

dalam komputasi numerik modern yang sangat dipengaruhi oleh

kemampuan pemrograman. Automasi merujuk pada proses menjalankan

algoritma numerik secara otomatis tanpa campur tangan manual yang

terus-menerus, sedangkan reproduksibilitas mengacu pada kemampuan

untuk mengulangi proses komputasi dengan hasil yang konsisten ketika

menggunakan data dan parameter yang sama. Dalam konteks pemecahan

masalah numerik yang kompleks, kedua aspek ini sangat krusial untuk

menjamin efisiensi kerja, keakuratan hasil, dan integritas ilmiah.

Dengan menggunakan bahasa pemrograman seperti Python,

MATLAB, atau R, para peneliti dan praktisi dapat mengotomatisasi

seluruh rangkaian proses numerik, mulai dari input data, eksekusi

algoritma, hingga analisis dan visualisasi hasil. Contohnya, dalam proses

simulasi numerik untuk penyelesaian persamaan diferensial parsial

(PDE), pengguna bisa menulis skrip yang secara otomatis membaca

parameter dari file konfigurasi, menjalankan iterasi hingga konvergensi

tercapai, dan menyimpan hasil dalam bentuk grafik atau file data. Ini

tidak hanya menghemat waktu, tetapi juga mengurangi risiko kesalahan

manusia dalam penginputan data atau pengoperasian perangkat lunak

secara manual.

Automasi juga memungkinkan dilakukannya eksperimen

numerik berskala besar, seperti studi sensitivitas parameter atau

optimisasi multi-variasi, yang akan sangat memakan waktu jika

dilakukan secara manual. Dengan pendekatan berbasis kode, ribuan

simulasi dapat dijalankan dalam sekali waktu, baik secara berurutan

maupun paralel, sehingga mempercepat proses pengambilan keputusan

berbasis data.

Reproduksibilitas merupakan fondasi penting dalam dunia

akademik dan riset. Ketika proses numerik dituangkan dalam skrip yang

terdokumentasi dan terdigitalisasi, siapa pun dapat mengeksekusi ulang

perhitungan tersebut dengan hasil identik selama parameter dan

lingkungan eksekusinya sama. Hal ini penting untuk validasi, peer

review, dan pengembangan lebih lanjut dari penelitian yang sudah ada.

Bahkan dalam industri, reproduksibilitas mendukung kontrol kualitas

dan pemeliharaan sistem numerik jangka panjang. Dengan demikian,

pemrograman tidak hanya menjadi alat bantu teknis, tetapi juga penjamin

keberlanjutan, konsistensi, dan kredibilitas proses numerik, baik dalam

 19 Buku Referensi

skala akademik, industri, maupun kebijakan publik yang berbasis model

numerik.

4. Pemrograman untuk Visualisasi dan Analisis Hasil

Pada komputasi numerik, hasil perhitungan sering kali berupa

deretan angka atau matriks yang sulit diinterpretasikan secara langsung

tanpa bantuan visualisasi. Oleh karena itu, pemrograman berperan

penting dalam mentransformasikan hasil numerik menjadi representasi

visual yang lebih informatif dan mudah dianalisis. Visualisasi tidak

hanya berfungsi sebagai alat bantu presentasi, tetapi juga menjadi sarana

eksploratif untuk memahami perilaku sistem, mengidentifikasi pola,

menganalisis tren, serta mendeteksi anomali atau kesalahan numerik

sejak dini.

Bahasa pemrograman seperti Python, MATLAB, dan R

menyediakan pustaka dan fungsi khusus untuk visualisasi data numerik.

Di Python, pustaka seperti Matplotlib, Seaborn, dan Plotly

memungkinkan pengguna membuat grafik 2D dan 3D, peta kontur,

diagram permukaan, hingga animasi dinamis. Misalnya, dalam

penyelesaian numerik persamaan diferensial, pengguna dapat memplot

solusi terhadap waktu untuk memantau stabilitas dan konvergensi

algoritma. Jika solusi tampak mengalami osilasi atau divergensi, maka

pengaturan ulang parameter numerik bisa dilakukan sebelum berlanjut

ke langkah berikutnya. Dengan demikian, visualisasi berfungsi juga

sebagai alat diagnosis numerik.

Analisis hasil numerik juga dapat diotomatisasi melalui

pemrograman. Ini mencakup perhitungan galat (error), evaluasi

konvergensi, perbandingan metode numerik, serta estimasi performa

algoritma berdasarkan waktu eksekusi atau jumlah iterasi. Sebagai

contoh, dalam komputasi metode Runge-Kutta untuk ODE, kita bisa

membuat skrip yang otomatis membandingkan hasil numerik dengan

solusi analitik dan menghitung galat relatif di setiap titik.

Visualisasi yang dihasilkan dari pemrograman juga berperan

besar dalam komunikasi ilmiah. Grafik yang jelas dan interaktif

membantu menyampaikan temuan kepada audiens teknis maupun non-

teknis, termasuk dalam laporan penelitian, presentasi, atau publikasi.

Dengan mengintegrasikan hasil komputasi, analisis, dan visualisasi

dalam satu alur kerja berbasis kode, pemrograman tidak hanya

memperkuat pemahaman hasil, tetapi juga mendorong efisiensi,

20 Pemrograman dan Komputasi Numerik

transparansi, dan dokumentasi yang baik dalam proses ilmiah dan

rekayasa berbasis numerik.

 21 Buku Referensi

BAB II

BAHASA PEMROGRAMAN

UNTUK KOMPUTASI

Di era digital yang serba cepat dan berbasis data, penguasaan

bahasa pemrograman menjadi fondasi utama bagi siapa pun yang ingin

mengembangkan solusi komputasional terhadap persoalan matematika

dan ilmiah yang kompleks. Pemilihan bahasa pemrograman yang tepat

tidak hanya berdampak pada efisiensi proses komputasi, tetapi juga pada

akurasi, skalabilitas, dan kemudahan integrasi dengan berbagai sistem

analitik. Oleh karena itu, bab ini membahas berbagai bahasa

pemrograman populer seperti Python, MATLAB, Julia, Fortran, dan

C++, serta membahas karakteristik, kelebihan, dan kelemahannya

masing-masing dalam konteks numerik. Lebih lanjut, bab ini membahas

bagaimana struktur sintaksis, paradigma pemrograman, serta pustaka

atau modul yang tersedia dapat memengaruhi kinerja dan efektivitas

solusi numerik yang dibangun.

A. Pemilihan Bahasa: Python, MATLAB, atau C++

Pemrograman untuk komputasi numerik menuntut efisiensi,

fleksibilitas, dan akurasi dalam menangani data serta proses perhitungan

kompleks. Tiga bahasa yang umum digunakan dalam bidang ini adalah

Python, MATLAB, dan C++. Setiap bahasa memiliki kekuatan dan

kelemahan tersendiri, bergantung pada konteks penggunaannya. Oleh

karena itu, pemilihan bahasa pemrograman yang tepat sangat penting

dalam menentukan keberhasilan proyek numerik dan ilmiah.

22 Pemrograman dan Komputasi Numerik

1. Python

Python adalah salah satu bahasa pemrograman paling populer

dan serbaguna di era modern, terutama dalam bidang komputasi

numerik, data science, kecerdasan buatan, dan pengembangan aplikasi

ilmiah. Dikembangkan pertama kali oleh Guido van Rossum pada tahun

1991, Python dirancang dengan filosofi kesederhanaan sintaks dan

keterbacaan kode yang tinggi, menjadikannya sangat mudah diakses oleh

pemula tanpa mengorbankan kekuatan dan fleksibilitas untuk pengguna

tingkat lanjut. Python merupakan bahasa pemrograman tingkat tinggi

yang bersifat open-source, lintas platform, dan berparadigma multipel

mendukung pemrograman prosedural, berorientasi objek, maupun

fungsional.

Pada konteks komputasi numerik, Python menonjol karena

ketersediaan pustaka (library) yang sangat kaya dan kuat. Salah satu

pustaka paling fundamental adalah NumPy (Numerical Python), yang

memungkinkan manipulasi array multidimensi, operasi vektor-matriks,

transformasi linier, dan berbagai fungsi matematika tingkat lanjut.

NumPy menjadi dasar bagi banyak pustaka numerik lainnya dan

memberikan efisiensi komputasi tinggi karena ditulis sebagian besar

dalam C, yang membuat Python tetap kompetitif dari sisi performa.

Selain itu, SciPy memperluas kemampuan ini dengan menyediakan

fungsi-fungsi ilmiah seperti integrasi numerik, optimasi, aljabar linear

lanjutan, statistik, dan pemrosesan sinyal.

Python juga sangat unggul dalam bidang visualisasi data. Pustaka

seperti Matplotlib memungkinkan pembuatan grafik dua dan tiga

dimensi, sedangkan Seaborn dan Plotly menawarkan kemampuan

visualisasi statistik dan interaktif yang lebih modern dan estetik. Hal ini

sangat penting dalam komputasi numerik karena memungkinkan

pengguna tidak hanya menghitung data, tetapi juga

memvisualisasikannya untuk pemahaman yang lebih baik dan penyajian

hasil yang informatif.

Kelebihan Python tidak berhenti di sana. Dalam praktik

pengembangan sistem komputasi yang lebih kompleks, Python dapat

diintegrasikan dengan bahasa lain seperti C/C++ menggunakan Cython

atau ctypes, serta dengan Fortran melalui f2py, sehingga memungkinkan

penggabungan antara kemudahan pemrograman Python dan kecepatan

eksekusi dari bahasa compiled. Python juga memiliki kerangka kerja

Jupyter Notebook, yang sangat populer di kalangan ilmuwan data dan

 23 Buku Referensi

akademisi karena memungkinkan kombinasi antara kode, grafik, dan

dokumentasi dalam satu antarmuka interaktif.

Ketersediaan komunitas global yang sangat besar, dokumentasi

luas, dan pembaruan yang aktif menjadikan Python sangat adaptif

terhadap kebutuhan zaman. Tidak heran jika Python kini menjadi bahasa

utama dalam banyak bidang dari pengolahan citra, pemodelan keuangan,

bioinformatika, hingga komputasi kuantum. Bahkan, banyak lembaga

pendidikan dan universitas menggantikan MATLAB atau Java dengan

Python dalam pengajaran pemrograman dan matematika komputasi.

Namun Python, sebagai bahasa interpreted, memiliki kelemahan dalam

hal kecepatan eksekusi murni dibandingkan bahasa compiled seperti

C++. Untuk komputasi skala besar atau real-time, optimalisasi kode dan

penggunaan pustaka eksternal sering kali dibutuhkan agar performa tetap

optimal. Meski demikian, karena kemudahan penggunaan dan

skalabilitasnya, Python tetap menjadi pilihan utama bagi banyak praktisi

komputasi numerik masa kini.

2. MATLAB

MATLAB, singkatan dari Matrix Laboratory, adalah lingkungan

komputasi numerik dan bahasa pemrograman tingkat tinggi yang

dikembangkan oleh MathWorks. Sejak diperkenalkan pada awal 1980-

an oleh Cleve Moler, MATLAB telah menjadi standar industri dan

akademik dalam bidang teknik, matematika terapan, dan sains komputer.

Fokus utama MATLAB adalah manipulasi matriks, pengembangan

algoritma, pemodelan sistem, serta visualisasi dan analisis data. Dengan

basis desain yang sangat berorientasi pada komputasi matriks, MATLAB

sangat efisien dalam menangani perhitungan numerik, aljabar linear, dan

simulasi sistem kompleks yang menjadi tulang punggung di banyak

bidang teknik.

Salah satu keunggulan utama MATLAB adalah lingkungan

pengembangan terintegrasi (IDE) yang sangat ramah pengguna.

Pengguna dapat menulis kode, menjalankan perintah secara interaktif,

memvisualisasikan hasil, serta membuat grafik 2D dan 3D dengan sangat

mudah. Sintaks MATLAB sangat mirip dengan notasi matematika

konvensional, sehingga memudahkan pengguna dari latar belakang non-

informatika untuk mengimplementasikan rumus dan algoritma secara

langsung tanpa perlu memahami konsep pemrograman tingkat rendah

seperti manajemen memori atau pointer. Misalnya, penjumlahan dua

24 Pemrograman dan Komputasi Numerik

matriks, solusi sistem persamaan linear, atau plotting fungsi bisa

dilakukan hanya dengan beberapa baris kode.

MATLAB juga dikenal karena kekayaan toolbox, modul

tambahan khusus yang menyediakan fungsi-fungsi siap pakai untuk

berbagai disiplin ilmu. Beberapa toolbox populer antara lain Signal

Processing Toolbox, Image Processing Toolbox, Control System

Toolbox, dan Optimization Toolbox. Kemampuan ini menjadikan

MATLAB sangat disukai dalam lingkungan penelitian dan pengajaran

karena memungkinkan eksplorasi dan eksperimen cepat tanpa harus

membangun algoritma dari nol. Selain itu, Simulink, sebagai bagian dari

MATLAB, merupakan platform pemodelan dan simulasi sistem dinamis

berbasis blok diagram yang banyak digunakan di industri otomotif,

dirgantara, dan elektronik untuk desain sistem kendali dan sistem

embedded.

Pada konteks komputasi numerik tingkat lanjut, MATLAB

menyediakan fungsi-fungsi numerik yang sangat stabil dan telah teruji

secara luas, seperti metode numerik untuk penyelesaian persamaan

diferensial, integrasi numerik, interpolasi, optimasi, dan dekomposisi

matriks. Fungsi-fungsi ini dirancang dengan mempertimbangkan

kestabilan numerik, efisiensi komputasi, dan kemudahan penggunaan.

Selain itu, MATLAB mendukung paralelisasi komputasi dan komputasi

GPU melalui Parallel Computing Toolbox, memungkinkan eksekusi

program besar atau intensif data secara efisien pada kluster komputer

atau perangkat keras modern.

Kelemahan utama MATLAB terletak pada model lisensinya

yang komersial dan mahal, baik untuk lisensi individu, institusi, maupun

toolbox tambahan. Ini menjadi kendala serius bagi pelajar, institusi kecil,

atau proyek open-source yang mengandalkan akses bebas. Selain itu,

MATLAB bukanlah bahasa open-source, sehingga pengembangan atau

integrasi lintas sistem sering kali tidak sefleksibel bahasa lain seperti

Python. Meskipun demikian, untuk proyek-proyek teknik formal dan

kebutuhan industri yang menuntut presisi tinggi, dokumentasi kuat, serta

dukungan teknis resmi, MATLAB tetap menjadi pilihan unggulan.

3. C++

C++ adalah bahasa pemrograman yang dirancang untuk

memberikan kekuatan performa, fleksibilitas, dan kontrol rendah

terhadap perangkat keras, menjadikannya sangat ideal untuk

 25 Buku Referensi

pengembangan aplikasi komputasi numerik berskala besar dan sistem

yang memerlukan efisiensi tinggi. Diperkenalkan oleh Bjarne Stroustrup

pada awal 1980-an sebagai ekstensi dari bahasa C, C++ menggabungkan

paradigma pemrograman prosedural dengan kemampuan berorientasi

objek, sekaligus mendukung paradigma generik dan fungsional.

Kombinasi ini memberikan kemampuan luar biasa dalam mendesain

struktur data kompleks, mengelola memori secara eksplisit, serta

menyusun sistem modular dan skalabel, semua sangat penting dalam

aplikasi komputasi ilmiah dan teknik.

Pada konteks komputasi numerik, C++ unggul dalam hal

kecepatan eksekusi karena merupakan bahasa compiled, kode

sumbernya dikompilasi langsung menjadi kode mesin sebelum

dijalankan. Hal ini memberikan keunggulan signifikan dibanding bahasa

interpreted seperti Python atau MATLAB, terutama dalam tugas-tugas

intensif seperti simulasi numerik skala besar, pemodelan dinamika

fluida, perhitungan finite element, atau pemrosesan data waktu nyata.

Selain itu, C++ mendukung pengelolaan memori manual, yang

memungkinkan pengguna mengoptimalkan penggunaan RAM dan

menghindari overhead dari garbage collection, meskipun hal ini juga

menuntut kehati-hatian tinggi agar tidak menyebabkan kebocoran

memori (memory leak) atau crash.

C++ memiliki ekosistem pustaka numerik yang luas dan kuat. Di

antaranya adalah Eigen, sebuah pustaka template untuk aljabar linear,

dekomposisi matriks, dan analisis eigenvalue yang sangat efisien dan

banyak digunakan dalam pemrosesan citra serta machine learning. Ada

juga Armadillo, yang menyederhanakan sintaks komputasi numerik

dengan performa mendekati Fortran. Boost, salah satu pustaka

terlengkap dalam komunitas C++, menyediakan algoritma numerik,

struktur data kompleks, dan utilitas lain yang berguna dalam

pengembangan aplikasi ilmiah. Pustaka-pustaka ini menjadikan C++

sangat kompetitif dalam membangun sistem komputasi modern yang

membutuhkan kombinasi kecepatan dan akurasi.

C++ juga digunakan secara luas dalam pengembangan software

sistem dan perangkat keras tertanam (embedded systems), seperti

firmware, sistem kendali robotik, simulasi fisika, dan grafika komputer.

Banyak aplikasi ilmiah dan industri skala besar, seperti OpenFOAM

(simulasi fluida), ANSYS (analisis teknik), atau Blender (grafik 3D),

menggunakan C++ sebagai bahasa inti karena keunggulannya dalam

26 Pemrograman dan Komputasi Numerik

menangani perhitungan besar secara efisien dan andal. Namun,

kompleksitas sintaks dan kurva pembelajaran yang relatif tinggi menjadi

tantangan utama bagi pengguna baru. Penulisan kode yang optimal

memerlukan pemahaman mendalam tentang manajemen memori,

struktur data, dan prinsip-prinsip pemrograman yang baik. Kesalahan

kecil seperti dereferensi pointer yang salah atau buffer overflow bisa

berakibat fatal pada program. Oleh karena itu, C++ lebih cocok

digunakan oleh pengembang yang memiliki pengalaman cukup atau

untuk proyek-proyek yang benar-benar membutuhkan efisiensi

maksimal.

B. Struktur Dasar Pemrograman: Variabel, Tipe Data, dan

Struktur Kontrol

Di dunia pemrograman, memahami struktur dasar adalah fondasi

yang sangat penting sebelum seseorang dapat mengembangkan

algoritma atau membangun aplikasi yang kompleks. Struktur dasar

pemrograman mencakup tiga komponen utama: variabel, tipe data, dan

struktur kontrol. Ketiganya membentuk kerangka logika dan operasional

dari sebuah program komputer. Tanpa pemahaman yang baik tentang

konsep ini, akan sangat sulit untuk membuat program yang efektif,

efisien, dan bebas dari kesalahan.

1. Variabel

Variabel merupakan salah satu konsep paling fundamental dalam

pemrograman yang berfungsi sebagai penampung data sementara di

dalam memori komputer. Dalam istilah sederhana, variabel dapat

dianalogikan sebagai "wadah" yang diberi nama tertentu, di mana kita

dapat menyimpan nilai, mengubah nilainya, dan menggunakannya

kembali dalam berbagai operasi. Variabel memungkinkan suatu program

menyimpan informasi secara dinamis selama proses eksekusi

berlangsung. Tanpa variabel, program tidak akan mampu menyimpan

hasil perhitungan, menampung input pengguna, atau mengatur alur

logika berdasarkan data yang berubah-ubah.

Setiap variabel memiliki nama, tipe data, dan nilai. Nama

variabel adalah identitas unik yang digunakan untuk merujuk ke nilai

yang disimpan. Penamaan variabel biasanya mengikuti aturan sintaks

tertentu tergantung bahasa pemrograman yang digunakan, misalnya

 27 Buku Referensi

harus diawali dengan huruf atau garis bawah (_), tidak mengandung

spasi, dan tidak menggunakan kata kunci bawaan bahasa. Pemilihan

nama variabel yang baik dan deskriptif, seperti total nilai, nama

pengguna, atau kecepatan mobil, sangat dianjurkan untuk meningkatkan

keterbacaan dan pemeliharaan kode.

Tipe data yang terkait dengan variabel menentukan jenis nilai

yang dapat disimpan di dalamnya, seperti bilangan bulat (integer),

bilangan desimal (float atau double), karakter tunggal (char), atau

kumpulan karakter (string). Dalam bahasa pemrograman seperti C++,

tipe data variabel harus dideklarasikan secara eksplisit. Contoh:

Sementara dalam bahasa seperti Python, penetapan tipe data

dilakukan secara implisit oleh interpreter berdasarkan nilai yang

diberikan, karena Python merupakan bahasa bertipe dinamis. Contoh:

Variabel dalam pemrograman juga memiliki ruang lingkup

(scope) dan masa hidup (lifetime). Ruang lingkup menunjukkan di

bagian mana dari kode program variabel tersebut dapat diakses. Variabel

lokal hanya dapat diakses dalam fungsi atau blok tempat ia

dideklarasikan, sedangkan variabel global dapat diakses dari seluruh

bagian program. Masa hidup variabel berkaitan dengan berapa lama

variabel akan "hidup" di dalam memori, biasanya tergantung pada

tempat deklarasinya, variabel lokal akan hilang setelah blok program

selesai dijalankan, sedangkan variabel global tetap ada sepanjang

eksekusi program.

Fungsi utama variabel dalam program adalah untuk menyimpan

input, menyimpan hasil perhitungan, mengontrol struktur alur program,

dan menyederhanakan penulisan kode. Misalnya, hasil penjumlahan dua

angka dapat disimpan dalam variabel hasil, lalu digunakan kembali

28 Pemrograman dan Komputasi Numerik

dalam operasi atau kondisi berikutnya. Tanpa variabel, setiap nilai harus

dihitung dan dituliskan ulang secara manual, yang tidak efisien dan

rawan kesalahan.

2. Tipe Data

Tipe data (data type) adalah salah satu konsep paling penting

dalam pemrograman yang menentukan jenis nilai apa yang dapat

disimpan dalam sebuah variabel, serta operasi apa yang sah untuk

dilakukan terhadap nilai tersebut. Tipe data mendefinisikan bagaimana

data direpresentasikan di dalam memori komputer dan bagaimana

bahasa pemrograman memperlakukannya dalam berbagai ekspresi dan

fungsi. Tanpa sistem tipe data yang jelas, pengolahan data dalam

pemrograman akan menjadi tidak terstruktur dan rentan terhadap

kesalahan logika atau sintaks.

Secara umum, tipe data dibedakan menjadi dua kategori besar:

tipe data primitif dan tipe data non-primitif (kompleks). Tipe data primitif

mencakup jenis-jenis data paling dasar seperti bilangan bulat (integer),

bilangan desimal (float atau double), karakter (char), dan nilai logika

(boolean). Misalnya, int digunakan untuk menyimpan angka bulat

seperti 100, sedangkan float digunakan untuk menyimpan angka pecahan

seperti 3.14. Tipe char menyimpan satu karakter tunggal, seperti 'A', dan

boolean menyimpan nilai logika true atau false, yang sangat berguna

dalam struktur kontrol seperti pernyataan if dan while.

Tipe data non-primitif, di sisi lain, mencakup struktur yang lebih

kompleks dan terdiri dari beberapa nilai, seperti string, array, list, tuple,

set, dictionary, dan objek. Misalnya, string adalah kumpulan karakter

yang membentuk teks seperti "Halo Dunia", sedangkan array

menyimpan kumpulan elemen yang sejenis dalam urutan tertentu. Dalam

Python, list digunakan untuk menyimpan sekumpulan nilai yang dapat

terdiri dari berbagai tipe data, dan dictionary digunakan untuk

menyimpan pasangan kunci-nilai. Sementara dalam bahasa C++,

struktur seperti struct dan class memungkinkan programmer untuk

mendefinisikan tipe data kustom yang sesuai dengan kebutuhan logika

bisnis atau representasi objek dalam dunia nyata.

Setiap bahasa pemrograman memiliki cara tersendiri dalam

menangani tipe data. Bahasa seperti C dan C++ bersifat statically typed,

artinya tipe data harus ditentukan secara eksplisit saat mendeklarasikan

variabel. Ini membantu program mendeteksi kesalahan tipe data sejak

 29 Buku Referensi

proses kompilasi. Sebaliknya, bahasa seperti Python dan JavaScript

bersifat dynamically typed, yang berarti tipe data ditentukan secara

otomatis saat program dijalankan, memberikan fleksibilitas lebih tetapi

berisiko menimbulkan kesalahan runtime jika tidak ditangani dengan

hati-hati.

Banyak bahasa pemrograman modern mendukung konversi tipe

data (type casting), yang memungkinkan perubahan tipe data dari satu

bentuk ke bentuk lain, seperti dari int ke float, atau dari string ke int.

Namun, konversi ini harus dilakukan dengan hati-hati karena berpotensi

menyebabkan kehilangan data atau kesalahan logika jika tidak sesuai.

Pemilihan tipe data yang tepat sangat penting dalam pengembangan

perangkat lunak. Misalnya, menggunakan float untuk perhitungan

keuangan dapat menyebabkan ketidakakuratan karena representasi biner

angka desimal, sehingga disarankan menggunakan tipe data khusus

seperti Decimal dalam Python atau BigDecimal dalam Java. Di sisi lain,

penggunaan boolean memungkinkan logika kontrol program menjadi

lebih eksplisit dan mudah dimengerti.

3. Struktur Kontrol

Struktur kontrol adalah komponen penting dalam pemrograman

yang memungkinkan program untuk mengatur alur eksekusi instruksi

berdasarkan kondisi tertentu atau pengulangan perintah. Tanpa struktur

kontrol, program hanya akan mengeksekusi perintah secara linear dari

atas ke bawah, tanpa kemampuan untuk membuat keputusan atau

melakukan iterasi. Struktur kontrol memberikan kemampuan kepada

program untuk menjadi dinamis, fleksibel, dan cerdas dalam merespons

data atau input yang berubah-ubah. Secara umum, struktur kontrol

terbagi menjadi tiga kategori utama: percabangan

(conditional/selection), perulangan (looping/iteration), dan transfer

kontrol. Masing-masing kategori memiliki peran yang berbeda namun

saling melengkapi dalam menyusun logika program.

Pertama, struktur percabangan memungkinkan program untuk

memilih satu dari beberapa jalur eksekusi berdasarkan kondisi tertentu.

Dalam banyak bahasa pemrograman seperti Python, C++, dan Java,

bentuk umum dari struktur ini adalah if, else if (elif di Python), dan else.

Misalnya, jika sebuah nilai memenuhi syarat tertentu (seperti nilai ujian

≥ 75), maka program akan menampilkan "Lulus"; jika tidak, maka akan

menampilkan "Tidak Lulus". Selain if-else, ada juga switch-case dalam

30 Pemrograman dan Komputasi Numerik

bahasa seperti C++ dan Java yang digunakan untuk menangani banyak

kondisi secara lebih terstruktur. Percabangan sangat penting dalam

pengambilan keputusan logis, misalnya dalam sistem login, verifikasi

data, atau pengkategorian nilai.

Kedua, struktur perulangan (looping) digunakan untuk

mengeksekusi blok kode secara berulang selama kondisi tertentu masih

terpenuhi. Dua bentuk perulangan yang paling umum adalah for dan

while. For biasanya digunakan ketika jumlah iterasi sudah diketahui

sebelumnya, sedangkan while digunakan untuk perulangan yang

bergantung pada kondisi yang bersifat dinamis. Contohnya, for i in range

(10) di Python akan mencetak angka dari 0 hingga 9, sedangkan while

saldo > 0 bisa digunakan untuk terus mengurangi saldo hingga mencapai

nol. Looping sangat berguna dalam pemrosesan data, penghitungan

matematis berulang, atau pengolahan array dan daftar panjang.

Ketiga, ada transfer kontrol, yaitu perintah khusus yang

mengalihkan alur eksekusi program di luar jalur normal. Instruksi seperti

break, continue, dan return termasuk dalam kategori ini. Break

digunakan untuk keluar dari loop sebelum kondisi selesai, continue

untuk melewati satu iterasi dan langsung lanjut ke iterasi berikutnya,

sedangkan return digunakan dalam fungsi untuk mengembalikan nilai

sekaligus mengakhiri eksekusi fungsi tersebut. Struktur transfer ini

memperkaya fleksibilitas program dalam mengatur alur logikanya secara

lebih presisi.

Gambar 2. Kecerdasan Buatan

Sumber: Codepolitan

 31 Buku Referensi

Struktur kontrol juga erat kaitannya dengan pengendalian alur

logika algoritmik. Dalam pemrograman tingkat lanjut seperti rekursi,

struktur kontrol menjadi instrumen utama dalam mengatur pemanggilan

fungsi berulang. Begitu pula dalam pengembangan antarmuka grafis,

kecerdasan buatan, dan simulasi fisika komputasional, struktur kontrol

berperan sentral dalam membangun perilaku sistem yang adaptif.

C. Fungsi dan Modularisasi Program

Di dunia pemrograman modern, membangun program yang baik

bukan hanya soal menghasilkan keluaran yang benar, tetapi juga tentang

bagaimana program tersebut disusun secara terstruktur, mudah dibaca,

efisien, dan mudah dikelola dalam jangka panjang. Fungsi (function) dan

modularisasi program merupakan dua konsep penting yang menjadi

landasan dalam pencapaian tujuan tersebut. Fungsi memungkinkan

programmer memecah program menjadi bagian-bagian kecil yang dapat

digunakan kembali, sementara modularisasi menciptakan arsitektur

sistem yang lebih tertata dan fleksibel. Keduanya merupakan prinsip

utama dalam rekayasa perangkat lunak berbasis praktik terbaik dan

sangat penting dalam pengembangan perangkat lunak skala besar.

Menurut Kernighan dan Ritchie (1988) dalam The C

Programming Language, fungsi adalah blok kode mandiri yang

dirancang untuk melakukan tugas tertentu dan dapat dipanggil berulang

kali dari bagian lain dalam program (Kernighan & Ritchie, 1988).

Dengan kata lain, fungsi bertindak seperti "mesin kecil" yang menerima

input (parameter), memprosesnya, dan mengembalikan hasil (return

value) tanpa harus menulis ulang kode yang sama di berbagai tempat.

Contoh sederhana fungsi dalam Python dan C++:

32 Pemrograman dan Komputasi Numerik

Kedua contoh di atas menunjukkan bagaimana logika

perhitungan dapat dibungkus ke dalam satu fungsi yang bisa digunakan

berulang kali, cukup dengan memanggil nama fungsinya dan

memberikan parameter yang sesuai.

1. Manfaat Fungsi

Fungsi merupakan salah satu komponen kunci dalam

pemrograman modern yang memberikan berbagai manfaat penting

dalam menyusun kode yang efisien, terstruktur, dan mudah dikelola.

Fungsi adalah blok kode mandiri yang dirancang untuk melakukan tugas

tertentu. Dengan memisahkan logika program ke dalam fungsi-fungsi

kecil, seorang programmer dapat menciptakan sistem yang lebih

modular, mudah dipahami, dan dapat digunakan kembali. Salah satu

manfaat utama dari penggunaan fungsi adalah reusabilitas, yakni

kemampuan untuk menggunakan ulang potongan kode yang sama

berkali-kali tanpa harus menuliskannya dari awal. Ini tidak hanya

menghemat waktu, tetapi juga mengurangi kemungkinan terjadinya

kesalahan penulisan (human error) akibat duplikasi kode.

Fungsi juga meningkatkan keterbacaan (readability) dan

kejelasan struktur program. Ketika program dibagi ke dalam fungsi-

fungsi yang memiliki nama deskriptif, seperti hitung gaji, cek login, atau

tampilkan menu, pembaca kode akan lebih mudah memahami alur

program secara keseluruhan tanpa harus menelusuri seluruh detail

implementasi di setiap bagian. Ini sangat membantu dalam tim

pengembangan perangkat lunak, di mana kolaborasi antarprogrammer

menjadi lebih efektif karena pembagian tugas dapat dilakukan

berdasarkan fungsi.

Fungsi memungkinkan isolasi logika, yang berarti setiap bagian

program dapat diuji, diperbaiki, atau dimodifikasi tanpa memengaruhi

bagian lain. Pendekatan ini mendukung prinsip separation of concerns

dalam rekayasa perangkat lunak, yaitu memisahkan tanggung jawab

logika program ke dalam unit-unit kecil yang fokus pada satu tugas.

Dengan cara ini, pemeliharaan program (maintenance) menjadi lebih

mudah karena bug dapat dilokalisasi di dalam fungsi tertentu tanpa

menelusuri keseluruhan sistem. Lebih jauh, fungsi juga mendukung

pengembangan bertahap dan uji unit (unit testing). Karena setiap fungsi

dapat dieksekusi secara independen, pengembang dapat menguji satu per

satu fungsi secara terpisah sebelum mengintegrasikannya ke dalam

 33 Buku Referensi

sistem utama. Ini mempercepat proses debugging dan meningkatkan

keandalan program.

2. Parameter, Return, dan Scope

Pada pemrograman, ketika kita menggunakan fungsi, tiga konsep

penting yang perlu dipahami dengan baik adalah parameter, return, dan

scope. Ketiganya berkaitan erat dengan bagaimana fungsi

berkomunikasi dengan bagian lain dari program serta bagaimana data

dikirim, diproses, dan dikembalikan dalam alur eksekusi. Parameter

adalah nilai yang dikirimkan ke dalam fungsi saat fungsi dipanggil.

Parameter memungkinkan fungsi bekerja secara fleksibel terhadap

berbagai input tanpa harus menulis ulang logika kode. Misalnya, fungsi

hitung luas (sisi) menerima satu parameter sisi yang dapat bernilai apa

saja, sehingga fungsinya bisa digunakan untuk menghitung luas dari

berbagai ukuran persegi. Ada dua jenis parameter utama: parameter

formal, yaitu yang dideklarasikan dalam definisi fungsi, dan parameter

aktual (argumen), yaitu nilai yang diberikan saat fungsi dipanggil.

Return adalah nilai yang dikembalikan oleh fungsi kepada

pemanggilnya setelah fungsi selesai diproses. Return memungkinkan

hasil dari suatu perhitungan atau proses dalam fungsi digunakan kembali

di bagian lain program. Misalnya, return sisi-sisi akan mengembalikan

nilai luas ke pemanggilnya, yang bisa disimpan dalam variabel lain atau

langsung ditampilkan. Sementara itu, scope atau ruang lingkup,

mengatur di mana variabel dapat diakses dalam program. Variabel yang

dideklarasikan di dalam fungsi hanya berlaku di dalam fungsi itu saja

dan disebut variabel lokal. Sebaliknya, variabel global dideklarasikan di

luar fungsi dan bisa diakses dari manapun dalam program. Memahami

scope penting untuk mencegah konflik antarvariabel dan menjaga agar

data dalam fungsi tidak "bocor" ke luar, yang dapat menyebabkan

kesalahan logika.

3. Modularisasi Program

Modularisasi program adalah pendekatan dalam pemrograman

yang bertujuan untuk memecah sistem atau program besar menjadi

bagian-bagian kecil yang disebut modul, di mana masing-masing modul

memiliki tanggung jawab khusus dan independen. Pendekatan ini sangat

penting dalam pengembangan perangkat lunak karena mempermudah

manajemen kompleksitas, meningkatkan keterbacaan kode, serta

34 Pemrograman dan Komputasi Numerik

memfasilitasi pemeliharaan dan pengembangan berkelanjutan.

Modularisasi mendukung prinsip desain perangkat lunak seperti

separation of concerns dan single responsibility, yang menekankan

bahwa setiap bagian dari program sebaiknya hanya melakukan satu tugas

tertentu.

Setiap modul dalam program bisa berupa fungsi, kelas, atau

bahkan file terpisah yang memiliki logika tertentu, dan biasanya dapat

dipanggil dari bagian program lain melalui antarmuka (interface) yang

jelas. Misalnya, dalam sebuah aplikasi sistem kasir, modul-modul yang

umum digunakan meliputi modul input transaksi, modul hitung diskon,

modul cetak struk, dan modul laporan harian. Setiap modul ini bisa

dikembangkan, diuji, dan dimodifikasi secara terpisah tanpa

mengganggu modul lain. Hal ini memberikan keuntungan besar dalam

pengembangan tim, karena beberapa programmer bisa bekerja secara

paralel pada modul berbeda.

Salah satu manfaat utama dari modularisasi adalah reusabilitas

kode. Modul yang dirancang dengan baik dapat digunakan kembali di

berbagai proyek atau bagian lain dari sistem tanpa perlu menyalin ulang

kode. Selain itu, modularisasi meningkatkan kemudahan pengujian

(testability), karena setiap modul bisa diuji secara terpisah melalui teknik

unit testing, sehingga memudahkan deteksi dan perbaikan bug secara

lebih cepat dan akurat.

Modularisasi juga berkontribusi pada efisiensi pengembangan

dan perawatan sistem jangka panjang. Dalam sistem besar yang terus

berkembang, kebutuhan akan pembaruan, penggantian logika bisnis,

atau penambahan fitur baru sangat tinggi. Dengan struktur modular,

pengembang dapat fokus pada bagian tertentu tanpa harus memahami

seluruh program secara keseluruhan. Ini sangat krusial untuk

memastikan keberlanjutan sistem dalam jangka waktu yang lama,

terutama ketika terjadi pergantian tim pengembang.

Di sisi teknis, modularisasi juga mendukung penggunaan

kembali pustaka eksternal (library) dan pemanfaatan framework modern

yang berbasis arsitektur modular, seperti penggunaan modul dalam

Python (dengan import), file header dan source terpisah di C++, atau

modul service dalam arsitektur berbasis microservices. Dengan

demikian, modularisasi bukan sekadar praktik struktural, tetapi

merupakan strategi penting dalam menyusun program yang fleksibel,

scalable, dan maintainable. Kemampuan untuk memecah permasalahan

 35 Buku Referensi

besar menjadi bagian-bagian kecil yang bisa dikelola secara terpisah

adalah ciri utama dari pengembang perangkat lunak yang profesional.

Oleh karena itu, modularisasi program menjadi prinsip mendasar yang

wajib dikuasai dalam dunia pemrograman modern.

D. Visualisasi Data Numerik (Plotting dan Grafik)

Di era informasi yang didominasi oleh data, visualisasi data

numerik menjadi salah satu alat paling penting untuk membantu

pengguna memahami pola, tren, dan anomali dalam kumpulan data yang

kompleks. Visualisasi data, khususnya dalam bentuk plotting dan grafik,

merupakan proses transformasi angka-angka mentah menjadi

representasi visual yang lebih mudah dipahami dan dianalisis. Terutama

dalam bidang komputasi numerik, sains data, dan teknik, visualisasi

bukan hanya alat bantu tambahan, melainkan bagian esensial dari proses

eksplorasi, analisis, dan komunikasi hasil.

Menurut Ware (2012) dalam Information Visualization:

Perception for Design, representasi visual membantu otak manusia

memproses informasi secara lebih efisien dibandingkan dengan teks atau

angka mentah, karena visualisasi mampu memanfaatkan kekuatan

persepsi spasial dan pengenalan pola visual secara alami (Ware, C.,

2012). Dalam konteks data numerik, ini sangat relevan karena sebagian

besar data yang diolah berupa angka dalam jumlah besar, yang sulit

ditafsirkan secara langsung tanpa representasi visual.

1. Jenis-Jenis Grafik dalam Visualisasi Numerik

Pada visualisasi data numerik, pemilihan jenis grafik yang tepat

sangat penting untuk menyampaikan informasi dengan jelas dan akurat.

Berbagai jenis grafik dirancang untuk membahas aspek yang berbeda

dari data, seperti distribusi, hubungan antar variabel, komparasi antar

kategori, maupun tren terhadap waktu. Setiap jenis grafik memiliki

kekuatan tersendiri dalam mengungkapkan pola-pola tersembunyi dalam

angka-angka mentah. Grafik garis (line chart) adalah salah satu jenis

grafik paling umum dalam visualisasi numerik. Grafik ini digunakan

untuk menampilkan perubahan nilai dari waktu ke waktu, seperti

pertumbuhan populasi, harga saham, atau suhu harian. Karena

kemampuannya menunjukkan arah tren secara halus, grafik garis sangat

efektif dalam mengilustrasikan dinamika temporal dari data kontinu.

36 Pemrograman dan Komputasi Numerik

Grafik batang (bar chart) digunakan untuk membandingkan nilai

antar kategori diskrit. Misalnya, perbandingan hasil penjualan antar

produk, jumlah siswa per jurusan, atau pengeluaran tahunan berdasarkan

sektor. Bar chart memudahkan pengguna melihat kategori mana yang

paling dominan atau paling rendah, terutama dalam kasus data

terklasifikasi. Histogram, meskipun tampak mirip dengan bar chart,

berfungsi untuk menunjukkan distribusi frekuensi dari data numerik

yang dibagi dalam rentang interval. Histogram sangat berguna untuk

mengetahui sebaran nilai, seperti dalam pengukuran statistik tinggi

badan, waktu proses, atau nilai ujian.

Scatter plot (diagram sebar) memvisualisasikan hubungan antara

dua variabel numerik. Ini sangat penting dalam analisis korelasi dan

regresi, di mana kita ingin tahu apakah perubahan satu variabel berkaitan

dengan perubahan variabel lain. Scatter plot juga berguna untuk

mendeteksi outlier. Box plot menampilkan ringkasan statistik dari data,

termasuk median, kuartil, dan pencilan (outlier). Grafik ini sangat

berguna dalam analisis komparatif antar kelompok, misalnya

membandingkan nilai ujian antar kelas atau distribusi pendapatan antar

wilayah. Jenis lainnya termasuk pie chart untuk proporsi, heatmap untuk

korelasi, serta surface plot dan contour plot dalam visualisasi tiga

dimensi atau data spasial. Pemilihan jenis grafik harus

mempertimbangkan jenis data, tujuan analisis, dan target audiens agar

informasi yang ditampilkan benar-benar membantu pemahaman dan

pengambilan keputusan.

2. Tools dan Library untuk Plotting Data

Di dunia komputasi numerik dan analisis data, keberadaan tools

dan library untuk plotting data sangat penting dalam mendukung

visualisasi yang efektif. Alat-alat ini memungkinkan pengguna untuk

mengubah data numerik menjadi representasi grafis yang intuitif, seperti

grafik garis, batang, scatter, dan histogram. Berbagai bahasa

pemrograman populer seperti Python, MATLAB, R, dan platform

visualisasi modern menyediakan beragam pustaka dan antarmuka visual

yang memudahkan proses ini, mulai dari eksplorasi data awal hingga

presentasi akhir.

Python merupakan salah satu bahasa pemrograman yang paling

banyak digunakan dalam sains data dan visualisasi, karena memiliki

ekosistem pustaka yang kuat dan fleksibel. Matplotlib, pustaka plotting

 37 Buku Referensi

dasar di Python, memungkinkan pembuatan grafik 2D dengan kontrol

penuh terhadap setiap elemen visual, seperti judul, label sumbu, warna,

dan gaya garis. Untuk visualisasi statistik yang lebih estetis dan cepat,

Seaborn menjadi pilihan favorit, karena dibangun di atas Matplotlib dan

mampu membuat grafik seperti boxplot, heatmap, dan violin plot dengan

sintaks yang ringkas. Selain itu, Plotly dan Bokeh digunakan untuk

membuat grafik interaktif berbasis web yang sangat cocok untuk

dashboard dan aplikasi visualisasi data real-time.

MATLAB adalah tool proprietary yang sangat populer di bidang

teknik dan komputasi ilmiah. MATLAB menyediakan fungsi plotting

seperti plot, bar, surf, dan contour, yang sangat ideal untuk menampilkan

hasil komputasi numerik, simulasi, atau visualisasi fungsi matematis

dalam bentuk 2D maupun 3D. MATLAB dikenal karena kemudahan

penggunaannya serta kualitas grafik yang tinggi dan dapat dikustomisasi.

Untuk kebutuhan visualisasi tanpa kode, tersedia alat seperti Microsoft

Excel, Google Sheets, dan Tableau. Excel dan Google Sheets cocok

untuk visualisasi sederhana berbasis spreadsheet, seperti grafik batang

dan pie chart. Sedangkan Tableau menawarkan antarmuka drag-and-

drop untuk membuat visualisasi interaktif kompleks yang terhubung ke

berbagai sumber data.

3. Visualisasi dalam Proses Analisis dan Komputasi

Di dunia analisis data dan komputasi numerik, visualisasi bukan

hanya alat presentasi akhir, tetapi bagian penting dari keseluruhan proses

analisis yang membantu pengguna memahami, memverifikasi, dan

mengkomunikasikan hasil dengan lebih baik. Visualisasi berperan sejak

tahap eksplorasi awal data (exploratory data analysis/EDA), hingga

validasi model dan pelaporan hasil. Dengan mengubah angka-angka

menjadi bentuk grafis yang dapat dilihat secara intuitif, visualisasi

memungkinkan deteksi pola, anomali, atau kesalahan yang mungkin

tidak terlihat hanya melalui tabel data.

Pada tahap eksplorasi data, visualisasi membantu pengguna

mengenali distribusi, tren waktu, atau hubungan antar variabel.

Misalnya, dalam pemodelan statistik atau machine learning, scatter plot

dapat digunakan untuk melihat korelasi antara dua variabel numerik

sebelum diterapkan regresi. Demikian juga, histogram atau box plot

berguna untuk mengevaluasi persebaran dan outlier, yang sangat penting

untuk menjaga integritas model komputasi. Pada konteks komputasi

38 Pemrograman dan Komputasi Numerik

numerik, visualisasi berperan penting dalam memantau proses iteratif

atau solutif, seperti penyelesaian persamaan diferensial numerik,

simulasi fluida (CFD), atau optimasi non-linear. Sebagai contoh, dalam

metode Euler atau Runge-Kutta, grafik solusi terhadap waktu membantu

mengevaluasi stabilitas dan akurasi pendekatan numerik yang

digunakan. Tanpa visualisasi, peneliti hanya akan melihat deretan angka

yang sulit dievaluasi secara intuitif.

Visualisasi berperan dalam verifikasi dan validasi model

komputasi. Hasil simulasi atau prediksi dapat dibandingkan dengan data

aktual melalui grafik overlay, sehingga memudahkan penilaian terhadap

tingkat kesesuaian model. Bahkan dalam pengembangan sistem berbasis

kecerdasan buatan, seperti neural network, visualisasi dari loss function

atau akurasi terhadap epoch sangat penting dalam menentukan

keberhasilan proses pelatihan. Akhirnya, dalam pelaporan dan

komunikasi hasil analisis, visualisasi mempermudah penyampaian

informasi kepada pihak yang tidak teknis. Grafik yang tepat dapat

menjembatani pemahaman antara analis dan pengambil keputusan. Oleh

karena itu, integrasi visualisasi dalam setiap tahap analisis dan komputasi

adalah praktik terbaik yang wajib diterapkan dalam pengolahan data

modern.

 39 Buku Referensi

BAB III

REPRESENTASI

BILANGAN DAN

ARITMETIKA KOMPUTASI

Representasi bilangan dan aritmetika komputasi merupakan

fondasi utama dalam memahami cara kerja sistem komputasi modern.

Dalam dunia digital, bilangan tidak disimpan sebagaimana manusia

memahaminya dalam bentuk desimal, melainkan dalam representasi

biner, oktal, atau heksadesimal yang lebih sesuai dengan arsitektur

perangkat keras. Pemahaman mengenai bagaimana bilangan bulat,

bilangan pecahan, maupun bilangan floating-point direpresentasikan

dalam komputer sangat penting untuk menghindari kesalahan komputasi

yang tampak sepele namun berdampak besar, seperti pembulatan atau

underflow dan overflow. Aritmetika komputasi juga menyangkut

operasi-operasi dasar seperti penjumlahan, pengurangan, perkalian, dan

pembagian yang dilakukan dalam format terbatas dan presisi tertentu.

Dalam bab ini, membahas bagaimana komputer menangani bilangan

secara internal, termasuk struktur IEEE 754 untuk floating-point, serta

bagaimana kesalahan numerik dapat muncul dan dikendalikan.

A. Representasi Bilangan Floating point dan Biner

Di dunia komputasi modern, representasi data numerik berperan

yang sangat penting. Komputer tidak bekerja dengan angka sebagaimana

manusia melakukannya; melainkan, semua bentuk data, termasuk angka,

dikodekan dalam format biner. Salah satu format paling umum untuk

merepresentasikan angka pecahan dalam komputer adalah floating point.

Representasi ini memungkinkan komputer menangani berbagai angka

40 Pemrograman dan Komputasi Numerik

dengan rentang yang luas, baik sangat besar maupun sangat kecil, dengan

tingkat presisi yang terkontrol.

1. Representasi Biner

Representasi biner adalah sistem bilangan yang hanya

menggunakan dua simbol, yaitu 0 dan 1, untuk menyatakan semua jenis

data dalam komputer. Sistem ini menjadi dasar dalam dunia komputasi

karena perangkat keras komputer seperti transistor dan sirkuit digital

hanya mengenali dua keadaan logika: on (1) dan off (0). Dengan

menggunakan kombinasi bit-bit ini, komputer dapat merepresentasikan

angka, karakter, instruksi, hingga gambar dalam bentuk yang dapat

diolah secara elektronik.

Pada konteks bilangan bulat, representasi biner bekerja

berdasarkan posisi bit yang merepresentasikan pangkat dua. Sebagai

contoh, bilangan desimal 13 ditulis sebagai 1101 dalam biner, yang

berarti:

Untuk bilangan negatif, digunakan metode komplemen dua

(two’s complement) agar perhitungan aritmetika tetap efisien dalam

operasi logika. Misalnya, -5 dalam 8-bit two’s complement ditulis

sebagai 11111011.

Bilangan pecahan atau angka desimal dalam biner

direpresentasikan dengan memperluas sistem posisi ke bagian kanan titik

biner (binary point), menggunakan nilai-nilai seperti 2−12−2, dan

seterusnya. Contohnya, bilangan 0.625 dalam biner adalah 0.101,

karena:

Meskipun efisien, sistem biner memiliki keterbatasan dalam

merepresentasikan beberapa bilangan desimal secara eksak. Sebagai

contoh, bilangan 0.1 tidak dapat direpresentasikan secara tepat dalam

bentuk biner terbatas, menyebabkan kesalahan pembulatan dalam

komputasi. Oleh karena itu, pemahaman tentang representasi biner

menjadi krusial bagi siapa pun yang bekerja di bidang komputasi, teknik,

maupun sains data untuk memastikan hasil perhitungan yang akurat dan

dapat dipertanggungjawabkan.

 41 Buku Referensi

2. Floating Point

Floating point adalah format representasi bilangan dalam

komputer yang dirancang untuk menyatakan angka-angka real, baik

sangat besar maupun sangat kecil, dengan efisien dan presisi terbatas.

Berbeda dengan bilangan bulat (integer) yang memiliki nilai tetap dalam

rentang tertentu, bilangan floating point memungkinkan adanya

eksponen untuk memperluas cakupan nilai yang bisa direpresentasikan.

Konsep floating point dapat dianalogikan seperti notasi ilmiah dalam

matematika. Format floating point yang paling umum digunakan di

seluruh sistem komputasi modern adalah standar IEEE 754, yang

menetapkan aturan representasi 32-bit (single precision) dan 64-bit

(double precision).

Pada struktur IEEE 754, satu angka floating point terdiri atas tiga

bagian utama: bit tanda (sign bit), eksponen, dan mantissa. Misalnya,

dalam format 32-bit: 1 bit digunakan untuk tanda (positif atau negatif),

8 bit untuk eksponen (dengan bias 127), dan 23 bit untuk mantissa. Nilai

aktual bilangan dihitung dengan rumus:

Keunggulan utama floating point adalah kemampuannya

merepresentasikan nilai sangat besar seperti 1038 dan nilai sangat kecil

seperti 10-38, yang penting dalam aplikasi ilmiah seperti simulasi fisika,

pemodelan keuangan, dan machine learning. Namun, karena hanya

sejumlah bit yang tersedia untuk menyimpan mantissa dan eksponen,

representasi ini rawan terhadap kesalahan pembulatan, overflow, dan

underflow. Akibatnya, programmer harus waspada terhadap

keterbatasan presisi dan efek numerik yang mungkin terjadi dalam

perhitungan. Oleh karena itu, floating point bukan hanya solusi teknis,

melainkan juga tantangan logika dan presisi dalam komputasi numerik.

3. Perbandingan

Di dunia komputasi numerik, representasi bilangan dapat

dibedakan menjadi dua kategori utama: floating point dan fixed point

(representasi tetap). Keduanya memiliki fungsi yang sama, yaitu

menyimpan dan memproses angka pecahan atau bilangan real, namun

dengan pendekatan dan karakteristik teknis yang sangat berbeda.

Floating point, seperti yang diatur oleh standar IEEE 754,

42 Pemrograman dan Komputasi Numerik

memungkinkan representasi angka dalam rentang yang sangat luas

melalui penggunaan eksponen berbasis dua. Format ini sangat ideal

untuk aplikasi yang memerlukan skala angka yang besar atau kecil

seperti simulasi ilmiah, grafik komputer, dan analisis statistik karena

dapat secara fleksibel menyesuaikan posisi titik desimal (floating)

tergantung besar kecilnya angka.

Representasi tetap (fixed point) menetapkan posisi titik desimal

pada tempat yang konstan. Hal ini menjadikannya lebih sederhana secara

implementasi dan efisien dalam hal penggunaan memori serta kecepatan

eksekusi, terutama pada sistem tertanam (embedded systems) seperti

mikrokontroler dan perangkat IoT. Namun, fixed point memiliki

keterbatasan rentang nilai dan presisi karena tidak mendukung eksponen.

Akibatnya, angka yang terlalu besar atau kecil dapat dengan mudah

mengalami overflow atau truncation.

Perbandingan keduanya menunjukkan adanya trade-off antara

fleksibilitas dan efisiensi. Floating point unggul dalam hal presisi

dinamis dan cakupan nilai, tetapi membutuhkan perangkat keras yang

lebih kompleks dan mahal. Fixed point lebih hemat sumber daya dan

cocok untuk aplikasi real-time dengan batas presisi yang dapat dikontrol.

Dalam praktiknya, pemilihan antara keduanya sangat tergantung pada

kebutuhan aplikasi: floating point untuk komputasi ilmiah berskala

besar, dan fixed point untuk sistem dengan keterbatasan sumber daya

namun memerlukan performa tinggi dan prediktabilitas.

B. Stabilitas dan Propagasi Kesalahan

Pada komputasi numerik, setiap perhitungan yang dilakukan oleh

komputer tidak lepas dari kemungkinan kesalahan. Hal ini disebabkan

oleh keterbatasan representasi bilangan dalam format biner dan floating

point, serta akumulasi kesalahan selama proses komputasi berlangsung.

Dua konsep kunci yang sangat penting dalam menganalisis dan

mengendalikan akurasi perhitungan numerik adalah stabilitas algoritma

dan propagasi kesalahan (error propagation). Memahami keduanya

sangat penting untuk menghindari hasil perhitungan yang tidak akurat

atau bahkan menyesatkan dalam aplikasi sains, teknik, maupun

keuangan.

 43 Buku Referensi

1. Jenis-Jenis Kesalahan dalam Komputasi

Pada komputasi numerik, setiap proses perhitungan tidak terlepas

dari berbagai bentuk kesalahan (error) yang dapat memengaruhi akurasi

hasil. Pemahaman terhadap jenis-jenis kesalahan ini sangat penting agar

pengembang algoritma dan praktisi komputasi dapat mengambil

langkah-langkah korektif untuk meminimalkan dampaknya. Secara

umum, kesalahan dalam komputasi terbagi menjadi tiga kategori utama:

kesalahan pembulatan (round-off error), kesalahan pemotongan

(truncation error), dan kesalahan input atau data (input error).

Kesalahan pembulatan terjadi karena keterbatasan representasi

angka dalam komputer. Komputer menggunakan sistem floating point

dengan jumlah bit terbatas, sehingga tidak semua bilangan desimal dapat

direpresentasikan secara eksak. Misalnya, angka 0.1 dalam sistem

desimal tidak dapat ditulis secara tepat dalam biner, sehingga terjadi

pembulatan ke angka terdekat. Ketika perhitungan dilakukan berulang-

ulang, kesalahan kecil ini bisa terakumulasi dan memengaruhi hasil

akhir, terutama pada algoritma yang sensitif secara numerik.

Kesalahan pemotongan muncul ketika pendekatan matematis

digunakan untuk menyelesaikan permasalahan yang tidak bisa dihitung

secara eksak. Contohnya adalah penggunaan metode numerik seperti

deret Taylor, metode Euler, atau integrasi numerik. Dalam metode ini,

hanya sebagian dari istilah yang dihitung, sementara sisanya dipotong

(truncated), sehingga menghasilkan deviasi dari nilai sebenarnya.

Sementara itu, kesalahan input atau kesalahan data timbul dari

ketidaktepatan data awal yang dimasukkan ke dalam sistem, misalnya

hasil pengukuran yang tidak akurat atau data yang sudah mengalami

proses konversi. Kesalahan jenis ini sangat bergantung pada konteks

aplikasi, tetapi tetap dapat merambat melalui algoritma dan

menyebabkan hasil akhir yang menyesatkan jika tidak dikendalikan.

2. Propagasi Kesalahan

Propagasi kesalahan adalah fenomena penting dalam komputasi

numerik yang menggambarkan bagaimana kesalahan kecil pada data

awal atau hasil perhitungan dapat menyebar dan membesar seiring

berjalannya proses komputasi. Dalam praktiknya, hampir semua

perhitungan dalam komputer melibatkan kesalahan pembulatan (round-

off) akibat representasi floating point yang terbatas, serta kesalahan

pemotongan (truncation) dalam penggunaan metode numerik. Propagasi

44 Pemrograman dan Komputasi Numerik

kesalahan menjadi krusial karena akumulasi dari kesalahan-kesalahan

kecil ini dapat menyebabkan hasil akhir yang jauh menyimpang dari nilai

yang seharusnya, terutama pada algoritma yang bersifat numerik tidak

stabil.

Fenomena ini sering terjadi dalam operasi matematika yang

melibatkan angka-angka dengan nilai yang sangat berdekatan, seperti

dalam kasus pengurangan dua bilangan hampir sama. Salah satu contoh

klasik adalah perhitungan √x2 + 1 − 1 untuk nilai x yang sangat kecil.

Proses pengurangan ini dapat menghilangkan informasi penting dari

angka yang tersimpan, fenomena ini dikenal sebagai catastrophic

cancellation.

Propagasi kesalahan juga terjadi dalam metode iteratif seperti

pada penyelesaian sistem persamaan linear, persamaan diferensial, atau

perhitungan akar fungsi. Jika algoritma yang digunakan tidak stabil,

maka kesalahan pada satu iterasi dapat diperkuat pada iterasi berikutnya,

sehingga kesalahan total menjadi tidak terkendali. Hal ini diperparah jika

masalah yang diselesaikan bersifat ill-conditioned, yaitu masalah di

mana sedikit perubahan pada input menghasilkan perubahan besar pada

output. Untuk mengatasi propagasi kesalahan, strategi numerik seperti

normalisasi data, penggunaan metode numerik stabil, transformasi

aljabar untuk menghindari pengurangan kritis, serta penggunaan kendali

kesalahan (error control) dalam metode iteratif sering digunakan.

Pemahaman tentang bagaimana dan kapan kesalahan tersebar adalah

kunci dalam merancang algoritma yang handal dan memastikan akurasi

hasil dalam aplikasi sains, teknik, maupun keuangan.

3. Stabilitas Algoritma

Stabilitas algoritma adalah konsep penting dalam komputasi

numerik yang mengacu pada sejauh mana suatu algoritma dapat

mengendalikan atau membatasi dampak kesalahan kecil selama proses

perhitungan. Dalam konteks ini, kesalahan yang dimaksud bisa berasal

dari pembulatan angka akibat keterbatasan representasi floating point,

kesalahan pemotongan dalam metode numerik, maupun kesalahan input

dari data yang tidak presisi. Algoritma yang stabil adalah algoritma yang

mampu menghasilkan hasil akhir yang mendekati solusi sebenarnya

meskipun terdapat gangguan kecil atau kesalahan pada data atau selama

perhitungan berlangsung. Sebaliknya, algoritma yang tidak stabil akan

 45 Buku Referensi

memperbesar kesalahan ini sehingga hasil akhirnya menjadi tidak dapat

dipercaya.

Stabilitas sangat berkaitan dengan bagaimana kesalahan

terpropagasi atau menyebar selama serangkaian langkah perhitungan.

Sebagai contoh, dalam metode eliminasi Gauss untuk menyelesaikan

sistem persamaan linear, pembagian oleh angka yang sangat kecil dapat

menyebabkan hasil yang sangat melenceng karena pembulatan yang

ekstrem. Tanpa teknik stabilisasi seperti pivoting (penukaran baris untuk

memaksimalkan elemen pivot), metode ini menjadi tidak stabil secara

numerik. Inilah sebabnya metode partial pivoting atau scaled partial

pivoting banyak digunakan dalam praktik untuk menjaga kestabilan

hasil.

Stabilitas juga menjadi isu kritis dalam metode numerik yang

digunakan untuk menyelesaikan persamaan diferensial, seperti metode

Euler atau Runge-Kutta. Sebagai contoh, metode Euler eksplisit

cenderung tidak stabil jika digunakan pada sistem dengan dinamika

cepat atau dengan langkah waktu (step size) yang besar. Ketidakstabilan

ini menyebabkan nilai solusi menyimpang jauh dari solusi eksak, bahkan

bisa menjadi tak hingga. Oleh karena itu, penting dilakukan analisis

stabilitas terhadap metode numerik, termasuk dengan mengevaluasi

region of stability atau batas nilai langkah yang masih menghasilkan

solusi stabil.

C. Operasi Aritmetika dan Pembulatan dalam Mesin

Pada sistem komputasi modern, semua operasi numerik yang

dilakukan komputer seperti penjumlahan, pengurangan, perkalian, dan

pembagian dijalankan oleh unit pemroses (CPU) dalam bentuk operasi

aritmetika biner. Namun, keterbatasan dalam representasi angka,

khususnya angka real (pecahan), membuat hasil dari operasi ini sering

kali tidak presisi sempurna. Oleh karena itu, penting untuk memahami

operasi aritmetika dalam mesin dan bagaimana pembulatan (rounding)

diterapkan sebagai bagian dari proses ini.

1. Representasi Bilangan Floating point

Representasi bilangan floating point merupakan cara standar

yang digunakan komputer untuk menyimpan dan memanipulasi bilangan

real (pecahan), terutama bilangan yang sangat besar atau sangat kecil.

46 Pemrograman dan Komputasi Numerik

Sistem ini mengadopsi prinsip notasi ilmiah, di mana sebuah bilangan

dinyatakan dalam bentuk ±m×be, dengan mmm sebagai mantissa

(significand), bbb sebagai basis (biasanya 2 dalam sistem komputer), dan

eee sebagai eksponen. Untuk menjamin keseragaman dan

interoperabilitas antar sistem komputasi, representasi ini dikendalikan

oleh standar IEEE 754, yang paling umum digunakan di hampir semua

perangkat keras dan bahasa pemrograman saat ini.

Pada standar IEEE 754, terdapat dua format utama: single

precision (32-bit) dan double precision (64-bit). Untuk single precision,

satu bilangan floating point terdiri dari 1 bit tanda (sign bit), 8 bit

eksponen dengan bias 127, dan 23 bit mantissa. Sedangkan dalam double

precision, digunakan 1 bit tanda, 11 bit eksponen dengan bias 1023, dan

52 bit mantissa. Nilai eksponen yang disimpan sebenarnya adalah hasil

penjumlahan eksponen aktual dengan nilai bias, yang memungkinkan

penyimpanan bilangan positif dan negatif secara efisien.

Salah satu fitur penting dari sistem ini adalah normalisasi, di

mana angka disimpan dalam bentuk sedemikian rupa sehingga digit

paling signifikan dari mantissa adalah bukan nol (kecuali untuk nol atau

bilangan denormal). Proses normalisasi ini memastikan bahwa presisi

maksimum dimanfaatkan dalam keterbatasan bit yang tersedia. Namun

demikian, karena panjang mantissa terbatas, banyak bilangan desimal

yang tidak bisa direpresentasikan secara eksak (misalnya 0.1), sehingga

muncul kesalahan pembulatan (round-off error) dalam perhitungan.

Representasi floating point memungkinkan komputer untuk

menangani perhitungan ilmiah dengan skala luas, namun pengguna harus

berhati-hati terhadap akumulasi kesalahan, underflow, overflow, dan

fenomena seperti cancellation yang bisa muncul akibat keterbatasan

presisi. Oleh karena itu, pemahaman menyeluruh tentang representasi ini

menjadi fondasi penting dalam desain algoritma numerik yang akurat

dan stabil.

2. Operasi Aritmetika dalam Mesin

Operasi aritmetika dalam mesin merupakan proses dasar yang

dilakukan oleh unit pemroses (CPU atau FPU) untuk menyelesaikan

perhitungan matematis seperti penjumlahan, pengurangan, perkalian,

dan pembagian. Berbeda dengan operasi manual pada manusia,

komputer melakukan semua operasi tersebut dalam bentuk biner

menggunakan sistem representasi floating point, sebagaimana diatur

 47 Buku Referensi

dalam standar IEEE 754. Proses ini sangat kompleks karena melibatkan

normalisasi, penyelarasan eksponen, manipulasi bit-bit mantissa, serta

pembulatan akhir agar hasil sesuai dengan kapasitas penyimpanan bit

yang tersedia.

Pada penjumlahan dan pengurangan floating point, langkah awal

yang dilakukan adalah penyamaan eksponen. Operand dengan eksponen

lebih kecil akan disesuaikan dengan menggeser mantissanya ke kanan,

sehingga eksponennya cocok dengan operand lain. Setelah eksponen

disamakan, barulah operasi mantissa dilakukan. Hasilnya kemudian

dinormalisasi jika hasil memiliki digit paling signifikan yang bukan di

posisi standar, maka mantissa digeser dan eksponen disesuaikan.

Terakhir, dilakukan pembulatan (rounding) ke dalam format bit mantissa

yang ditentukan (misalnya 23 bit untuk single precision), karena hasil

sebenarnya sering kali tidak bisa disimpan secara eksak.

Perkalian dan pembagian floating point memiliki mekanisme

berbeda. Eksponen operand dijumlahkan (untuk perkalian) atau

dikurangkan (untuk pembagian), sementara mantissa dikalikan atau

dibagi. Proses ini pun diakhiri dengan normalisasi dan pembulatan.

Seluruh langkah ini membuat operasi floating point lebih mahal secara

komputasi dibanding operasi integer, dan lebih rentan terhadap

kesalahan pembulatan (round-off error). Masalah juga bisa muncul jika

terjadi overflow (nilai melebihi batas maksimum eksponen) atau

underflow (nilai terlalu kecil untuk direpresentasikan). Karena sifat

aritmetika floating point yang tidak sepenuhnya asosiatif atau distributif,

hasil operasi bisa berbeda tergantung urutan kalkulasi. Oleh karena itu,

dalam pemrograman numerik, sangat penting untuk menyusun operasi

secara hati-hati dan memilih algoritma yang stabil secara numerik guna

meminimalkan akumulasi kesalahan dan menjamin keandalan hasil

perhitungan.

3. Pembulatan (Rounding)

Pembulatan (rounding) adalah proses penting dalam komputasi

numerik yang terjadi ketika suatu bilangan real tidak dapat

direpresentasikan secara eksak dalam format biner floating point,

sehingga harus disesuaikan ke nilai terdekat yang bisa diwakili oleh

komputer. Hal ini disebabkan oleh keterbatasan jumlah bit yang tersedia

untuk menyimpan angka, khususnya pada bagian mantissa. Sebagai

contoh, dalam format IEEE 754 single precision, hanya tersedia 23 bit

48 Pemrograman dan Komputasi Numerik

untuk mantissa, sehingga banyak bilangan desimal seperti 0.1 atau 1/3,

tidak dapat disimpan secara tepat. Akibatnya, proses pembulatan tidak

hanya tak terhindarkan, tetapi juga sangat berpengaruh terhadap akurasi

hasil perhitungan.

Menurut (Higham, 2002), pembulatan merupakan sumber utama

dari kesalahan pembulatan (round-off error), yaitu perbedaan antara nilai

aktual dan nilai yang disimpan atau dihitung oleh komputer. Dalam

standar IEEE 754, terdapat beberapa mode pembulatan yang

diimplementasikan untuk mengatur cara komputer menentukan nilai

terdekat, yaitu: round to nearest (default), round toward zero, round

toward +infinity, dan round toward –infinity. Mode round to nearest, ties

to even adalah yang paling umum, karena secara statistik dapat

meminimalkan akumulasi kesalahan dalam perhitungan berulang.

Proses pembulatan terjadi setiap kali hasil operasi aritmetika

tidak muat dalam mantissa yang tersedia. Misalnya, saat dua bilangan

dikalikan dan menghasilkan mantissa yang lebih panjang dari kapasitas,

komputer akan memotong digit-digit tak signifikan dan menyimpan hasil

yang dibulatkan. Jika proses ini terjadi secara berulang dalam algoritma

yang panjang atau iteratif, kesalahan pembulatan dapat terakumulasi dan

berdampak signifikan terhadap hasil akhir, terutama dalam algoritma

yang tidak stabil secara numerik. Untuk mengurangi efek negatif

pembulatan, praktisi komputasi numerik harus memahami sifat

pembulatan dalam mesin dan memilih strategi yang sesuai. Hal ini

termasuk menyusun ulang ekspresi matematis, menggunakan presisi

lebih tinggi jika diperlukan, serta menghindari operasi seperti

pengurangan dua angka yang hampir sama yang rentan terhadap

hilangnya digit signifikan akibat pembulatan.

D. Standard IEEE 754

Di dunia komputasi, angka real (pecahan) berperan an penting,

baik dalam aplikasi ilmiah, teknik, statistik, maupun grafika. Namun,

representasi angka-angka ini dalam komputer tidaklah sesederhana

penulisan desimal. Karena komputer hanya mengenal angka dalam

bentuk biner dan memiliki keterbatasan memori, dibutuhkan sistem

representasi numerik yang efisien, konsisten, dan mampu menangani

angka sangat besar maupun sangat kecil. Untuk menjawab kebutuhan

 49 Buku Referensi

tersebut, diperkenalkanlah standar IEEE 754 yang hingga kini menjadi

patokan global dalam representasi dan perhitungan floating point.

Menurut (IEEE Standards Association, 2008), IEEE 754 adalah

standar yang dikembangkan oleh Institute of Electrical and Electronics

Engineers (IEEE) dan pertama kali diperkenalkan pada tahun 1985.

Standar ini mendefinisikan format penyimpanan, aturan pembulatan,

penanganan nilai khusus (seperti NaN dan Infinity), serta metode operasi

aritmetika floating point yang konsisten di seluruh arsitektur komputer

dan bahasa pemrograman. Sebelum adanya IEEE 754, produsen

perangkat keras memiliki implementasi floating point masing-masing

yang berbeda-beda, sehingga menyebabkan inkonsistensi hasil

perhitungan numerik antar sistem. IEEE 754 hadir untuk menyatukan

standar ini dan memastikan interoperabilitas serta akurasi komputasi di

berbagai platform dan aplikasi.

1. Struktur Representasi Floating point

Struktur representasi floating point dalam komputer adalah cara

menyimpan bilangan real menggunakan format biner dengan tiga

komponen utama: bit tanda (sign bit), eksponen (exponent), dan fraksi

atau mantissa (fraction/mantissa). Standar representasi yang digunakan

secara luas dalam industri dan akademik adalah IEEE 754, yang

menjamin konsistensi, efisiensi, dan interoperabilitas dalam perhitungan

numerik di berbagai sistem perangkat keras dan perangkat lunak.

Floating point digunakan karena mampu mewakili rentang angka yang

sangat luas, baik yang sangat kecil mendekati nol maupun yang sangat

besar, tanpa memerlukan format data yang terlalu besar secara fisik.

Pada format single precision (32 bit), bilangan floating point

terdiri dari 1 bit tanda, 8 bit eksponen, dan 23 bit mantissa. Bit tanda

menunjukkan apakah bilangan positif (0) atau negatif (1). Eksponen

digunakan untuk mengalikan basis dua sehingga bilangan bisa

dinormalisasi, dan disimpan dalam format “biased exponent” dengan

bias sebesar 127. Artinya, nilai eksponen aktual diperoleh dengan

mengurangkan nilai yang disimpan dengan 127. Sedangkan bagian

mantissa menyimpan angka-angka setelah titik desimal, dan dalam

representasi normalisasi selalu diasumsikan memiliki bit tersembunyi

(implicit bit) yaitu angka 1 di depan, sehingga bagian mantissa

sebenarnya adalah 1.x… dalam basis biner. Pada double precision (64

bit), strukturnya terdiri dari 1 bit tanda, 11 bit eksponen, dan 52 bit

50 Pemrograman dan Komputasi Numerik

mantissa, dengan bias eksponen sebesar 1023. Dengan kapasitas

mantissa yang lebih besar, double precision memungkinkan representasi

bilangan yang jauh lebih presisi dan mengurangi kemungkinan

kesalahan pembulatan (round-off error) dalam operasi aritmetika.

Salah satu keunggulan struktur floating point ini adalah

kemampuannya untuk menangani bilangan desimal sangat besar atau

sangat kecil secara efisien, yang tidak dapat dilakukan oleh representasi

integer biasa. Namun, struktur ini juga memperkenalkan tantangan,

seperti ketidakakuratan representasi bilangan desimal tertentu (misalnya

0.1) dan efek propagasi kesalahan dalam operasi berulang. Oleh karena

itu, pemahaman terhadap struktur ini sangat penting dalam merancang

algoritma numerik yang stabil dan efisien di berbagai aplikasi sains,

teknik, dan keuangan.

2. Nilai Khusus dalam IEEE 754

Pada standar IEEE 754 untuk representasi bilangan floating

point, tidak semua pola bit digunakan untuk menyatakan bilangan real

biasa. Sebagian pola disediakan untuk merepresentasikan nilai-nilai

khusus yang memiliki makna penting dalam komputasi numerik,

terutama dalam penanganan kondisi ekstrem seperti pembagian nol,

overflow, underflow, atau operasi tak terdefinisi. Nilai-nilai khusus ini

mencakup: Nol positif/negatif (±0), Tak hingga (±∞), NaN (Not a

Number), dan bilangan denormal atau subnormal.

Pertama, ±0 menunjukkan bahwa angka nol dapat disimpan

dengan tanda positif atau negatif. Meskipun secara matematis tidak

berbeda, dalam komputasi ±0 digunakan untuk mempertahankan arah

pendekatan limit atau derivatif, yang penting dalam analisis numerik dan

kalkulus. Contohnya, hasil dari -1/∞ dapat berupa -0, menunjukkan

bahwa pendekatan berasal dari arah negatif.

Kedua, tak hingga (positive/negative infinity) muncul saat hasil

perhitungan melebihi batas representasi eksponen tertinggi (overflow),

seperti ketika membagi angka besar dengan angka sangat kecil atau

pembagian angka bukan nol dengan nol. Dalam IEEE 754, ini diwakili

dengan eksponen maksimum (semua bit eksponen = 1) dan mantissa =

0. Hasil operasi terhadap tak hingga mengikuti aturan aljabar, misalnya

a+∞=∞, tetapi operasi seperti ∞−∞ menghasilkan NaN.

 51 Buku Referensi

Ketiga, NaN (Not a Number) digunakan untuk menunjukkan

hasil dari operasi yang tidak valid secara matematis, seperti √−1, 0/0,

atau ∞−∞. NaN memiliki eksponen semua bit 1, seperti tak hingga, tetapi

mantissanya tidak nol. Terdapat dua jenis NaN: quiet NaN (qNaN) yang

terus propagasi dalam perhitungan, dan signaling NaN (sNaN) yang

dimaksudkan untuk menghasilkan error jika digunakan tanpa

penanganan.

Keempat, bilangan denormal (subnormal) digunakan saat hasil

bilangan sangat kecil sehingga tidak lagi bisa dinormalisasi dalam format

standar. Dalam kasus ini, angka disimpan dengan eksponen nol (bukan

eksponen bias), dan tanpa bit 1 tersembunyi pada mantissa. Nilai ini

memperluas rentang representasi menuju nol dan memungkinkan

graceful underflow, yakni hasil perhitungan tidak langsung menjadi nol,

melainkan bertahap mendekati nol.

3. Evolusi dan Versi Terbaru

Standar IEEE 754 telah mengalami beberapa kali evolusi sejak

pertama kali diperkenalkan pada tahun 1985, seiring dengan

berkembangnya kebutuhan komputasi numerik di berbagai bidang

seperti sains, teknik, keuangan, hingga kecerdasan buatan. Versi awal

IEEE 754-1985 berfokus pada definisi representasi floating point untuk

dua format utama: single precision (32-bit) dan double precision (64-

bit). Standar ini memperkenalkan konsep penting seperti pembulatan

standar (rounding modes), nilai khusus (NaN dan Infinity), serta

pengaturan overflow dan underflow, yang hingga kini menjadi dasar

utama komputasi numerik.

Seiring meningkatnya kompleksitas dan skala komputasi

modern, IEEE kemudian memperbarui standar ini melalui versi IEEE

754-2008. Versi ini membawa beberapa pembaruan signifikan, seperti

penambahan format baru, termasuk quadruple precision (128-bit) dan

decimal floating point, yang dirancang untuk aplikasi yang memerlukan

akurasi sangat tinggi atau manipulasi data desimal secara presisi, seperti

dalam sistem keuangan. Versi ini juga menetapkan operasi baru seperti

fused multiply-add (FMA) yang menggabungkan operasi perkalian dan

penjumlahan dalam satu langkah untuk mengurangi kesalahan

pembulatan, serta memperluas aturan konversi antar format dan

representasi bilangan kompleks.

52 Pemrograman dan Komputasi Numerik

Gambar 3. Cloud Computing

Sumber: Btech

Terbaru, versi IEEE 754-2019 memperbaiki dan

menyempurnakan standar sebelumnya, dengan tujuan meningkatkan

kejelasan implementasi dan interoperabilitas. Beberapa perbaikan yang

dibawa termasuk definisi lebih eksplisit tentang perilaku nilai NaN,

pelabelan tipe minimal (minimal floating-point types) untuk perangkat

keras dengan sumber daya terbatas, serta penyempurnaan dokumentasi

operasi pembulatan, konversi, dan penanganan pengecualian. IEEE 754-

2019 juga menegaskan kembali pentingnya akurasi, determinisme, dan

portabilitas dalam lingkungan komputasi yang terus berubah, seperti

cloud computing dan komputasi paralel.

Evolusi standar IEEE 754 menunjukkan bagaimana komunitas

ilmiah dan teknis merespons tantangan komputasi numerik secara

progresif. Dengan menetapkan aturan yang konsisten untuk semua jenis

sistem dan platform, standar ini memungkinkan pengembang dan

peneliti untuk membangun algoritma yang stabil, dapat direproduksi,

dan andal, serta mampu menangani kompleksitas perhitungan skala

besar dengan keakuratan tinggi.

 53 Buku Referensi

BAB IV

PENYELESAIAN

PERSAMAAN ALJABAR

LINEAR

Persamaan aljabar linear merupakan salah satu fondasi utama

dalam bidang matematika terapan dan komputasi numerik.

Penyelesaiannya tidak hanya penting dalam ranah teori, tetapi juga

memiliki aplikasi luas dalam berbagai disiplin ilmu, seperti fisika,

teknik, ekonomi, dan ilmu komputer. Dalam praktiknya, sistem

persamaan linear sering kali muncul dalam bentuk matriks dan vektor,

serta membutuhkan pendekatan numerik yang efisien untuk

mendapatkan solusi yang akurat, terutama ketika berhadapan dengan

sistem berskala besar atau yang tidak dapat diselesaikan secara analitik.

Buku atau materi ini disusun untuk memberikan pemahaman

menyeluruh tentang teknik penyelesaian sistem persamaan linear, mulai

dari metode eliminasi Gauss, dekomposisi matriks seperti LU

decomposition, hingga pendekatan iteratif seperti metode Jacobi dan

Gauss-Seidel. Di samping penjelasan teoritis, pembahasan juga

dilengkapi dengan implementasi algoritma menggunakan bahasa

pemrograman modern, sehingga pembaca dapat secara langsung

menerapkan konsep yang dipelajari dalam pemecahan masalah nyata.

A. Sistem Persamaan Linear dan Matriks Koefisien

Menurut Anton & Rorres (2010) dalam Elementary Linear

Algebra, sistem persamaan linear adalah sekumpulan persamaan linear

54 Pemrograman dan Komputasi Numerik

yang memiliki satu atau lebih variabel yang saling berkaitan. Dalam

bentuk umum, sistem ini dapat dituliskan sebagai berikut:

Sistem seperti ini disebut sistem persamaan linear dengan m persamaan

dan n variabel. Koefisien aij menyatakan konstanta pengali variabel ke-j

dalam persamaan ke-i, sedangkan bi merupakan konstanta pada ruas

kanan.

1. Representasi Matriks Koefisien

Representasi matriks koefisien merupakan pendekatan sistematis

untuk menuliskan sistem persamaan linear dalam bentuk yang lebih

ringkas dan terstruktur. Dalam sistem persamaan linear, setiap

persamaan melibatkan sejumlah variabel dengan koefisien tertentu. Jika

sistem tersebut memiliki mmm persamaan dan nnn variabel, maka semua

koefisien dapat disusun dalam sebuah matriks berukuran m×n, yang

dikenal sebagai matriks koefisien. Misalnya, sistem tiga persamaan

dengan tiga variabel:

dapat direpresentasikan menjadi:

Sehingga, sistem tersebut ditulis sebagai Ax=b. Representasi ini

memiliki keunggulan dalam efisiensi notasi, kemudahan manipulasi

matematis, dan sangat sesuai untuk diimplementasikan secara

 55 Buku Referensi

komputasi. Dalam konteks algoritma numerik, operasi terhadap sistem

linear seperti eliminasi Gauss, dekomposisi matriks, atau metode iteratif

dapat dilakukan dengan jauh lebih mudah menggunakan bentuk matriks

ini. Selain itu, dengan menambahkan vektor konstanta b sebagai kolom

terakhir dari matriks koefisien, diperoleh matriks augmented [𝐴|𝑏], yang

sangat bermanfaat dalam menyelesaikan sistem dengan metode operasi

baris elementer. Oleh karena itu, representasi matriks koefisien bukan

hanya alat bantu notasi, tetapi merupakan dasar penting dalam teori dan

aplikasi sistem persamaan linear.

2. Matriks Augmented dan Transformasi Baris

Matriks augmented adalah representasi matriks gabungan yang

menyatukan matriks koefisien dari sistem persamaan linear dengan

vektor konstanta di sisi kanan persamaan. Bentuk ini ditulis sebagai

[𝐴|𝑏], di mana A adalah matriks koefisien berukuran m×n dan b adalah

vektor kolom dari konstanta ruas kanan berukuran m×1. Tujuan dari

matriks augmented adalah untuk memfasilitasi penyelesaian sistem

linear melalui manipulasi baris secara langsung, tanpa perlu menuliskan

ulang seluruh sistem persamaan dalam bentuk aljabar konvensional.

Representasi ini sangat efektif dalam metode numerik seperti eliminasi

Gauss dan Gauss-Jordan.

Proses penyederhanaan matriks augmented dilakukan melalui

transformasi baris elementer, yang terdiri dari tiga jenis: (1) menukar dua

baris, (2) mengalikan suatu baris dengan skalar tak nol, dan (3)

menambahkan kelipatan suatu baris ke baris lainnya. Transformasi ini

bertujuan mengubah bentuk matriks augmented menjadi eselon baris

atau bahkan eselon baris tereduksi, sehingga solusi sistem dapat

diperoleh dengan mudah melalui substitusi mundur atau langsung

terbaca dari hasil akhir.

Sebagai contoh, sistem dua persamaan linear yang

direpresentasikan sebagai matriks augmented:

dapat disederhanakan menggunakan operasi baris hingga mencapai

bentuk:

56 Pemrograman dan Komputasi Numerik

yang secara langsung menyatakan solusi dari sistem. Menurut

Lay (2012), transformasi baris tidak mengubah solusi dari sistem,

sehingga semua bentuk yang ekuivalen baris tetap merepresentasikan

sistem persamaan yang sama. Oleh karena itu, penggunaan matriks

augmented dan transformasi baris menjadi pendekatan yang sangat kuat

dan fundamental dalam penyelesaian sistem linear secara manual

maupun komputasional.

3. Solusi Sistem Persamaan Linear

Solusi sistem persamaan linear merujuk pada himpunan nilai

variabel yang memenuhi semua persamaan dalam sistem secara

simultan. Menurut Strang (2016) dalam Introduction to Linear Algebra,

sistem linear dapat memiliki tiga kemungkinan solusi: (1) satu solusi

unik, (2) tak hingga banyak solusi, atau (3) tidak memiliki solusi sama

sekali. Jenis solusi yang mungkin sangat bergantung pada hubungan

antara jumlah persamaan, jumlah variabel, dan sifat dari matriks

koefisien.

Solusi unik terjadi apabila sistem terdiri dari nnn persamaan

independen dengan nnn variabel dan determinan matriks koefisien tidak

nol (dalam kasus matriks persegi). Solusi tak hingga muncul jika terdapat

redundansi atau ketergantungan linier antar persamaan, sehingga sistem

memiliki lebih sedikit persamaan efektif dibanding variabel umumnya

terjadi dalam sistem underdetermined. Sementara itu, sistem dikatakan

tidak konsisten atau tidak memiliki solusi jika terdapat kontradiksi antar

persamaan.

Untuk menentukan jenis solusi, konsep rank sangat penting.

Rank adalah jumlah maksimum baris atau kolom linear independen

dalam matriks. Berdasarkan Teorema Rouché–Capelli, solusi sistem

ditentukan dengan membandingkan rank matriks koefisien A dan rank

matriks augmented [𝐴|𝑏]. Jika rank-nya sama dan setara dengan jumlah

variabel, sistem memiliki solusi unik. Jika rank sama tetapi kurang dari

jumlah variabel, terdapat tak hingga solusi. Jika rank berbeda, sistem

tidak memiliki solusi.

 57 Buku Referensi

Pemahaman tentang jenis solusi sangat penting dalam penerapan

praktis, seperti dalam analisis struktur teknik sipil, pemodelan ekonomi,

atau sistem pengendalian dalam teknik elektro. Tanpa mengetahui sifat

solusi, penggunaan algoritma komputasi bisa menghasilkan hasil yang

salah atau tidak bermakna.

4. Interpretasi Geometris

Interpretasi geometris dari sistem persamaan linear memberikan

pemahaman visual mengenai bagaimana solusi dari sistem tersebut

terbentuk. Menurut Anton & Rorres (2010) dalam Elementary Linear

Algebra, setiap persamaan linear dalam dua variabel dapat

direpresentasikan sebagai sebuah garis lurus di bidang dua dimensi (2D),

sementara dalam tiga variabel akan direpresentasikan sebagai bidang

dalam ruang tiga dimensi (3D). Titik perpotongan dari garis atau bidang

ini menjadi representasi dari solusi sistem.

Pada ruang dua dimensi, misalnya, sistem dua persamaan linear

dapat divisualisasikan sebagai dua garis. Jika garis-garis tersebut

berpotongan di satu titik, maka sistem memiliki satu solusi unik, yaitu

koordinat titik perpotongan tersebut. Jika kedua garis saling berimpit,

artinya merepresentasikan persamaan yang sama dan sistem memiliki

tak hingga banyak solusi. Namun, jika garis-garis tersebut sejajar namun

tidak berpotongan, maka sistem tidak memiliki solusi, yang menandakan

bahwa sistem tersebut inkonsisten.

Pada ruang tiga dimensi, setiap persamaan linear tiga variabel

mewakili sebuah bidang. Tiga bidang dapat berpotongan di satu titik

(solusi unik), sepanjang garis (tak hingga solusi), atau tidak berpotongan

sama sekali (tidak ada solusi). Misalnya, dua bidang yang sejajar atau

tiga bidang yang membentuk prisma tanpa titik temu merupakan sistem

yang tidak konsisten. Interpretasi ini juga berlaku di ruang berdimensi

lebih tinggi secara abstrak, meskipun tidak mudah divisualisasikan.

Konsep vektor, ruang vektor, dan subruang membantu memahami posisi

relatif antar persamaan dalam konteks geometris. Dengan demikian,

interpretasi geometris bukan hanya berguna untuk visualisasi, tetapi juga

memberikan intuisi mendalam tentang kondisi eksistensi dan keunikan

solusi, serta hubungan linier antar persamaan dalam sistem.

58 Pemrograman dan Komputasi Numerik

B. Eliminasi Gauss dan Pivoting

Menurut Burden dan Faires (2011) dalam Numerical Analysis,

metode eliminasi Gauss (Gaussian Elimination) adalah salah satu

algoritma dasar dalam penyelesaian sistem persamaan linear. Metode ini

bekerja dengan mengubah sistem persamaan menjadi bentuk segitiga

atas (upper triangular matrix) melalui operasi baris elementer. Dengan

bentuk ini, solusi sistem linear dapat diperoleh secara efisien melalui

teknik substitusi mundur (back substitution).

dapat direpresentasikan dalam bentuk matriks augmented [𝐴|𝑏].

Tujuan eliminasi Gauss adalah untuk menghilangkan elemen-elemen di

bawah diagonal utama agar sistem menjadi bentuk upper triangular, yaitu

hanya elemen diagonal dan elemen di atasnya yang bukan nol.

1. Operasi Baris Elementer

Operasi baris elementer adalah tiga jenis transformasi dasar yang

digunakan untuk memodifikasi baris-baris dalam sebuah matriks tanpa

mengubah solusi dari sistem persamaan linear yang

direpresentasikannya. Menurut Lay (2012) dalam Linear Algebra and Its

Applications, operasi baris elementer sangat penting dalam metode

penyelesaian sistem linear seperti eliminasi Gauss, Gauss-Jordan, dan

proses reduksi matriks ke bentuk eselon. Operasi ini memungkinkan kita

untuk menyederhanakan sistem persamaan linear menjadi bentuk yang

lebih mudah diselesaikan tanpa kehilangan karakteristik solusinya.

Tiga jenis operasi baris elementer adalah: (1) Pertukaran dua

baris (interchange), (2) Perkalian baris dengan skalar tak nol (scaling),

dan (3) Penjumlahan kelipatan suatu baris ke baris lain (replacement).

Setiap operasi ini memiliki peran unik dalam proses manipulasi matriks.

Pertama, pertukaran dua baris digunakan ketika elemen pivot

(elemen diagonal yang akan digunakan untuk mengeliminasi elemen di

 59 Buku Referensi

bawahnya) adalah nol atau mendekati nol. Dalam kasus seperti itu, untuk

menghindari pembagian dengan nol atau angka sangat kecil yang dapat

menyebabkan ketidakstabilan numerik, baris tersebut ditukar dengan

baris lain yang memiliki elemen pivot lebih besar secara nilai mutlak.

Operasi ini sering digunakan dalam strategi partial pivoting, yang sangat

penting dalam komputasi numerik.

Kedua, perkalian baris dengan skalar tak nol berguna untuk

menyederhanakan elemen pivot menjadi satu (1), sehingga memudahkan

eliminasi elemen lainnya. Misalnya, jika elemen pivot adalah 4, maka

seluruh baris dapat dikalikan dengan
1

4
 agar pivot menjadi 1. Ini juga

digunakan dalam metode Gauss-Jordan, di mana tujuan akhirnya adalah

mencapai bentuk eselon baris tereduksi (reduced row echelon form), di

mana semua elemen pivot bernilai 1 dan elemen-elemen di atas dan di

bawah pivot bernilai nol. Ketiga, penjumlahan kelipatan suatu baris ke

baris lain adalah operasi paling umum dalam proses eliminasi.

Tujuannya adalah menghilangkan elemen tertentu di bawah atau di atas

pivot agar tercapai struktur segitiga atas atau bentuk eselon. Proses ini

dilakukan berulang hingga semua elemen di bawah (atau di atas) pivot

menjadi nol.

Menurut Strang (2016) dalam Introduction to Linear Algebra,

ketiga operasi baris ini secara matematis bersifat reversible, artinya

setiap operasi memiliki operasi kebalikannya yang dapat

mengembalikan matriks ke bentuk semula. Hal ini memastikan bahwa

struktur sistem tetap terjaga dan solusi tetap valid. Karena itu, operasi

baris elementer digunakan tidak hanya dalam penyelesaian sistem

persamaan linear, tetapi juga dalam proses mencari invers matriks,

menghitung determinan (secara tidak langsung), dan menemukan rank

sebuah matriks.

Pada implementasi komputasi, operasi baris elementer

diaplikasikan secara sistematis dan efisien. Misalnya, dalam algoritma

eliminasi Gauss, baris pertama digunakan untuk menghilangkan elemen

di kolom pertama pada baris-baris di bawahnya, kemudian baris kedua

digunakan untuk mengeliminasi elemen di kolom kedua, dan seterusnya.

Operasi-operasi ini juga menjadi dasar dalam algoritma pustaka numerik

populer seperti LAPACK dan NumPy.

60 Pemrograman dan Komputasi Numerik

2. Pivoting

Pivoting adalah teknik penting dalam penyelesaian sistem

persamaan linear yang digunakan untuk meningkatkan stabilitas numerik

dan keakuratan hasil dalam metode eliminasi Gauss. Menurut Trefethen

dan Bau (1997) dalam Numerical Linear Algebra, pivoting dilakukan

dengan memilih elemen terbesar (secara nilai absolut) di kolom atau

seluruh submatriks sebagai elemen pivot, lalu menukar baris (dan kadang

kolom) untuk menempatkan elemen tersebut pada posisi utama diagonal.

Tujuannya adalah untuk menghindari pembagian dengan angka yang

sangat kecil atau nol, yang dapat menyebabkan kesalahan pembulatan

yang besar dalam perhitungan numerik.

Pada konteks metode eliminasi Gauss, setiap langkah

mengharuskan kita membagi elemen-elemen di bawah pivot dengan nilai

pivot itu sendiri. Jika nilai pivot sangat kecil, pembagian tersebut akan

menghasilkan bilangan besar yang rentan terhadap kesalahan

pembulatan. Di sinilah pivoting menjadi penting. Dengan memilih

elemen terbesar sebagai pivot, kita meminimalkan potensi kesalahan

akibat keterbatasan presisi dalam komputasi floating-point.

Ada tiga jenis pivoting yang umum digunakan: partial pivoting,

complete pivoting, dan scaled pivoting. Partial pivoting, yang paling

umum dan efisien, melibatkan pencarian elemen terbesar di kolom pivot

dan menukar baris yang bersangkutan ke posisi baris aktif saat ini.

Complete pivoting lebih ekstrem, di mana pencarian dilakukan di seluruh

submatriks dan baik baris maupun kolom dapat dipertukarkan.

Sementara itu, scaled pivoting mempertimbangkan rasio antara elemen

pivot dan elemen maksimum pada barisnya untuk mencegah kesalahan

akibat perbedaan skala antar baris. Sebagai contoh, perhatikan sistem:

Jika kita menggunakan baris pertama sebagai pivot tanpa

melakukan pivoting, maka kita akan membagi dengan angka 0.0003,

yang sangat kecil. Ini berpotensi menghasilkan kesalahan pembulatan

besar. Namun, jika kita menerapkan partial pivoting dan menukar baris

pertama dengan baris kedua, kita akan menggunakan 1.0000 sebagai

pivot, sehingga perhitungan menjadi jauh lebih stabil dan akurat.

Menurut Golub dan Van Loan (2013) dalam Matrix

Computations, penggunaan pivoting khususnya partial pivoting telah

 61 Buku Referensi

menjadi standar dalam hampir semua implementasi algoritma

penyelesaian sistem linear pada perangkat lunak numerik modern seperti

MATLAB, LAPACK, dan NumPy. Hal ini karena partial pivoting

menyediakan keseimbangan antara kestabilan numerik dan efisiensi

komputasi. Dalam dunia nyata, stabilitas hasil perhitungan sangat

penting, terutama dalam aplikasi teknik, simulasi ilmiah, dan

pemrosesan data berskala besar. Tanpa pivoting, metode eliminasi Gauss

dapat menghasilkan hasil yang sangat tidak akurat atau bahkan gagal

menyelesaikan sistem. Oleh karena itu, pemahaman dan penerapan

pivoting adalah aspek krusial dalam komputasi numerik modern.

C. Metode Iteratif: Jacobi dan Gauss-Seidel

Menurut Burden dan Faires (2011) dalam Numerical Analysis,

metode iteratif merupakan pendekatan yang digunakan untuk

menyelesaikan sistem persamaan linear, khususnya ketika sistem

tersebut sangat besar atau memiliki struktur matriks koefisien yang

jarang (sparse). Berbeda dengan metode langsung seperti eliminasi

Gauss yang mencari solusi dalam jumlah langkah terbatas, metode

iteratif menghasilkan serangkaian pendekatan yang mendekati solusi

sejati secara bertahap. Dua metode iteratif klasik yang paling dikenal

adalah metode Jacobi dan metode Gauss-Seidel, yang keduanya

memiliki prinsip kerja yang relatif sederhana namun efektif.

Saad (2003) dalam Iterative Methods for Sparse Linear Systems

menjelaskan bahwa dalam sistem berdimensi besar, metode langsung

sering kali tidak praktis karena kompleksitas komputasi dan kebutuhan

memori yang tinggi. Hal ini terutama berlaku pada sistem dengan

matriks berukuran ribuan hingga jutaan baris dan kolom, seperti dalam

simulasi numerik fluida atau analisis struktur teknik. Dalam konteks

inilah metode iteratif menjadi solusi ideal karena hemat memori, mampu

menangani matriks sparse, dan dapat dihentikan pada tingkat akurasi

yang diinginkan.

1. Prinsip Dasar Metode Iteratif

Prinsip dasar metode iteratif dalam penyelesaian sistem

persamaan linear adalah membentuk serangkaian pendekatan yang

secara bertahap mendekati solusi yang benar dari sistem tersebut.

Menurut Burden dan Faires (2011) dalam Numerical Analysis, metode

62 Pemrograman dan Komputasi Numerik

iteratif memulai prosesnya dengan sebuah tebakan awal terhadap nilai-

nilai variabel, lalu melalui rumus perbaikan tertentu, menghasilkan

solusi baru yang diharapkan semakin mendekati nilai sebenarnya. Proses

ini diulang terus-menerus sampai kriteria konvergensi terpenuhi

biasanya ditentukan oleh toleransi kesalahan yang sangat kecil atau

jumlah iterasi maksimum.

Secara matematis, sistem linear Ax = b akan diubah menjadi

bentuk rekursif X(k:1) = Gx(k) + c, dimana X(k) adalah pendekatan

solusi pada iterasi ke-k, G adalah matriks transformasi iteratif, dan c

adalah vektor tetap hasil transformasi dari A dan b. Tujuan dari iterasi

ini adalah agar X(k) konvergen terhadap solusi sebenarnya x, yaitu saat

limk → ∞ x(k) – x.

Keunggulan utama metode iteratif terletak pada efisiensinya

dalam menangani sistem besar dan sparse, karena tidak memerlukan

penyimpanan semua elemen matriks. Selain itu, pengguna memiliki

fleksibilitas dalam mengatur presisi solusi sesuai kebutuhan aplikasi.

Namun, konvergensi tidak selalu dijamin. Faktor seperti struktur

matriks, kondisi awal, dan nilai eigen dari matriks iterasi sangat

menentukan keberhasilan metode ini. Karena itu, analisis konvergensi

seperti dominansi diagonal atau sifat positif-definit dari matriks sangat

penting sebelum menerapkan metode iteratif secara praktis.

2. Metode Jacobi

Metode Jacobi adalah salah satu teknik iteratif paling dasar yang

digunakan untuk menyelesaikan sistem persamaan linear, khususnya

ketika sistem tersebut besar dan memiliki struktur matriks sparse.

Menurut Burden dan Faires (2011) dalam Numerical Analysis, metode

Jacobi bekerja dengan prinsip bahwa setiap variabel dalam sistem

diselesaikan secara terpisah menggunakan nilai-nilai dari iterasi

sebelumnya, tanpa segera memanfaatkan nilai yang baru dihitung dalam

iterasi yang sama. Ini membuat metode Jacobi bersifat paralel secara

alami, karena semua elemen solusi diperbarui secara bersamaan pada

akhir setiap iterasi.

 63 Buku Referensi

Pada setiap iterasi ke-k+1, nilai variabel xi dihitung berdasarkan

nilai-nilai variabel lain pada iterasi sebelumnya ke-k. Syarat penting agar

metode Jacobi konvergen adalah matriks A harus dominan diagonal,

yaitu nilai absolut dari elemen diagonal setiap baris lebih besar daripada

jumlah absolut elemen-elemen lainnya dalam baris tersebut. Tanpa sifat

ini, iterasi dapat gagal mencapai solusi atau bahkan divergen.

Metode Jacobi sangat cocok untuk implementasi dalam sistem

komputasi paralel karena pembaruan setiap variabel tidak saling

tergantung selama iterasi berjalan. Namun, dibandingkan dengan metode

iteratif lainnya seperti Gauss-Seidel, metode Jacobi umumnya lebih

lambat konvergen karena tidak segera memanfaatkan hasil perhitungan

terbaru. Meski demikian, metode ini tetap penting secara konseptual dan

praktis dalam pengantar komputasi numerik.

Contoh Soal: Penyelesaian Sistem Linear Menggunakan Metode

Jacobi

64 Pemrograman dan Komputasi Numerik

3. Metode Gauss-Seidel

Metode Gauss-Seidel merupakan salah satu teknik iteratif yang

digunakan untuk menyelesaikan sistem persamaan linear, dan

merupakan pengembangan dari metode Jacobi. Menurut Strang (2016)

dalam Introduction to Linear Algebra, perbedaan utama antara metode

Gauss-Seidel dan Jacobi terletak pada pemanfaatan nilai-nilai variabel

yang baru dihitung. Jika metode Jacobi menggunakan nilai dari iterasi

sebelumnya untuk seluruh variabel, maka metode Gauss-Seidel langsung

menggunakan nilai terbaru dari iterasi saat ini segera setelah diperoleh.

Pendekatan ini umumnya mempercepat laju konvergensi, menjadikan

Gauss-Seidel lebih efisien dibanding Jacobi dalam banyak kasus.

Rumus ini menunjukkan bahwa untuk menghitung xi pada iterasi

ke-k+, metode ini menggunakan nilai-nilai terbaru dari variabel-variabel

sebelumnya (𝑥1
(𝑘+1)

, 𝑥2
(𝑘+1)

,…., 𝑥𝑖−1
(𝑘+1)

) dan nilai-nilai lama dari

variabel yang belum diperbarui (𝑥1
(𝑘+1)

,..., 𝑥𝑛
(𝑘)

). Pendekatan ini

menghasilkan proses konvergensi yang lebih efisien, terutama jika

matriks koefisien A bersifat symmetric positive definite atau dominan

diagonal.

Agar metode Gauss-Seidel konvergen, matriks A umumnya

harus memiliki sifat dominansi diagonal atau positif definit. Metode ini

sangat efisien untuk sistem sparse berdimensi besar yang muncul dalam

rekayasa struktur, simulasi fluida, dan pemodelan fisik lainnya. Meski

tidak sebaik Jacobi untuk paralelisasi, Gauss-Seidel lebih unggul dalam

 65 Buku Referensi

kecepatan konvergensi. Oleh karena itu, metode ini menjadi salah satu

pendekatan iteratif yang paling banyak digunakan dalam praktik

komputasi numerik.

Selanjutnya, kita gunakan tebakan awal x(0) = 0, y(0) = 0, z(0) = 0. Dalam

metode Gauss-Seidel, setiap nilai variabel baru langsung digunakan

dalam perhitungan selanjutnya. Pada iterasi pertama, kita hitung:

Untuk iterasi kedua, nilai-nilai baru dari iterasi pertama digunakan:

D. Implementasi dalam Python/MATLAB

Menurut Burden dan Faires (2011) dalam Numerical Analysis,

metode numerik untuk menyelesaikan sistem persamaan linear terutama

metode iteratif seperti Jacobi dan Gauss-Seidel sangat berguna ketika

diterapkan menggunakan perangkat lunak komputasi modern. Di antara

66 Pemrograman dan Komputasi Numerik

banyak platform yang tersedia, Python dan MATLAB merupakan dua

lingkungan paling populer dan kuat untuk pemrograman ilmiah dan

teknik. Kedua bahasa ini menyediakan pustaka numerik dan struktur data

yang efisien untuk menangani sistem linier berskala besar dan kompleks.

1. Python

Python merupakan bahasa pemrograman tingkat tinggi yang

sangat populer di bidang komputasi ilmiah dan teknik karena sintaksnya

yang sederhana, fleksibel, dan didukung oleh berbagai pustaka numerik

yang kuat. Menurut Oliphant (2007) dalam Guide to NumPy, pustaka

NumPy menyediakan array multidimensi yang efisien dan mendukung

berbagai operasi aljabar linear, sedangkan SciPy memperluas

fungsionalitas ini dengan menyediakan alat numerik tingkat lanjut

termasuk solver untuk sistem persamaan linear, baik dengan metode

langsung maupun iteratif.

Pada konteks penyelesaian sistem persamaan linear, Python

menawarkan beberapa pendekatan. Untuk sistem berukuran kecil hingga

sedang, metode langsung seperti numpy.linalg.solve () sangat efisien.

Sebagai contoh, untuk menyelesaikan sistem Ax=b, pengguna cukup

menulis:

Untuk sistem berdimensi besar atau matriks yang bersifat sparse

(jarang), metode langsung menjadi tidak efisien baik dari segi memori

maupun waktu. Dalam kasus ini, metode iteratif seperti Jacobi dan

Gauss-Seidel lebih disarankan karena hemat memori dan dapat

dihentikan setelah mencapai toleransi kesalahan tertentu. Implementasi

metode Jacobi secara manual di Python melibatkan iterasi pembaruan

 67 Buku Referensi

nilai setiap variabel menggunakan nilai dari iterasi sebelumnya. Berikut

contoh kode sederhana:

Untuk Gauss-Seidel, struktur kode hampir serupa, namun dengan

penggunaan nilai-nilai terbaru yang diperoleh selama iterasi:

Pustaka SciPy juga menyediakan metode iteratif seperti

Conjugate Gradient (CG) dan BiCGSTAB untuk sistem yang sangat

besar. Fungsi seperti scipy.sparse.linalg.cg() sangat efisien jika

digunakan bersama objek matriks sparse (csr_matrix).

Python juga unggul dalam visualisasi dan dokumentasi hasil,

menggunakan pustaka seperti Matplotlib untuk plotting grafik

konvergensi atau residual. Secara keseluruhan, Python memberikan

kombinasi optimal antara kemudahan pemrograman, fleksibilitas, dan

68 Pemrograman dan Komputasi Numerik

efisiensi, menjadikannya platform ideal untuk menerapkan dan

membahas metode numerik seperti Jacobi dan Gauss-Seidel dalam

penyelesaian sistem linear.

2. MATLAB

MATLAB adalah lingkungan komputasi numerik yang

dirancang khusus untuk menangani operasi matematika teknik dan

ilmiah. Menurut Chapman (2017) dalam MATLAB for Engineers,

MATLAB menyediakan sintaks yang ringkas dan efisien untuk

melakukan berbagai operasi aljabar linear, termasuk penyelesaian sistem

persamaan linear dengan metode langsung maupun metode iteratif.

Karena fokus utamanya pada pemrosesan matriks dan vektor, MATLAB

menjadi pilihan utama dalam banyak aplikasi teknik, sains komputer,

dan analisis data numerik.

Untuk sistem berukuran kecil hingga sedang, MATLAB

memiliki operator backslash (\)yang sangat efisien dalam menyelesaikan

sistem Ax=b secara langsung. Contohnya:

Untuk sistem yang besar atau memiliki struktur sparse (matriks

dengan banyak nol), metode langsung menjadi kurang efisien baik dari

segi waktu maupun konsumsi memori. Dalam kasus ini, metode iteratif

seperti Jacobi dan Gauss-Seidel lebih sesuai karena mampu menangani

sistem skala besar dengan lebih ringan. MATLAB mendukung

penerapan metode iteratif melalui pemrograman prosedural, serta

menyediakan alat bantu visualisasi untuk memantau konvergensi solusi.

Implementasi metode Jacobi dalam MATLAB dapat ditulis

secara eksplisit menggunakan loop for:

 69 Buku Referensi

Untuk sistem berdimensi besar atau matriks yang bersifat sparse

(jarang), metode langsung menjadi tidak efisien baik dari segi memori

maupun waktu. Dalam kasus ini, metode iteratif seperti Jacobi dan

Gauss-Seidel lebih disarankan karena hemat memori dan dapat

dihentikan setelah mencapai toleransi kesalahan tertentu.

Implementasi metode Jacobi secara manual di Python melibatkan

iterasi pembaruan nilai setiap variabel menggunakan nilai dari iterasi

sebelumnya. Berikut contoh kode sederhana:

70 Pemrograman dan Komputasi Numerik

Kedua fungsi tersebut menggunakan norma maksimum (infinity

norm) untuk mengevaluasi apakah solusi telah konvergen pada tingkat

toleransi tertentu.

MATLAB juga memiliki fungsi internal seperti pcg

(Preconditioned Conjugate Gradient) dan lsqr untuk menyelesaikan

sistem sparse atau overdetermined. Fungsi-fungsi ini dapat digunakan

bersama objek matriks sparse (sparse(A)) untuk meningkatkan efisiensi

memori. Fitur command window dan plotting tools di MATLAB sangat

membantu untuk memvisualisasikan error atau kecepatan konvergensi

iterasi. Dengan antarmuka grafis yang intuitif, dokumentasi bawaan, dan

kapabilitas debugging yang kuat, MATLAB memberikan platform yang

sangat sesuai bagi mahasiswa, peneliti, maupun profesional teknik untuk

menerapkan dan menguji algoritma numerik dalam penyelesaian sistem

linear.

 71 Buku Referensi

BAB V

INTERPOLASI DAN

APROKSIMASI FUNGSI

Interpolasi dan aproksimasi fungsi merupakan salah satu cabang

penting dalam komputasi numerik yang berperan besar dalam

menyederhanakan persoalan kompleks menjadi bentuk yang dapat

dianalisis dan dihitung secara efisien. Dalam banyak kasus praktis, data

yang tersedia tidak selalu dalam bentuk fungsi eksak, melainkan berupa

himpunan titik diskrit yang dihasilkan dari pengukuran atau eksperimen.

Di sinilah interpolasi berfungsi untuk membangun fungsi baru yang

melewati seluruh titik data, sementara aproksimasi bertujuan mencari

fungsi yang mendekati pola umum data dengan kesalahan seminimal

mungkin. Kedua metode ini tidak hanya menjadi fondasi dalam

pengolahan sinyal, pemodelan fisik, hingga analisis ekonomi, tetapi juga

membentuk dasar bagi pengembangan algoritma dalam machine

learning dan simulasi numerik. Buku ini menyajikan pembahasan

mendalam tentang berbagai teknik interpolasi seperti metode Lagrange,

Newton, dan spline, serta pendekatan aproksimasi menggunakan metode

Least Squares. Setiap konsep dijelaskan dengan teori yang kuat dan

dilengkapi contoh implementasi dalam Python dan MATLAB agar

mudah dipahami dan langsung dapat diaplikasikan.

A. Interpolasi Polinomial (Lagrange, Newton)

Interpolasi polinomial merupakan salah satu metode paling

fundamental dalam komputasi numerik, digunakan untuk mendekati

fungsi atau data diskrit dengan fungsi polinomial. Dua pendekatan yang

paling banyak digunakan untuk interpolasi polinomial adalah metode

Lagrange dan Newton. Keduanya memiliki perbedaan dalam struktur

72 Pemrograman dan Komputasi Numerik

penyusunan polinomial, namun sama-sama bertujuan mencari

polinomial orde-n yang melewati semua titik data yang diberikan.

Menurut Burden dan Faires (2010), interpolasi adalah proses

mencari suatu fungsi yang melewati serangkaian titik data

(x0,y0),(x1,y1),...,(xn,yn), di mana tidak ada dua nilai xix yang sama.

Dalam interpolasi polinomial, fungsi interpolasi dicari dalam bentuk

polinomial derajat paling tinggi n yang cocok dengan n+1 titik data

tersebut. Secara umum, bentuk polinomial interpolasi adalah:

Daripada menyusun sistem persamaan linear untuk

menyelesaikan koefisien 𝑎𝑖, pendekatan Lagrange dan Newton

menawarkan cara yang lebih sistematis dan efisien.

1. Interpolasi Polinomial Lagrange

Interpolasi polinomial Lagrange merupakan salah satu metode

klasik dalam komputasi numerik yang digunakan untuk membangun

fungsi polinomial yang melewati sekumpulan titik data diskret.

Pendekatan ini diperkenalkan oleh Joseph-Louis Lagrange pada abad ke-

18 sebagai solusi untuk masalah interpolasi, yaitu mencari suatu fungsi

polinomial Pn(x) yang memuat tepat n+1 titik data

(x0,y0),(x1,y1),...,(xn,yn), di mana tidak ada dua nilai xix yang sama. Ide

utama dari interpolasi Lagrange adalah menyusun polinomial sebagai

kombinasi linier dari basis polinomial Li(x), yang masing-masing

bernilai satu di titik data tertentu dan nol di titik lainnya, sehingga setiap

kontribusi yi hanya aktif pada posisi xi saja. Secara matematis,

polinomial interpolasi Lagrange dinyatakan dalam bentuk:

Rumus ini menunjukkan bahwa setiap basis polinomial Li(x)

dikonstruksi dengan mengalikan fraksi-fraksi yang memastikan bahwa

 73 Buku Referensi

nilai Li(xj)=0 untuk semua j≠ij dan Li(xi)=1. Dengan demikian, Pn(x)

merupakan penjumlahan dari hasil perkalian antara nilai yi dan fungsi

basis Li(x), yang menjamin bahwa hasil interpolasi akan melewati semua

titik data yang diberikan.

Keunggulan metode Lagrange terletak pada kesederhanaan

bentuk matematisnya. Tanpa perlu menyelesaikan sistem persamaan

linear atau melakukan operasi matriks, interpolasi dapat dilakukan

langsung dari data yang tersedia. Hal ini sangat berguna dalam

pengajaran dasar komputasi numerik dan dalam situasi di mana efisiensi

bukanlah kendala utama. Namun, metode ini memiliki kekurangan

signifikan. Salah satunya adalah kesulitan dalam menambahkan titik data

baru; penambahan satu titik baru mengharuskan rekalkulasi seluruh basis

polinomial, sehingga metode ini tidak efisien untuk data dinamis atau

jumlah data yang besar. Selain itu, metode ini cenderung menghasilkan

osilasi besar di bagian tepi domain ketika digunakan pada titik-titik yang

tersebar luas (fenomena yang dikenal sebagai osilasi Runge).

Pada penerapan praktis, interpolasi Lagrange banyak digunakan

untuk estimasi nilai fungsi di antara data eksperimen, rekonstruksi kurva

dalam pemodelan numerik, serta dalam bidang rekayasa dan fisika yang

membutuhkan aproksimasi fungsi kompleks dari data terbatas.

Implementasinya dalam bahasa pemrograman seperti Python pun cukup

sederhana, dan sering digunakan untuk tujuan pendidikan atau aplikasi

ringan. Secara keseluruhan, interpolasi polinomial Lagrange

memberikan pemahaman fundamental yang penting tentang bagaimana

fungsi dapat dibangun dari sekumpulan titik, meskipun dalam kasus

aplikasi berskala besar atau data tak beraturan, metode interpolasi lain

seperti spline atau Newton mungkin lebih disukai.

Diketahui tiga titik data sebagai berikut:

Gunakan metode interpolasi polinomial Lagrange untuk membentuk

polinomial L(x), dan hitung nilai pendekatan fungsi di x=3.

Bentuk umum polinomial Lagrange orde dua (untuk tiga titik) adalah:

74 Pemrograman dan Komputasi Numerik

Dengan:

Hitung nilai L(3):

2. Interpolasi Polinomial Newton

Interpolasi polinomial Newton adalah salah satu metode

interpolasi numerik yang dirancang untuk menyusun polinomial yang

melewati sekumpulan titik data (x0,y0),(x1,y1),…,(xn,yn) dengan cara

yang efisien dan fleksibel. Berbeda dengan metode Lagrange yang

menghitung seluruh bentuk polinomial sekaligus, metode Newton

 75 Buku Referensi

menggunakan pendekatan rekursif berdasarkan konsep selisih terbagi

(divided differences). Metode ini memungkinkan pembangunan

polinomial secara bertahap, sehingga sangat efisien jika diperlukan

penambahan titik baru tanpa harus menghitung ulang seluruh polinomial

yang telah dibentuk sebelumnya.

Polinomial Newton ditulis dalam bentuk:

Koefisien aia_iai di sini diperoleh dari tabel selisih terbagi, yang

dihitung secara rekursif dari nilai-nilai yi. Proses ini dimulai dari nilai

f[xi]=yi, kemudian menghitung selisih dua nilai berturut-turut dibagi

dengan selisih titik x-nya:

Keunggulan utama interpolasi Newton adalah kemampuannya

dalam menyusun polinomial secara bertahap, menjadikannya lebih

efisien dibanding Lagrange, terutama ketika data baru ditambahkan.

Dengan hanya menghitung satu suku tambahan dan satu koefisien baru,

polinomial yang telah dibentuk dapat diperluas tanpa perhitungan ulang

seluruhnya. Ini membuat metode Newton sangat cocok untuk aplikasi

dengan jumlah data bertambah secara dinamis. Selain itu, bentuk

rekursifnya juga mempermudah proses komputasi numerik, baik secara

manual maupun dalam program komputer.

Metode Newton memiliki kekurangan dalam kompleksitas awal

pembuatan tabel selisih terbagi, terutama bila tidak dilakukan secara

otomatis. Kesalahan dalam perhitungan selisih terbagi dapat menjalar ke

hasil akhir, karena setiap koefisien bergantung pada hasil sebelumnya.

Selain itu, jika titik xi sangat berdekatan atau data mengandung noise

tinggi, perhitungan dapat menjadi tidak stabil.

Pada praktiknya, interpolasi Newton banyak digunakan dalam

rekayasa, fisika komputasi, ekonomi, dan bidang-bidang yang

76 Pemrograman dan Komputasi Numerik

memerlukan estimasi nilai fungsi di antara titik-titik data. Kelebihannya

dalam fleksibilitas dan efisiensi menjadikannya metode yang disukai

dalam implementasi algoritmik. Di berbagai bahasa pemrograman

seperti Python dan MATLAB, algoritma Newton sangat mudah

diimplementasikan menggunakan array dan operasi rekursif,

menjadikannya alat penting dalam toolkit numerik modern. Dengan

dasar teori yang kuat dan struktur perhitungan yang sistematis,

interpolasi Newton merupakan pendekatan yang sangat relevan dalam

pengolahan dan pemodelan data numerik.

Diberikan tiga titik data berikut:

Gunakan metode interpolasi Newton untuk membentuk polinomial

interpolasi dan hitung nilai pendekatan fungsi di x=2.5.

 77 Buku Referensi

Hasil pendekatan dengan interpolasi Newton menunjukkan bahwa

f(2.5)≈6.25, yang mendekati nilai eksak dari fungsi f(x)=x2 pada x=2.5.

B. Interpolasi Spline dan Kurva Halus

Interpolasi spline merupakan salah satu metode numerik yang

dirancang untuk menghasilkan kurva halus yang melewati sekumpulan

titik data, dengan menghindari osilasi ekstrem yang sering muncul pada

interpolasi polinomial derajat tinggi. Metode ini menjadi penting dalam

berbagai bidang seperti grafik komputer, pemodelan geometri, simulasi

ilmiah, dan teknik rekayasa karena mampu menghasilkan kurva yang

tidak hanya akurat tetapi juga estetis dan stabil secara numerik.

Menurut Chapra dan Canale (2015) dalam bukunya Numerical

Methods for Engineers, interpolasi spline adalah proses menyusun

potongan-potongan fungsi polinomial berorde rendah yang

disambungkan secara kontinu pada titik-titik data. Fungsi spline

dirancang sedemikian rupa sehingga setiap potongan kurva (disebut

segmen spline) hanya berlaku pada interval tertentu di antara dua titik

data, dan memiliki kontinuitas hingga turunan kedua atau lebih pada titik

sambungan (disebut knots). Hal ini membuat spline menjadi solusi ideal

dalam interpolasi yang menuntut kurva halus dan stabil.

Jenis spline yang paling umum digunakan adalah Spline Kubik

(Cubic Spline), di mana masing-masing segmen kurva adalah polinomial

derajat tiga. Bentuk umum spline kubik pada setiap interval [xi,xi+1]

adalah:

78 Pemrograman dan Komputasi Numerik

Koefisien ai,bi,ci, di ditentukan berdasarkan kondisi interpolasi

(kurva harus melewati titik data), dan syarat kekontinuan turunan

pertama dan kedua di titik sambung antar segmen.

1. Kelebihan Spline Dibandingkan Polinomial Global

Interpolasi spline memiliki sejumlah keunggulan penting

dibandingkan interpolasi polinomial global, terutama dalam hal

kestabilan numerik, fleksibilitas, dan keakuratan lokal. Polinomial

global, seperti interpolasi Lagrange atau Newton, menyusun satu fungsi

polinomial berderajat tinggi yang mencakup seluruh domain data,

artinya satu fungsi harus melewati semua titik data. Meskipun

pendekatan ini secara teoritis valid, dalam praktiknya sering kali

menimbulkan masalah, terutama jika jumlah titik data cukup banyak atau

jika titik-titik tersebut tersebar secara tidak merata. Salah satu masalah

paling terkenal adalah osilasi Runge, yaitu fenomena di mana polinomial

derajat tinggi berosilasi secara ekstrem di dekat ujung-ujung domain,

menyebabkan interpolasi yang tidak akurat dan tidak realistis. Hal ini

terutama terjadi jika titik data tersebar secara ekuidistan. Dalam konteks

ini, interpolasi spline memberikan solusi yang jauh lebih stabil dan dapat

diandalkan.

Spline, khususnya spline kubik, menyusun interpolasi dalam

bentuk segmen-segmen polinomial rendah (biasanya derajat tiga) yang

diterapkan pada setiap interval antar dua titik data. Setiap segmen ini

memiliki koefisiennya sendiri, namun disatukan melalui syarat

kekontinuan nilai fungsi, turunan pertama, dan bahkan turunan kedua di

titik sambung. Karena setiap polinomial hanya berlaku pada satu interval

lokal, spline menghindari masalah osilasi yang terjadi pada pendekatan

global. Sebagaimana dijelaskan oleh Burden dan Faires (2010),

penggunaan polinomial derajat rendah secara lokal jauh lebih stabil

secara numerik, karena galat interpolasi terkendali dan tidak berkembang

secara ekstrem seiring bertambahnya jumlah titik data.

Keunggulan lain spline adalah fleksibilitas dalam menangani

jumlah data yang besar. Dalam interpolasi polinomial global,

penambahan titik data mengubah struktur seluruh polinomial, sehingga

memerlukan penghitungan ulang keseluruhan fungsi interpolasi.

 79 Buku Referensi

Sebaliknya, dalam spline, penambahan titik data hanya memengaruhi

segmen di sekitar titik baru, sehingga perhitungan dapat dilakukan secara

lebih modular dan efisien. Ini sangat berguna dalam aplikasi dinamis,

seperti dalam grafik komputer atau pemrosesan sinyal waktu nyata, di

mana data terus berkembang.

Spline juga mendukung pengaturan kondisi batas yang lebih

fleksibel, seperti dalam natural spline (dengan turunan kedua nol di

ujung), clamped spline (dengan kemiringan ujung yang ditentukan), dan

smoothing spline (yang memungkinkan penyimpangan dari titik data

untuk menghindari overfitting). Dengan demikian, spline tidak hanya

menyediakan interpolasi yang akurat, tetapi juga memberikan kontrol

yang lebih besar terhadap bentuk kurva.

2. Jenis-Jenis Spline

Spline adalah bentuk interpolasi numerik yang mengandalkan

potongan-potongan polinomial derajat rendah untuk membentuk kurva

halus yang melewati titik-titik data. Keunggulan metode ini terletak pada

kemampuannya menghasilkan interpolasi yang stabil dan halus tanpa

harus menggunakan polinomial derajat tinggi yang rentan terhadap

osilasi. Dalam praktiknya, terdapat beberapa jenis spline yang

dikembangkan untuk memenuhi berbagai kebutuhan interpolasi dan

pemodelan data. Jenis-jenis spline ini dibedakan berdasarkan kondisi

batas, derajat polinomial yang digunakan, serta cara pengontrolan

kekontinuan dan kelengkungan antar segmen. Jenis spline yang paling

umum meliputi natural spline, clamped spline, not-a-knot spline,

smoothing spline, dan B-spline.

Natural spline adalah jenis spline kubik yang menetapkan bahwa

turunan kedua dari fungsi spline di titik ujung (boundary) adalah nol,

yaitu S′′(x0)=0 dan S′′(xn)=0. Kondisi ini memberikan bentuk kurva yang

cenderung datar di ujung domain, mencerminkan asumsi bahwa

kelengkungan di luar titik data dianggap tidak signifikan. Natural spline

sangat populer karena secara matematis sederhana dan cocok untuk data

yang tidak memiliki informasi tambahan di batas domain.

Berbeda dengan itu, clamped spline menetapkan nilai turunan

pertama (kemiringan) pada titik ujung domain. Artinya, pengguna harus

mengetahui atau memperkirakan S′(x0) dan S′(xn). Clamped spline

sangat berguna ketika kemiringan atau kecepatan perubahan data pada

batas domain sudah diketahui, misalnya dalam pemodelan mekanika

80 Pemrograman dan Komputasi Numerik

atau fisika, di mana gradien pada batas bisa dihitung dari teori atau

eksperimen.

Jenis lainnya, not-a-knot spline, menghilangkan status simpul

pada titik kedua dan titik kedua dari akhir, yaitu x1dan xn−1. Dengan kata

lain, spline pada interval [x0,x2] dan [xn−2,xn] diperlakukan seolah-olah

sebagai satu segmen tunggal. Tujuan pendekatan ini adalah untuk

meminimalkan jumlah kondisi sambungan dan menyederhanakan

sistem, sambil tetap menjaga kekontinuan hingga turunan kedua.

Smoothing spline adalah jenis spline yang tidak memaksa kurva

untuk melewati setiap titik data, tetapi berusaha meminimalkan

gabungan antara kesalahan interpolasi dan kelengkungan kurva. Spline

ini sangat cocok untuk data yang mengandung noise, karena tidak terlalu

sensitif terhadap fluktuasi kecil. Fungsi objektif smoothing spline

biasanya berbentuk:

di mana λ adalah parameter regularisasi. Ketika λ besar, spline

menjadi lebih halus; ketika kecil, spline lebih mendekati data.

B-spline (Basis spline) dan Spline NURBS (Non-Uniform

Rational B-Splines) digunakan secara luas dalam grafik komputer dan

CAD (Computer-Aided Design). B-spline adalah representasi spline

dalam basis tertentu yang memberikan fleksibilitas tinggi dan kontrol

lokal. Tidak seperti spline polinomial biasa, perubahan pada satu titik

kontrol hanya memengaruhi segmen tertentu, membuatnya sangat

efisien untuk manipulasi bentuk dalam desain. Dengan berbagai jenis

spline yang tersedia, pengguna dapat memilih metode yang paling sesuai

dengan sifat data dan kebutuhan aplikasi. Pemilihan jenis spline yang

tepat akan menghasilkan interpolasi yang tidak hanya akurat, tetapi juga

halus, stabil, dan representatif terhadap perilaku data sebenarnya.

3. Proses Pembentukan Spline Kubik

Proses pembentukan spline kubik merupakan tahap penting

dalam interpolasi numerik yang bertujuan menghasilkan kurva halus

yang melewati serangkaian titik data diskrit. Spline kubik adalah

interpolasi yang menggunakan potongan-potongan fungsi polinomial

derajat tiga pada setiap interval antar dua titik data. Masing-masing

 81 Buku Referensi

segmen spline diwakili oleh suatu fungsi Si(x) yang berbentuk

polinomial kubik:

di mana x∈[xi,xi+1]. Tujuannya adalah menemukan koefisien ai,

bi, ci, dan di untuk setiap interval sehingga seluruh potongan spline

tersambung secara mulus membentuk kurva kontinyu, baik dalam nilai

fungsinya maupun turunannya.

Langkah pertama dalam membentuk spline kubik adalah

menetapkan syarat bahwa kurva harus melewati semua titik data, artinya

Si(xi) = yi dan Si(xi+1) = yi+1. Ini menghasilkan dua persamaan untuk

setiap segmen. Selanjutnya, karena spline harus membentuk kurva yang

halus, maka diperlukan syarat kekontinuan turunan pertama dan turunan

kedua di setiap titik sambungan x1, x2,..., xn−1. Syarat ini menghasilkan

dua persamaan tambahan per titik sambungan, yakni: S′i(xi+1) = Si+1 dan

S′′i(xi+1) = S′′i+1(xi+1).

Untuk n titik data, akan terbentuk n−1 segmen spline, dan total

ada 4(n−1) koefisien yang harus dihitung, sehingga diperlukan jumlah

persamaan yang sama. Untuk melengkapi sistem persamaan, dua syarat

tambahan harus diberikan sebagai kondisi batas. Dalam natural spline,

misalnya, ditetapkan bahwa turunan kedua di kedua ujung domain nol,

yaitu S′′0(x0) = 0 dan S′′n-2(xn) = 0. Alternatifnya, dalam clamped spline,

ditentukan nilai kemiringan di ujung domain, seperti S′0(x0) = m0 dan S′n-

2(xn) = mn, berdasarkan informasi yang diketahui atau diasumsikan.

Setelah semua syarat dituliskan, langkah selanjutnya adalah

menyusun sistem persamaan linear dalam bentuk matriks, khususnya

matriks tridiagonal, karena hanya koefisien dari titik-titik berdekatan

yang saling terkait. Umumnya, sistem ini difokuskan pada pencarian

nilai koefisien ci (turunan kedua), karena dari nilai ci, koefisien lainnya

dapat dihitung dengan rumus langsung. Sistem tridiagonal ini kemudian

diselesaikan menggunakan metode eliminasi Gauss atau algoritma

Thomas. Setelah semua koefisien diperoleh, fungsi spline dapat

digunakan untuk mengestimasi nilai fungsi di antara titik-titik data

secara halus dan stabil. Dengan desain proses yang memastikan

kekontinuan fungsi dan turunannya, spline kubik menjadi metode

82 Pemrograman dan Komputasi Numerik

interpolasi unggulan dalam berbagai aplikasi rekayasa, grafik komputer,

dan pemodelan ilmiah.

C. Least Squares dan Regresi Polinomial

Pada analisis data dan komputasi numerik, kita sering kali

dihadapkan pada sekumpulan data diskrit yang tidak memiliki hubungan

eksak atau pasti satu sama lain, baik karena adanya noise, kesalahan

pengukuran, maupun karena hubungan antara variabel memang tidak

linier. Dalam situasi seperti ini, metode interpolasi tidak lagi memadai

karena interpolasi mensyaratkan kurva harus melalui seluruh titik data.

Sebaliknya, metode aproksimasi diperlukan untuk menemukan suatu

fungsi yang mendekati pola umum dari data tersebut, dan salah satu

metode paling populer dalam pendekatan ini adalah metode Least

Squares atau kuadrat terkecil. Ketika fungsi pendekatan berbentuk

polinomial, metode ini dikenal sebagai regresi polinomial.

1. Konsep Least Squares

Konsep Least Squares atau metode kuadrat terkecil merupakan

pendekatan dasar dan penting dalam statistik dan komputasi numerik

yang digunakan untuk mencari fungsi aproksimasi terbaik terhadap

sekumpulan data yang tidak sepenuhnya presisi atau tidak mengikuti

pola tertentu secara eksak. Metode ini dirancang untuk meminimalkan

jumlah kuadrat selisih antara nilai-nilai hasil observasi atau eksperimen

dengan nilai-nilai yang diprediksi oleh suatu model matematis. Artinya,

dalam konteks hubungan antara dua variabel, metode least squares

bertujuan menemukan garis atau kurva yang paling “pas” di tengah data,

bukan yang melalui setiap titik secara sempurna, seperti dalam

interpolasi. Hal ini sangat relevan dalam dunia nyata, karena data hasil

observasi sering kali mengandung noise atau kesalahan pengukuran

sehingga tidak cocok diinterpolasi secara langsung.

Secara matematis, diberikan sekumpulan data

(x1,y1),(x2,y2),...,(xn,yn), tujuan dari least squares adalah mencari fungsi

aproksimasi f(x) sedemikian rupa sehingga total kuadrat galat S

diminimalkan:

 83 Buku Referensi

Fungsi f(x) dapat berupa model linier, polinomial, eksponensial,

atau bentuk lainnya tergantung kebutuhan. Dalam kasus paling

sederhana, yaitu regresi linier, model 𝑓(𝑥) diasumsikan berbentuk garis

lurus 𝑓(𝑥)=𝑎0+𝑎1𝑥, dan metode least squares digunakan untuk

menentukan koefisien a0dan a 1yang memberikan nilai minimum bagi

S. Proses ini melibatkan penurunan fungsi kesalahan total S terhadap

masing-masing parameter, menghasilkan sistem persamaan normal yang

kemudian diselesaikan untuk mendapatkan parameter terbaik.

Keunggulan metode least squares terletak pada

kesederhanaannya, baik dalam konsep maupun implementasi. Ia tidak

hanya digunakan untuk menemukan parameter model linier, tetapi juga

dapat diperluas untuk regresi polinomial, multivariat, dan model non-

linier melalui modifikasi algoritma atau penggunaan transformasi basis.

Bahkan, least squares menjadi pondasi utama dalam banyak algoritma

machine learning, pengolahan sinyal, dan pemodelan ekonomi. Dalam

banyak situasi praktis, metode ini menawarkan solusi yang cepat dan

akurat, terutama ketika hubungan antara variabel sulit didekati secara

eksak.

Metode least squares juga memiliki keterbatasan. Ia sangat

sensitif terhadap outlier titik data yang menyimpang ekstrem dari pola

umum karena kuadrat galat memperbesar pengaruh deviasi besar. Oleh

karena itu, dalam kasus data dengan banyak outlier, digunakan

pendekatan alternatif seperti least absolute deviations atau robust

regression. Meskipun begitu, secara keseluruhan, konsep least squares

tetap menjadi alat analisis numerik dan statistika yang sangat penting

karena kemampuannya menyederhanakan persoalan aproksimasi data

yang kompleks menjadi bentuk matematis yang dapat dipecahkan secara

sistematis dan efisien.

2. Regresi Linier sebagai Kasus Khusus

Regresi linier merupakan bentuk paling sederhana dan paling

fundamental dari metode Least Squares, menjadikannya kasus khusus

yang sangat penting dalam analisis data dan komputasi numerik. Regresi

linier digunakan ketika pola hubungan antara dua variabel dapat didekati

dengan fungsi garis lurus, yaitu dalam bentuk model matematis:

84 Pemrograman dan Komputasi Numerik

di mana y adalah variabel dependen (respons), x adalah variabel

independen (prediktor), a0 adalah intersep (titik potong sumbu-y), a1

adalah kemiringan garis (gradien), dan ε adalah komponen kesalahan

(residual). Tujuan regresi linier adalah mencari nilai a0 dan a1 yang

meminimalkan jumlah kuadrat galat antara nilai aktual yi dan nilai yang

diprediksi oleh garis regresi, yaitu f(xi)=a0+a1xi.

Proses penurunan model regresi linier sederhana melibatkan

penggunaan prinsip Least Squares, dengan membentuk fungsi galat total:

Kemudian, nilai 𝑆 diminimalkan terhadap parameter a0 dan 𝑎1

dengan mengambil turunan parsial terhadap masing-masing parameter

dan menyamakannya dengan nol, sehingga diperoleh sistem persamaan

normal sebagai berikut:

Sistem ini dapat diselesaikan secara aljabar untuk memperoleh

estimasi parameter regresi. Setelah parameter diperoleh, garis regresi

linier dapat digunakan untuk memprediksi nilai y untuk input x baru, dan

juga untuk mengukur sejauh mana variabel x berpengaruh terhadap y.

Menurut Montgomery, Peck & Vining (2012), regresi linier tidak

hanya memberikan garis terbaik, tetapi juga menyertakan kemampuan

untuk mengukur keakuratan model melalui nilai-nilai statistik seperti

koefisien determinasi (R2), nilai p, dan analisis residual. Nilai R2,

misalnya, mengindikasikan seberapa besar proporsi variansi data yang

dapat dijelaskan oleh model regresi. Jika R2=0.95, maka 95% variasi

dalam data y dapat dijelaskan oleh variasi dalam x, sedangkan sisanya

dianggap sebagai noise atau kesalahan.

Regresi linier juga sangat mudah diterapkan dalam perangkat

lunak statistik dan bahasa pemrograman seperti Python, R, dan

MATLAB. Fungsionalitas ini membuatnya menjadi alat utama dalam

eksplorasi data awal (exploratory data analysis), pemodelan prediktif,

serta dalam validasi hipotesis hubungan antar variabel. Namun, regresi

linier memiliki asumsi dasar yang perlu diperhatikan agar hasilnya valid,

seperti linearitas hubungan, normalitas residual, homoskedastisitas

(kesamaan variansi), dan tidak adanya autokorelasi. Jika asumsi ini

 85 Buku Referensi

dilanggar, hasil model bisa menjadi bias atau menyesatkan. Berikut

contoh soalnya.

Seorang peneliti ingin mengetahui hubungan antara jumlah jam belajar

(X) dan nilai ujian matematika (Y) siswa. Berikut data lima siswa:

Gunakan regresi linier sederhana untuk menentukan persamaan regresi

dan prediksi nilai ujian jika seseorang belajar selama 6 jam.

Jawaban :

Hitung koefisien b dan a

86 Pemrograman dan Komputasi Numerik

Dengan regresi linier sederhana, diperoleh model Y=51.67+5.06X. Jika

seseorang belajar selama 6 jam, diperkirakan akan memperoleh nilai

sekitar 82.03.

3. Regresi Polinomial

Regresi polinomial adalah perluasan dari regresi linier yang

memungkinkan model untuk menangkap hubungan yang bersifat

nonlinier antara variabel independen (𝑥) dan variabel dependen (𝑦).

Dalam regresi linier, model dibatasi hanya pada garis lurus (𝑦=𝑎0+𝑎1𝑥),

sehingga kurang fleksibel ketika data menunjukkan pola lengkung atau

perubahan arah yang tidak bisa ditangkap oleh garis lurus. Untuk

mengatasi keterbatasan ini, regresi polinomial menggunakan fungsi

polinomial sebagai model aproksimasi, yaitu:

di mana mmm adalah derajat polinomial, a0,a1,...,am adalah

koefisien regresi, dan ε\varepsilonε adalah komponen galat (error).

Tujuan dari regresi polinomial tetap sama seperti pada regresi linier:

meminimalkan jumlah kuadrat selisih antara nilai prediksi dan data

aktual menggunakan metode Least Squares.

Menurut Chapra dan Canale (2015) dalam Numerical Methods

for Engineers, regresi polinomial berguna ketika terdapat indikasi bahwa

data memiliki hubungan melengkung, misalnya seperti kurva parabola,

eksponensial, atau siklikal. Model polinomial memungkinkan kita

menangkap berbagai bentuk tren tersebut dengan cara menambahkan

pangkat variabel independen ke dalam model regresi. Derajat polinomial

yang digunakan sangat menentukan bentuk dan fleksibilitas kurva hasil.

Misalnya, polinomial orde dua (y=a0+a1x+a2x2) cukup untuk

mendeskripsikan tren berbentuk parabola, sementara orde tiga atau lebih

tinggi digunakan untuk bentuk yang lebih kompleks. Proses perhitungan

 87 Buku Referensi

koefisien regresi polinomial melibatkan penyusunan sistem persamaan

normal yang lebih besar dibanding regresi linier. Dalam hal ini, kita

menghitung jumlah hasil kali dari x dengan berbagai pangkatnya, serta

dengan y, untuk membentuk sistem persamaan linear yang dapat

diselesaikan menggunakan eliminasi Gauss atau metode numerik

lainnya.

Regresi polinomial sangat fleksibel dan banyak digunakan dalam

bidang teknik, ekonomi, dan ilmu data, terutama ketika pola data tidak

dapat dijelaskan dengan baik oleh model linier. Namun demikian, model

ini juga memiliki kelemahan. Jika derajat polinomial terlalu tinggi,

model cenderung mengalami overfitting, yaitu menyesuaikan diri secara

berlebihan dengan data pelatihan hingga kehilangan kemampuan

generalisasi terhadap data baru. Selain itu, polinomial derajat tinggi bisa

menimbulkan osilasi tajam antara titik-titik data, mirip dengan fenomena

osilasi Runge pada interpolasi.

Untuk mengatasi hal tersebut, pemilihan derajat polinomial harus

hati-hati, bisa menggunakan teknik validasi silang (cross-validation),

kriteria Akaike (AIC), atau Bayesian Information Criterion (BIC).

Secara keseluruhan, regresi polinomial adalah alat yang sangat berguna

dalam pendekatan aproksimatif terhadap data nonlinier, selama

digunakan dengan pertimbangan metodologis yang tepat.

88 Pemrograman dan Komputasi Numerik

Kode ini menunjukkan bagaimana polinomial orde dua dapat

diaproksimasi ke data yang cenderung non-linier menggunakan fungsi

np.polyfit().Berikut adalah contoh soal dan jawabannya mengenai

Regresi Polinomial.

Seorang analis ingin memodelkan hubungan antara usia kendaraan (X,

dalam tahun) dan biaya perawatan tahunan (Y, dalam juta rupiah). Data

berikut dikumpulkan:

 89 Buku Referensi

Gunakan regresi polinomial orde 2 (kuadrat) untuk menemukan

persamaan regresi dan prediksi biaya perawatan saat usia kendaraan 3,5

tahun.

D. Visualisasi dan Evaluasi Aproksimasi

Pada konteks komputasi numerik dan analisis data, aproksimasi

merupakan metode penting untuk mendekati fungsi atau data yang tidak

diketahui bentuk analitiknya secara eksak. Aproksimasi sering

digunakan ketika data hasil eksperimen atau pengamatan tidak dapat

diwakili secara sempurna oleh model eksak, sehingga dibutuhkan

pendekatan numerik seperti regresi atau interpolasi. Namun,

membangun model aproksimasi hanyalah langkah awal yang tak kalah

penting adalah visualisasi dan evaluasi dari hasil aproksimasi tersebut.

Visualisasi memungkinkan pemahaman intuitif terhadap kualitas kurva

aproksimasi, sementara evaluasi memberikan ukuran kuantitatif

terhadap akurasi dan reliabilitas model tersebut.

90 Pemrograman dan Komputasi Numerik

1. Pentingnya Visualisasi Aproksimasi

Visualisasi aproksimasi merupakan langkah esensial dalam

proses analisis data dan komputasi numerik karena membantu

menyampaikan secara intuitif sejauh mana model aproksimatif mewakili

data yang sebenarnya. Dalam konteks aproksimasi, baik menggunakan

regresi linier, polinomial, atau teknik lain seperti spline, visualisasi

memungkinkan kita mengevaluasi kualitas kurva hasil secara langsung

melalui representasi grafis. Tanpa visualisasi, analisis terhadap model

aproksimasi hanya akan mengandalkan metrik numerik seperti RMSE,

MAE, atau 𝑅2, yang meskipun objektif, sering kali tidak cukup

menggambarkan perilaku model terhadap data secara menyeluruh.

Visualisasi memperlihatkan aspek-aspek yang tidak tertangkap oleh

angka, seperti outlier, pola sistematis dalam residual, atau indikasi

overfitting dan underfitting.

Menurut Chapra dan Canale (2015) dalam Numerical Methods

for Engineers, visualisasi sangat berguna untuk mendeteksi kecocokan

antara model dan data secara lokal maupun global. Misalnya, ketika

kurva hasil aproksimasi diplot bersamaan dengan titik-titik data aktual,

kita bisa segera melihat apakah kurva tersebut terlalu kaku (underfit) atau

terlalu berlekuk mengikuti data (overfit). Bahkan ketika nilai koefisien

determinasi 𝑅2 tinggi, bisa saja kurva menampilkan osilasi liar akibat

pemilihan model yang tidak tepat, seperti pada regresi polinomial derajat

tinggi. Hal seperti ini hanya bisa diidentifikasi dengan jelas melalui

visualisasi, bukan sekadar dari nilai metrik statistik.

Visualisasi juga penting dalam memahami distribusi kesalahan

(residual). Plot residual terhadap variabel independen dapat

menunjukkan apakah galat tersebar secara acak atau membentuk pola

tertentu. Jika residual menunjukkan pola sistematis, seperti pola

melengkung atau menaik-menurun, hal itu menunjukkan bahwa model

tidak menangkap karakteristik data dengan baik. Sebaliknya, jika

residual tersebar acak di sekitar garis nol, ini mengindikasikan bahwa

model telah menangkap tren data dengan cukup baik. Visualisasi residual

ini juga menjadi langkah penting dalam menguji asumsi-asumsi statistik

pada regresi, seperti linearitas, homoskedastisitas, dan normalitas.

Pada aplikasi dunia nyata, visualisasi aproksimasi juga

memudahkan komunikasi dan interpretasi hasil. Peneliti, analis, atau

pengambil keputusan sering kali bukan ahli statistik atau numerik,

 91 Buku Referensi

sehingga menyampaikan hasil dalam bentuk grafik yang mudah

dipahami jauh lebih efektif dibandingkan tabel angka dan persamaan.

Grafik regresi atau kurva aproksimasi juga sangat membantu dalam

presentasi teknis, laporan penelitian, dan dokumentasi ilmiah.

2. Evaluasi Aproksimasi

Evaluasi aproksimasi adalah proses penting untuk menilai

seberapa baik suatu model matematis atau numerik dalam

merepresentasikan hubungan antara variabel-variabel dalam sekumpulan

data. Dalam konteks komputasi numerik dan analisis data, aproksimasi

sering digunakan ketika model eksak tidak tersedia atau hubungan antar

variabel terlalu kompleks untuk dijelaskan secara analitik. Oleh karena

itu, setelah membentuk model aproksimasi baik melalui regresi linier,

regresi polinomial, spline, atau metode lainnya kita perlu mengevaluasi

performa model tersebut secara kuantitatif dan objektif. Evaluasi ini

bertujuan untuk memastikan bahwa model tidak hanya cocok pada data

yang tersedia (fit), tetapi juga memiliki kemampuan generalisasi yang

baik terhadap data baru atau tak terlihat sebelumnya.

Menurut Burden dan Faires (2010) dalam Numerical Analysis,

salah satu cara paling umum dalam mengevaluasi aproksimasi adalah

dengan menghitung galat (error) antara nilai aktual dan nilai hasil

prediksi model. Galat ini dapat diukur dalam berbagai bentuk, yang

paling mendasar adalah galat absolut ∣yi−yi∣ dan galat kuadrat (yi−yi)2,

di mana yi adalah nilai aktual dan yi adalah hasil prediksi. Dari sini,

beberapa metrik evaluasi dapat diturunkan, seperti Mean Absolute Error

(MAE), yang memberikan ukuran rata-rata kesalahan absolut, dan Root

Mean Squared Error (RMSE), yang mengkuadratkan kesalahan terlebih

dahulu sebelum dirata-rata, sehingga memberikan penalti lebih besar

pada kesalahan besar.

Salah satu metrik yang paling banyak digunakan dalam evaluasi

regresi adalah koefisien determinasi (R2), yang mengukur proporsi

variabilitas data yang dapat dijelaskan oleh model aproksimasi. Nilai R2

berkisar dari 0 hingga 1, di mana nilai mendekati 1 menunjukkan bahwa

model menjelaskan hampir seluruh variasi dalam data, sedangkan nilai

mendekati 0 menunjukkan bahwa model kurang efektif dalam

menjelaskan data. Namun, meskipun R2 berguna, ia bisa menyesatkan

jika digunakan tanpa memperhatikan kompleksitas model. Model yang

92 Pemrograman dan Komputasi Numerik

terlalu kompleks bisa memiliki R2 tinggi tetapi sebenarnya mengalami

overfitting, yaitu menyesuaikan diri secara berlebihan dengan data

pelatihan hingga gagal bekerja dengan baik pada data baru.

Evaluasi aproksimasi juga melibatkan analisis residual, yaitu

perbedaan antara nilai aktual dan nilai prediksi model. Pola residual yang

acak mengindikasikan bahwa model telah menangkap struktur data

dengan baik, sedangkan pola sistematis (misalnya membentuk kurva

atau tren) menunjukkan bahwa model belum cukup baik. Visualisasi

residual dapat memperjelas hal ini dan membantu dalam diagnosis

model.

Pada praktik profesional, evaluasi biasanya tidak dilakukan

hanya dengan satu metrik. Kombinasi antara MAE, RMSE, R2, dan

analisis residual memberikan gambaran yang lebih menyeluruh tentang

kualitas aproksimasi. Evaluasi ini juga sangat penting dalam pemilihan

model terbaik dari beberapa alternatif, penyesuaian parameter model,

dan validasi hasil sebelum digunakan untuk prediksi atau pengambilan

keputusan. Oleh karena itu, evaluasi aproksimasi merupakan langkah

kritis dalam siklus pemodelan numerik dan statistik yang tidak boleh

diabaikan.

3. Visualisasi Residual dan Diagnostik

Visualisasi residual dan diagnostik merupakan aspek penting

dalam evaluasi model aproksimasi, khususnya dalam konteks regresi

numerik dan statistik. Residual adalah selisih antara nilai sebenarnya dari

data (yi) dengan nilai yang diprediksi oleh model aproksimasi (yi), yakni

ri=yi−yi. Analisis terhadap residual memberikan wawasan mendalam

tentang seberapa baik model menangkap pola hubungan dalam data.

Visualisasi residual bertujuan untuk mengidentifikasi apakah galat

(kesalahan prediksi) terdistribusi secara acak, atau justru membentuk

pola tertentu yang mengindikasikan kelemahan model. Ketika model

aproksimasi dinilai hanya berdasarkan metrik seperti RMSE atau R2, kita

bisa saja melewatkan masalah penting yang tersembunyi, seperti non-

linearitas, heteroskedastisitas, atau autokorelasi dan semua ini bisa

terdeteksi melalui analisis grafis terhadap residual.

Menurut Montgomery, Peck, dan Vining (2012) dalam

Introduction to Linear Regression Analysis, pola residual yang baik

harus menyerupai sebaran acak yang simetris di sekitar garis nol. Ini

menunjukkan bahwa model sudah cukup baik dalam menangkap struktur

 93 Buku Referensi

data, dan sisa galat hanyalah fluktuasi acak (noise). Namun, jika residual

menunjukkan pola melengkung, berbentuk U atau terdistribusi asimetris,

hal itu menandakan bahwa model belum cukup baik mungkin karena

hubungan antar variabel bersifat nonlinier, namun model yang

digunakan hanya linier. Dalam regresi polinomial, visualisasi residual

dapat membantu memilih orde polinomial yang tepat. Jika residual

melengkung, maka kemungkinan besar derajat polinomial masih terlalu

rendah.

Jenis plot residual yang paling umum adalah plot residual

terhadap nilai prediksi (y) dan plot residual terhadap variabel independen

(x). Pada kedua plot ini, idealnya residual tersebar acak di sekitar garis

nol tanpa pola yang jelas. Pola yang berbentuk kipas (menyempit atau

melebar) menunjukkan adanya heteroskedastisitas, yaitu varian galat

yang tidak konstan. Ini menjadi masalah serius dalam regresi klasik

karena melanggar asumsi homoskedastisitas dan dapat membuat

estimasi varians tidak akurat.

Visualisasi diagnostik lain termasuk normal probability plot (Q-

Q plot), yang digunakan untuk mengevaluasi apakah residual

berdistribusi normal. Dalam regresi linear klasik, normalitas residual

diperlukan untuk validitas uji statistik seperti t-test dan F-test. Jika titik-

titik dalam Q-Q plot menyimpang jauh dari garis diagonal, maka residual

tidak normal dan model tidak memenuhi asumsi klasik. Selain itu,

histogram residual dapat digunakan untuk evaluasi visual distribusi

residual secara langsung.

Dengan melakukan visualisasi residual, pengguna dapat

memahami lebih dalam mengapa suatu model bekerja dengan baik atau

buruk, dan apakah perlu dilakukan transformasi data, penambahan

variabel, atau penggantian bentuk model. Oleh karena itu, visualisasi

residual bukan hanya alat bantu, tetapi merupakan bagian integral dari

proses diagnosis dan validasi model aproksimasi numerik maupun

statistik yang andal.

4. Evaluasi Kinerja Model pada Data Baru

Evaluasi kinerja model pada data baru merupakan langkah

penting dalam proses validasi model aproksimasi atau prediktif untuk

memastikan bahwa model yang telah dibangun tidak hanya cocok

dengan data pelatihan (training data), tetapi juga memiliki kemampuan

generalisasi yang baik terhadap data yang belum pernah dilihat

94 Pemrograman dan Komputasi Numerik

sebelumnya. Dalam praktik nyata, tujuan utama dari pembangunan

model aproksimasi bukanlah hanya untuk menyesuaikan model terhadap

data historis, melainkan untuk digunakan dalam prediksi dan estimasi

nilai di masa depan atau dalam konteks yang berbeda. Oleh karena itu,

evaluasi model pada data baru sangat krusial untuk menilai apakah

model bersifat overfit, underfit, atau benar-benar mampu menangkap

pola dasar dari hubungan antar variabel.

Menurut Hastie, Tibshirani, dan Friedman (2009) dalam The

Elements of Statistical Learning, overfitting adalah situasi ketika model

sangat akurat pada data pelatihan, tetapi berkinerja buruk pada data baru

karena model terlalu kompleks dan menangkap noise atau fluktuasi acak

dalam data, bukan pola yang mendasarinya. Sebaliknya, underfitting

terjadi jika model terlalu sederhana sehingga gagal menangkap pola

penting bahkan dalam data pelatihan. Kedua kondisi ini bisa sulit

dikenali jika hanya mengevaluasi model berdasarkan data yang sama

dengan yang digunakan untuk melatihnya. Untuk itu, evaluasi pada data

baru yang tidak digunakan dalam proses pelatihan menjadi keharusan

dalam penilaian performa model secara menyeluruh.

Salah satu pendekatan yang paling umum adalah dengan

membagi data menjadi dua bagian: training set dan testing set. Model

dibangun menggunakan training set, lalu performanya diuji pada testing

set. Evaluasi dilakukan dengan menghitung metrik seperti Root Mean

Squared Error (RMSE), Mean Absolute Error (MAE), atau R-squared

pada data uji. Jika nilai error pada data uji jauh lebih besar dibandingkan

dengan data pelatihan, maka model cenderung overfit. Sebaliknya, jika

error besar pada kedua data, maka kemungkinan besar model underfit.

Pada situasi dengan data terbatas, evaluasi model dapat dilakukan

dengan metode cross-validation, di mana data dibagi menjadi beberapa

subset (fold), dan model dilatih serta diuji secara bergilir di seluruh

subset. Teknik ini, terutama k-fold cross-validation, sangat efektif dalam

memberikan estimasi performa model yang lebih stabil dan bebas dari

pengaruh pemisahan data yang kebetulan tidak representatif. Selain itu,

evaluasi pada data baru juga mencakup pengamatan terhadap distribusi

residual, robustness model terhadap noise, serta kemampuan menangani

data ekstrem atau outlier. Hal ini sangat penting dalam aplikasi dunia

nyata di mana data masa depan tidak selalu bersih atau konsisten dengan

pola historis. Model yang hanya diuji pada data pelatihan cenderung

 95 Buku Referensi

menyesatkan karena tidak mencerminkan kondisi operasional

sesungguhnya.

Dengan demikian, evaluasi kinerja model pada data baru adalah

langkah kritis dalam menjamin keandalan dan kegunaan praktis suatu

model. Model yang baik bukan hanya yang cocok dengan data masa lalu,

tetapi juga yang mampu memprediksi dengan akurat dalam kondisi dan

situasi yang bervariasi. Evaluasi yang menyeluruh ini menjadi kunci

sukses dalam penerapan model numerik, statistik, maupun machine

learning di berbagai bidang aplikasi.

96 Pemrograman dan Komputasi Numerik

 97 Buku Referensi

BAB VI

DIFERENSIASI DAN

INTEGRASI NUMERIK

Diferensiasi dan Integrasi Numerik, yang menjadi landasan

dalam menyelesaikan berbagai persoalan matematika terapan dan teknik.

Di dunia nyata, fungsi-fungsi yang digunakan tidak selalu memiliki

bentuk analitik yang sederhana atau mudah diturunkan secara simbolik,

sehingga pendekatan numerik menjadi solusi efektif dalam

memperkirakan turunan maupun integral dari suatu fungsi. Dalam bab

ini, pembaca akan dikenalkan pada berbagai metode diferensiasi

numerik seperti metode selisih maju, mundur, dan tengah, yang

digunakan untuk menghitung laju perubahan fungsi secara mendekati.

Selain itu, metode integrasi numerik seperti metode Trapezoid, Simpson,

dan teknik Romberg akan dijelaskan secara rinci, lengkap dengan

pembahasan galat (error) dan kestabilan perhitungan. Topik ini tidak

hanya penting secara teoritis, tetapi juga memiliki banyak aplikasi

praktis seperti dalam pemrosesan sinyal, perhitungan energi dalam

sistem mekanik, serta estimasi luas dan volume dalam berbagai konteks

sains dan rekayasa. Dengan memahami konsep dan teknik diferensiasi

serta integrasi numerik, pembaca diharapkan mampu mengembangkan

solusi numerik yang akurat, efisien, dan aplikatif untuk berbagai

permasalahan yang kompleks dan dinamis.

A. Metode Selisih Hingga (Finite Difference)

Metode selisih hingga (finite difference method, FDM)

merupakan salah satu pendekatan numerik yang paling umum digunakan

untuk menyelesaikan persoalan matematika, terutama dalam hal

diferensiasi, integrasi, serta penyelesaian persamaan diferensial biasa

98 Pemrograman dan Komputasi Numerik

(ODE) dan persamaan diferensial parsial (PDE). Konsep dasar metode

ini adalah menggantikan turunan fungsi kontinu dengan pendekatan

diskrit menggunakan nilai-nilai fungsi pada titik-titik diskrit dalam

domain tertentu.

Burden dan Faires (2011) dalam Numerical Analysis, metode

selisih hingga bekerja dengan cara mendekati nilai turunan suatu fungsi

menggunakan selisih nilai fungsi pada titik-titik yang berjarak tertentu.

Dalam bentuk yang paling sederhana, jika kita memiliki fungsi kontinu

𝑓(𝑥), maka turunan pertama di titik 𝑥 dapat dihampiri dengan selisih

antara dua nilai 𝑓(𝑥+ℎ) dan 𝑓(𝑥), dibagi dengan ℎ, yaitu:

Ini dikenal sebagai metode selisih maju (forward difference).

Nilai ℎ merupakan langkah diskret (step size), dan pendekatan ini

menjadi lebih akurat seiring semakin kecilnya nilai ℎ, meskipun efek

galat pembulatan bisa menjadi signifikan jika ℎ terlalu kecil.

Gunakan 3 titik (termasuk titik batas) untuk menghitung nilai pendekatan

y pada titik tengah, yaitu x=0.5, dengan metode beda hingga orde 2.

Jawaban:

 99 Buku Referensi

1. Jenis-Jenis Selisih Hingga

Metode selisih hingga (finite difference) adalah teknik numerik

yang digunakan untuk menghampiri turunan suatu fungsi menggunakan

pendekatan diskrit. Metode ini memanfaatkan nilai-nilai fungsi pada

titik-titik tertentu yang berjarak tetap dalam domain yang telah dibagi

menjadi grid atau titik diskrit. Dalam praktik komputasi, turunan eksak

suatu fungsi seringkali tidak dapat dihitung secara simbolik, terutama

jika fungsi tersebut hanya diketahui dalam bentuk data atau hasil

pengukuran. Oleh karena itu, pendekatan selisih hingga menjadi solusi

efektif dalam memperkirakan turunan-turunan tersebut secara numerik.

Terdapat tiga jenis utama selisih hingga yang umum digunakan dalam

komputasi numerik, yaitu selisih maju (forward difference), selisih

mundur (backward difference), dan selisih tengah (central difference).

Masing-masing metode memiliki keunggulan, keterbatasan, dan akurasi

yang berbeda, serta digunakan dalam konteks aplikasi yang spesifik.

Jenis pertama adalah selisih maju (forward difference). Metode

ini memperkirakan turunan suatu fungsi pada titik 𝑥 dengan

memanfaatkan nilai fungsi di titik tersebut dan titik sesudahnya, yaitu

𝑥+ℎ, di mana ℎ adalah panjang langkah diskrit atau grid spacing. Rumus

matematisnya adalah:

Metode ini tergolong sederhana dan mudah diterapkan karena

hanya memerlukan nilai fungsi pada dua titik berurutan. Namun, selisih

maju memiliki tingkat akurasi yang lebih rendah dibanding metode lain

karena memiliki galat truncation orde pertama (𝑂(ℎ). Galat truncation

terjadi karena pendekatan yang digunakan hanya merepresentasikan

sebagian dari deret Taylor, sehingga hasil yang diperoleh menjadi kurang

akurat jika ℎ tidak cukup kecil. Metode ini umumnya digunakan ketika

informasi nilai fungsi hanya tersedia mulai dari titik tertentu ke depan,

100 Pemrograman dan Komputasi Numerik

seperti dalam kasus proses waktu berjalan ke arah positif, atau pada

domain batas awal.

Jenis kedua adalah selisih mundur (backward difference).

Pendekatan ini memperkirakan turunan dengan menggunakan nilai

fungsi pada titik 𝑥 dan titik sebelumnya, yaitu 𝑥−ℎ. Rumusnya dituliskan

sebagai:

Selisih mundur juga memiliki galat truncation orde pertama,

sehingga tingkat akurasinya setara dengan selisih maju. Metode ini

cocok digunakan pada kasus di mana data hanya tersedia dari akhir

domain ke belakang, atau pada titik-titik batas akhir suatu interval,

terutama saat menangani kondisi batas dalam simulasi numerik. Dalam

konteks tertentu seperti pemodelan proses historis atau simulasi numerik

berbasis waktu mundur, selisih mundur menjadi pilihan utama karena

bentuknya yang mempertimbangkan titik-titik masa lalu.

Jenis ketiga dan yang paling banyak digunakan adalah selisih

tengah (central difference). Metode ini memanfaatkan nilai fungsi pada

dua titik yang simetris terhadap titik 𝑥, yaitu 𝑥−ℎ dan 𝑥+ℎ. Pendekatan

ini dituliskan sebagai:

Metode ini memiliki galat truncation orde kedua (𝑂(ℎ2))),

sehingga jauh lebih akurat dibandingkan dengan selisih maju dan selisih

mundur, khususnya jika ℎ tidak terlalu kecil. Karena nilai turunan

dihitung berdasarkan rata-rata perubahan ke depan dan ke belakang,

maka pendekatan ini lebih stabil dan lebih baik dalam banyak kasus

analisis numerik. Central difference banyak diterapkan dalam simulasi

fisika, mekanika fluida, dan teknik karena mampu memberikan

keseimbangan antara akurasi dan efisiensi komputasi.

Metode selisih hingga juga dikembangkan untuk menghampiri

turunan orde lebih tinggi, seperti turunan kedua. Untuk turunan kedua

𝑓′′(𝑥), pendekatan selisih tengah dituliskan sebagai:

 101 Buku Referensi

Turunan kedua sangat penting dalam pemodelan fisik, seperti

dalam penyelesaian persamaan diferensial parsial yang melibatkan fluks,

perpindahan panas, atau percepatan. Akurasi metode ini tetap tinggi

karena menggunakan pendekatan simetris yang mengurangi pengaruh

kesalahan lokal.

Beberapa variasi lain dari metode selisih hingga juga tersedia,

seperti metode selisih hingga tak seragam (non-uniform finite

difference), di mana jarak antar titik h tidak konstan, serta pendekatan

selisih orde lebih tinggi (higher-order difference), yang menggunakan

lebih banyak titik dan menghasilkan akurasi lebih tinggi namun dengan

kompleksitas komputasi yang lebih besar.

Pada praktiknya, pemilihan jenis selisih hingga bergantung pada

beberapa faktor: kondisi batas domain, distribusi data fungsi, kebutuhan

akurasi, dan efisiensi perhitungan. Misalnya, jika kita memiliki data

eksperimental yang hanya mencakup nilai dari satu sisi domain, maka

pendekatan selisih maju atau mundur lebih sesuai. Sebaliknya, untuk

fungsi yang didefinisikan secara lengkap di sekitar titik evaluasi, selisih

tengah lebih disarankan karena ketelitiannya.

2. Galat dan Akurasi

Pada komputasi numerik, dua konsep fundamental yang sangat

menentukan kualitas hasil perhitungan adalah galat (error) dan akurasi

(accuracy). Keduanya tidak dapat dipisahkan dan saling berkaitan dalam

proses evaluasi hasil numerik. Galat menggambarkan sejauh mana hasil

perhitungan menyimpang dari nilai sebenarnya (eksak), sedangkan

akurasi menunjukkan tingkat kedekatan hasil komputasi terhadap nilai

tersebut. Memahami asal-usul, jenis, dan dampak galat sangat penting

agar seseorang tidak hanya dapat menilai kualitas solusi numerik, tetapi

juga mengambil langkah-langkah korektif untuk memperbaikinya.

Secara umum, galat dalam komputasi numerik dapat

diklasifikasikan ke dalam beberapa jenis utama, yaitu galat pembulatan

(round-off error), galat pemotongan (truncation error), galat propagasi

(propagation error), serta galat total (total error) yang merupakan

kombinasi dari beberapa sumber galat. Galat pembulatan terjadi karena

komputer tidak dapat menyimpan angka real secara presisi tak hingga.

Sebagian besar komputer menggunakan standar bilangan floating-point

(misalnya IEEE 754) yang hanya mampu merepresentasikan sejumlah

digit tertentu. Ketika angka tidak dapat direpresentasikan secara tepat,

102 Pemrograman dan Komputasi Numerik

maka sistem akan membulatkan angka tersebut ke representasi terdekat,

menyebabkan terjadinya galat pembulatan. Galat ini sering kali sangat

kecil, namun jika dikombinasikan dalam perhitungan berulang seperti

iterasi atau integrasi numerik, dampaknya dapat menjadi signifikan.

Galat pemotongan merupakan galat yang muncul ketika

pendekatan numerik digunakan untuk menggantikan prosedur

matematika yang ideal, seperti deret tak hingga atau turunan eksak.

Misalnya, ketika metode selisih hingga digunakan untuk menghampiri

turunan suatu fungsi, nilai sebenarnya dari turunan tersebut digantikan

dengan bentuk diskrit yang hanya mempertimbangkan sebagian dari

deret Taylor. Ketidaksesuaian ini menghasilkan galat pemotongan. Jenis

galat ini sangat bergantung pada ukuran langkah diskret (misalnya ℎ

dalam metode selisih hingga): semakin kecil ℎ, semakin kecil pula galat

pemotongan, meskipun pada titik tertentu galat pembulatan akan mulai

meningkat dan mendominasi, menyebabkan kehilangan presisi.

Galat propagasi terjadi ketika galat yang muncul pada tahap awal

perhitungan terbawa dan diperbesar pada tahap-tahap selanjutnya.

Proses propagasi ini sering kali terjadi dalam metode iteratif atau pada

penyelesaian sistem persamaan diferensial numerik. Jika suatu metode

numerik tidak stabil (unstable), galat kecil yang tidak signifikan dapat

berkembang secara eksponensial dan menghasilkan solusi yang sama

sekali tidak representatif terhadap kenyataan. Oleh karena itu, penting

untuk melakukan analisis kestabilan terhadap metode numerik yang

digunakan.

Pada praktiknya, galat total adalah gabungan dari semua bentuk

galat di atas. Meskipun dalam teori kita bisa membahas jenis-jenis galat

secara terpisah, dalam aplikasi nyata, galat-galat ini muncul secara

simultan dan berinteraksi satu sama lain. Oleh karena itu, pendekatan

komputasi numerik yang baik adalah yang mampu meminimalkan galat

total, baik melalui pemilihan metode yang tepat, pengaturan parameter

langkah diskret yang optimal, maupun pemrosesan data dengan presisi

tinggi.

Berbicara tentang akurasi, konsep ini menjelaskan seberapa

dekat hasil numerik terhadap solusi eksak yang sesungguhnya. Akurasi

dapat dinyatakan secara absolut maupun relatif. Galat absolut

didefinisikan sebagai selisih antara nilai hasil komputasi dan nilai eksak:

 103 Buku Referensi

Pada banyak kasus, galat relatif lebih berguna karena

memberikan gambaran proporsional terhadap besarnya kesalahan

terhadap nilai yang dihitung. Misalnya, galat absolut sebesar 0.01 pada

nilai eksak 1000 mungkin dapat diabaikan, namun galat yang sama pada

nilai eksak 0.01 bisa menjadi sangat signifikan.

Untuk mengevaluasi kualitas dan akurasi suatu metode numerik,

konsep orde konvergensi atau orde galat sering digunakan. Orde ini

menunjukkan seberapa cepat galat menyusut ketika ukuran langkah

diskret dikurangi. Misalnya, metode dengan galat 𝑂(ℎ) dikatakan

memiliki akurasi orde satu, dan metode dengan galat 𝑂(ℎ2) memiliki

akurasi orde dua. Hal ini berarti jika kita mengurangi ℎ menjadi

setengahnya, galat pada metode orde satu akan berkurang separuh,

sementara pada metode orde dua galat akan berkurang seperempat.

Dengan demikian, orde galat memberikan ukuran kuantitatif dari

efisiensi suatu metode dalam mencapai hasil yang akurat.

Akurasi tinggi tidak selalu menjamin hasil yang benar, terutama

jika metode tersebut tidak stabil atau jika galat pembulatan

mendominasi. Oleh karena itu, dalam banyak kasus numerik, dibutuhkan

keseimbangan antara akurasi, stabilitas, dan efisiensi komputasi. Strategi

praktis dalam menghadapi isu galat dan akurasi mencakup pemilihan

algoritma numerik yang sesuai dengan jenis masalah, pengujian hasil

dengan menggunakan ukuran langkah yang berbeda (refinement), serta

verifikasi terhadap solusi analitik (jika tersedia) atau solusi numerik yang

sudah terverifikasi.

Pemahaman menyeluruh tentang galat dan akurasi merupakan

fondasi dalam komputasi numerik yang andal. Meskipun galat tidak

dapat dihindari dalam setiap perhitungan numerik, pengelolaan yang

tepat terhadap sumber-sumber galat akan sangat menentukan seberapa

efektif suatu metode numerik dalam memodelkan fenomena nyata secara

kuantitatif. Evaluasi akurasi tidak hanya bersifat matematis, tetapi juga

104 Pemrograman dan Komputasi Numerik

menjadi instrumen penting dalam menjembatani kesenjangan antara

teori matematika dan penerapan teknis dalam dunia sains dan rekayasa.

B. Metode Trapezoid, Simpson, dan Romberg

Pada komputasi numerik, integrasi numerik adalah teknik

penting yang digunakan untuk menghitung luas di bawah kurva atau

integral dari fungsi yang tidak dapat dihitung secara analitik. Ketika

fungsi tidak memiliki bentuk antiturunan yang diketahui, atau ketika

hanya tersedia dalam bentuk data diskrit (seperti hasil eksperimen), maka

pendekatan numerik menjadi solusi utama. Tiga metode yang paling

dikenal dan banyak digunakan dalam integrasi numerik adalah metode

Trapezoid, metode Simpson, dan metode Romberg. Ketiganya

menawarkan pendekatan yang berbeda dalam mendekati nilai integral

suatu fungsi dan masing-masing memiliki kelebihan serta batasan

tergantung pada konteks penggunaannya.

1. Metode Trapezoid

Metode trapezoid adalah salah satu teknik dasar dalam integrasi

numerik yang digunakan untuk menghitung aproksimasi nilai integral

tentu dari suatu fungsi yang kontinu. Dalam banyak kasus praktis, fungsi

yang ingin diintegrasikan tidak memiliki bentuk antiturunan yang

diketahui atau terlalu kompleks untuk diselesaikan secara simbolik. Oleh

karena itu, metode numerik seperti metode trapezoid menjadi solusi yang

efisien dan relatif mudah diterapkan. Nama “trapezoid” berasal dari cara

pendekatan yang digunakan, yaitu memperkirakan luas di bawah kurva

fungsi sebagai jumlah dari luas beberapa trapesium yang dibentuk oleh

segmen-segmen garis lurus antara titik-titik evaluasi fungsi.

Secara matematis, jika 𝑓(𝑥) adalah fungsi kontinu pada interval

[𝑎,𝑏], maka integral tentu ∫𝑎𝑏𝑓(𝑥) 𝑑𝑥 dapat dihampiri menggunakan

metode trapezoid sederhana sebagai berikut:

di mana h = b - a adalah panjang interval. Rumus ini sebenarnya

merupakan pendekatan yang sangat kasar karena hanya menggunakan

dua titik, titik awal dan akhir, dan menghubungkannya dengan garis

 105 Buku Referensi

lurus. Luas di bawah kurva di antara kedua titik itu kemudian

diaproksimasi sebagai luas sebuah trapesium. Oleh karena itu, metode

ini akan memberikan hasil yang cukup baik hanya jika fungsi f(x) hampir

linear di antara a dan b.

Untuk meningkatkan akurasi, digunakan metode trapezoid

komposit, yaitu dengan membagi interval [a,b][a, b][a,b] menjadi nnn

subinterval yang sama panjang. Setiap subinterval dihitung luasnya

menggunakan pendekatan trapesium, kemudian dijumlahkan

seluruhnya. Formula komposit metode trapezoid dinyatakan sebagai:

Dalam pendekatan ini, kita membentuk nnn trapesium yang

masing-masing mencakup dua titik evaluasi, dan menjumlahkan luasnya

secara keseluruhan. Nilai fungsi di titik-titik tengah dikalikan dua karena

merupakan titik yang digunakan dua kali dalam perhitungan luas dua

trapesium yang bersebelahan.

Menurut Burden dan Faires (2011), metode trapezoid memiliki

orde akurasi kedua (O(h2)), yang berarti jika panjang langkah hhh dibagi

dua, maka galat (kesalahan aproksimasi) akan berkurang hingga

seperempat. Galat dari metode ini dapat diperkirakan dengan rumus:

untuk suatu ξ∈[a,b], yang menunjukkan bahwa galat tergantung

pada nilai turunan kedua dari fungsi f(x). Oleh karena itu, metode

trapezoid akan lebih akurat jika fungsi yang diintegrasikan memiliki

turunan kedua yang kecil atau mendekati nol (yakni, mendekati linear).

Namun, jika fungsi memiliki kelengkungan yang tajam, metode ini akan

menghasilkan galat yang cukup signifikan.

Salah satu keunggulan utama metode trapezoid adalah

kesederhanaannya. Karena hanya melibatkan operasi dasar

(penjumlahan dan perkalian skalar), metode ini sangat mudah

diimplementasikan dalam pemrograman. Bahkan, banyak kalkulator

ilmiah dan perangkat lunak spreadsheet seperti Excel menyediakan

fungsi bawaan untuk metode trapezoid, menjadikannya sangat praktis

untuk analisis numerik cepat. Dalam bahasa pemrograman seperti

106 Pemrograman dan Komputasi Numerik

Python, MATLAB, atau C++, metode ini juga menjadi dasar untuk

algoritma integrasi numerik yang lebih kompleks.

Keterbatasan metode trapezoid tetap perlu diperhatikan. Salah

satu kelemahan terbesarnya adalah kecenderungan untuk kurang akurat

ketika diterapkan pada fungsi yang sangat melengkung, osilatif, atau

diskontinu. Dalam kasus seperti itu, hasil aproksimasi bisa menyimpang

jauh dari nilai eksak. Untuk meningkatkan ketelitian tanpa harus

mengurangi panjang langkah secara ekstrem (yang dapat meningkatkan

beban komputasi), biasanya digunakan metode numerik dengan orde

lebih tinggi seperti metode Simpson atau Romberg.

Pada konteks tertentu, metode trapezoid justru menjadi pilihan

utama. Misalnya, dalam pengolahan sinyal atau data eksperimental di

mana nilai fungsi hanya diketahui pada titik-titik tertentu secara diskrit

(tanpa bentuk fungsional eksplisit), metode trapezoid menjadi

pendekatan praktis yang dapat langsung diterapkan. Demikian pula

dalam integrasi pada domain waktu riil dalam sistem tertanam

(embedded systems), pendekatan berbasis trapezoid sering digunakan

karena kecepatan dan ringannya komputasi.

Pada aplikasi dunia nyata, metode trapezoid digunakan dalam

berbagai bidang, seperti fisika (untuk menghitung kerja mekanik dari

grafik gaya vs. perpindahan), ekonomi (untuk estimasi nilai rata-rata

fungsi permintaan), biologi (untuk menghitung area di bawah kurva

pertumbuhan), dan teknik (untuk menghitung energi listrik berdasarkan

tegangan dan arus). Meski sederhana, metode ini tetap relevan karena

fleksibilitasnya untuk digunakan dalam beragam kondisi praktis.

Hitung pendekatan nilai integral berikut menggunakan metode

trapezoid:

 107 Buku Referensi

Maka,

Maka,

Dengan metode trapezoid dan 2 subinterval, nilai pendekatan dari:

Nilai eksak dari integral tersebut adalah:

108 Pemrograman dan Komputasi Numerik

2. Metode Simpson

Metode Simpson adalah salah satu teknik integrasi numerik yang

sangat terkenal dan banyak digunakan karena menawarkan

keseimbangan yang baik antara akurasi dan efisiensi komputasi. Metode

ini merupakan pendekatan untuk menghitung integral tentu dari suatu

fungsi dengan menggunakan interpolasi polinomial kuadrat (parabola)

sebagai pendekatan lokal terhadap fungsi yang diintegrasikan.

Ketimbang menggunakan garis lurus seperti pada metode trapezoid,

metode Simpson menggunakan segmen parabola untuk mendekati kurva

fungsi, sehingga menghasilkan estimasi luas di bawah kurva yang jauh

lebih akurat, terutama untuk fungsi-fungsi yang halus dan melengkung.

Menurut Chapra dan Canale (2015) dalam buku Numerical

Methods for Engineers, metode Simpson diperoleh dengan mengambil

tiga titik pada fungsi yang ingin diintegrasikan, yaitu titik awal 𝑎, titik

tengah 𝑚, dan titik akhir 𝑏, lalu membentuk fungsi polinomial kuadrat

yang melewati ketiga titik tersebut. Integral dari fungsi asli kemudian

dihampiri dengan integral dari polinomial tersebut. Rumus dasar metode

ini, yang dikenal sebagai Simpson’s 1/3 Rule, adalah sebagai berikut:

Untuk fungsi yang lebih kompleks atau interval yang lebih luas,

metode ini diperluas menjadi bentuk Simpson Komposit, di mana

interval [𝑎,𝑏] dibagi menjadi sejumlah genap 𝑛 subinterval yang sama

panjang (h =
b−a

n
), dan integral dihitung sebagai jumlah dari integral

beberapa segmen parabola. Rumus Simpson Komposit adalah:

Fungsi pada indeks ganjil dikalikan empat karena menjadi titik

tengah segmen parabola, sedangkan fungsi pada indeks genap (kecuali

titik awal dan akhir) dikalikan dua karena menjadi titik sambungan antar

parabola.

Keunggulan utama dari metode Simpson terletak pada orde

akurasi keempat (O(h4)). Ini berarti jika panjang langkah hhh dibagi dua,

 109 Buku Referensi

maka galat aproksimasi akan berkurang dari nilai sebelumnya. Galat

truncation (pemotongan) metode Simpson diberikan oleh:

untuk suatu ξ∈[a,b], yang menunjukkan bahwa galat bergantung

pada turunan keempat dari fungsi f(x). Oleh karena itu, metode Simpson

akan menghasilkan hasil yang sangat akurat untuk fungsi yang halus dan

tidak memiliki perubahan mendadak pada kelengkungan.

Metode Simpson memiliki keterbatasan, yaitu jumlah subinterval

harus genap. Jika jumlah subinterval ganjil, maka metode ini tidak dapat

langsung diterapkan secara penuh. Untuk mengatasi masalah ini, kadang

digunakan gabungan antara Simpson’s 1/3 Rule dan Simpson’s 3/8 Rule,

yang merupakan varian lain dari metode Simpson yang menggunakan

empat titik (tiga subinterval). Simpson 3/8 Rule memiliki rumus:

Meski jarang digunakan secara keseluruhan, aturan 3/8 berguna

dalam menutupi sisa interval ketika jumlah subinterval tidak bisa dibagi

rata untuk aturan 1/3.

Dari segi implementasi, metode Simpson sangat mudah

diprogram menggunakan bahasa komputasi seperti Python, MATLAB,

atau C++. Dalam praktiknya, pendekatan ini sering digunakan dalam

berbagai aplikasi sains dan teknik seperti simulasi fisika, perhitungan

energi, volume fluida, analisis struktur, dan bahkan ekonomi dan biologi.

Misalnya, untuk menghitung total konsumsi energi berdasarkan kurva

daya terhadap waktu, metode Simpson dapat digunakan untuk

menghasilkan estimasi numerik dengan presisi tinggi.

Metode Simpson juga sangat bermanfaat dalam kasus di mana

fungsi hanya tersedia dalam bentuk data diskrit dari pengukuran

eksperimen. Dalam hal ini, interpolasi lokal berbasis parabola

memungkinkan kita mendekati integral meskipun tidak memiliki bentuk

fungsi eksplisit. Ini menjadikan metode Simpson sebagai alat yang

sangat fleksibel dan berguna dalam analisis data real-world.

Akurasi metode Simpson bergantung pada asumsi bahwa fungsi

f(x) dapat diaproksimasi dengan baik oleh polinomial kuadrat pada

setiap subinterval. Jika fungsi tersebut sangat tidak mulus, osilatif, atau

memiliki diskontinuitas, maka hasil integrasi bisa menjadi tidak akurat.

110 Pemrograman dan Komputasi Numerik

Dalam kasus seperti itu, solusi yang lebih baik mungkin menggunakan

pendekatan orde lebih tinggi atau teknik adaptif seperti metode Romberg

atau kuadratur Gauss.

Maka,

Maka,

Dengan metode Simpson 1/3 dan 2 subinterval, diperoleh pendekatan:

Sementara nilai eksaknya adalah:

 111 Buku Referensi

3. Metode Romberg

Metode Romberg adalah salah satu teknik integrasi numerik yang

menggabungkan kelebihan dari metode trapezoid dan konsep

ekstrapolasi Richardson untuk menghasilkan hasil integral dengan

akurasi tinggi. Dibandingkan metode trapezoid dan Simpson, metode

Romberg memiliki keunggulan dari sisi konvergensi dan efisiensi dalam

mencapai ketelitian yang lebih tinggi tanpa harus memperkecil ukuran

langkah secara ekstrem. Metode ini sangat cocok digunakan untuk fungsi

yang halus (smooth) dan kontinu, di mana turunan berorde tinggi dapat

diperkirakan dengan baik. Pendekatan ini secara bertahap meningkatkan

akurasi dengan memanfaatkan hasil integrasi trapezoid dari beberapa

tingkat subdivisi dan mengurangi galat truncation dengan teknik

ekstrapolasi numerik sistematis.

Menurut Burden dan Faires (2011) dalam Numerical Analysis,

metode Romberg dimulai dengan menghitung integral tentu

menggunakan metode trapezoid pada sejumlah langkah diskret hhh yang

semakin kecil. Hasil tersebut kemudian disusun dalam bentuk tabel

segitiga yang dikenal sebagai tabel Romberg, yang memungkinkan kita

menggabungkan informasi dari beberapa tingkat pembagian interval

untuk memperbaiki hasil sebelumnya. Proses ini dilakukan dengan

mengaplikasikan rumus ekstrapolasi Richardson, yaitu teknik matematis

untuk memperkirakan limit dari deret pendekatan numerik terhadap nilai

sebenarnya dengan mengurangi pengaruh galat berorde rendah.

Langkah pertama dalam metode Romberg adalah menghitung

integral dengan metode trapezoid pada interval [a,b] dengan jumlah

pembagian n=1, yang menghasilkan nilai pertama R1,1. Kemudian

jumlah subinterval digandakan (n=2,4,8,...), dan untuk setiap tingkat K,

dihitung nilai Rk,1 sebagai hasil metode trapezoid dengan 2k−1

subinterval. Setelah itu, diperoleh nilai-nilai ekstrapolasi yang lebih

tinggi dengan rumus:

112 Pemrograman dan Komputasi Numerik

Rumus ini merupakan inti dari ekstrapolasi Richardson, di mana

Rk,jR_{k,j}Rk,j merupakan hasil koreksi terhadap galat orde rendah

menggunakan dua nilai sebelumnya. Dengan cara ini, setiap level baru

dalam tabel Romberg memberikan pendekatan yang lebih akurat

terhadap nilai integral sebenarnya.

Keunggulan metode Romberg terletak pada konvergensi cepat

yang dihasilkan dari pendekatan sistematis terhadap pengurangan galat.

Misalnya, metode trapezoid memiliki galat truncation orde dua (O(h2)),

tetapi dengan menerapkan ekstrapolasi Richardson secara berulang,

metode Romberg dapat mencapai orde konvergensi yang sangat tinggi,

bahkan mendekati eksponensial terhadap jumlah tingkat ekstrapolasi.

Artinya, kita bisa mendapatkan hasil integral yang sangat akurat hanya

dalam beberapa iterasi, tanpa harus memperkecil ukuran langkah hingga

titik yang mengakibatkan akumulasi galat pembulatan.

Metode Romberg juga memiliki keterbatasan. Pertama, metode

ini sangat bergantung pada kelicinan fungsi. Jika fungsi f(x) memiliki

diskontinuitas, turunan tak terbatas, atau perubahan ekstrem dalam

kelengkungan, maka hasil ekstrapolasi bisa menjadi tidak stabil atau

menyimpang jauh dari nilai sebenarnya. Selain itu, metode ini

memerlukan penyimpanan memori tambahan untuk menampung semua

hasil intermediate dalam tabel Romberg, dan kompleksitas

komputasinya meningkat secara signifikan dibanding metode trapezoid

atau Simpson. Oleh karena itu, meskipun metode Romberg unggul dalam

hal akurasi, ia tidak selalu menjadi pilihan terbaik untuk semua jenis

fungsi, terutama dalam kondisi sumber daya terbatas.

Pada praktiknya, metode Romberg sangat berguna dalam aplikasi

yang memerlukan hasil integrasi presisi tinggi, seperti dalam fisika

teoretis, komputasi teknik, pemrosesan sinyal, atau dalam verifikasi

numerik untuk membandingkan hasil dengan metode analitik. Misalnya,

dalam perhitungan gaya total dalam sistem mekanika fluida, distribusi

beban dalam analisis struktur, atau evaluasi energi dalam sistem partikel,

metode Romberg memungkinkan penghitungan integral dengan

kesalahan sangat kecil.

Implementasi metode Romberg dalam perangkat lunak

komputasi seperti MATLAB, Python (melalui pustaka SciPy), dan

bahasa pemrograman ilmiah lainnya sangat mudah dilakukan karena

bentuknya yang rekursif dan tabel yang sistematis. Dalam Python, fungsi

 113 Buku Referensi

scipy.integrate.romberg() menyediakan fitur otomatis untuk menghitung

integral dengan metode ini tanpa harus membangun tabel secara manual.

Sebagai ilustrasi sederhana, misalkan kita ingin menghitung

integral ∫ 𝑒−𝑥2
𝑑𝑥

1

0
, fungsi ini tidak memiliki antiturunan dalam bentuk

tertutup, sehingga harus dihitung secara numerik. Dengan metode

Romberg, hasilnya akan sangat dekat dengan nilai referensi

∫ 𝑒−𝑥2
𝑑𝑥

1

0
≈ 0,746824 hanya dalam beberapa iterasi, lebih cepat

dibanding metode Simpson atau trapezoid standar dengan jumlah titik

yang sama.

Hitung pendekatan nilai integral berikut menggunakan Metode Romberg

hingga tingkat R2,2:

Maka,

114 Pemrograman dan Komputasi Numerik

C. Evaluasi Akurasi dan Estimasi Kesalahan

Evaluasi akurasi dan estimasi kesalahan adalah dua aspek

fundamental dalam analisis numerik dan komputasi ilmiah. Ketika

metode numerik digunakan untuk menghampiri solusi dari persoalan

matematika seperti integral, turunan, atau solusi sistem persamaan

diferensial, hasil yang diperoleh bersifat aproksimasi, bukan nilai eksak.

Oleh karena itu, sangat penting untuk memahami seberapa dekat hasil

tersebut terhadap nilai sebenarnya (akurasi) serta sejauh mana kesalahan

(galat) dapat dikenali, diprediksi, dan dikendalikan. Dalam konteks ini,

proses evaluasi akurasi dan estimasi kesalahan menjadi indikator utama

yang menentukan kualitas dan reliabilitas hasil komputasi.

Menurut Burden dan Faires (2011) dalam Numerical Analysis,

akurasi mengacu pada seberapa dekat nilai hasil komputasi numerik

terhadap nilai eksak dari masalah yang diselesaikan. Dalam pengukuran

matematis, akurasi dapat dijelaskan melalui galat absolut dan galat

relatif. Galat absolut didefinisikan sebagai selisih langsung antara nilai

eksak dan hasil aproksimasi:

Pada praktiknya, galat relatif lebih sering digunakan karena

memberikan ukuran kesalahan yang lebih kontekstual, terutama ketika

nilai eksak sangat kecil atau sangat besar.

Pada Chapra dan Canale (2015), dinyatakan bahwa semua

metode numerik mengandung kesalahan yang berasal dari berbagai

sumber, yang secara umum dapat dikategorikan ke dalam dua kelompok

 115 Buku Referensi

besar: galat pembulatan (round-off error) dan galat pemotongan

(truncation error). Galat pembulatan timbul akibat keterbatasan

representasi bilangan real dalam komputer, sedangkan galat pemotongan

muncul dari penyederhanaan atau pemotongan operasi matematika

seperti deret Taylor atau pendekatan diskrit dalam diferensiasi dan

integrasi.

1. Galat Pembulatan

Galat pembulatan (round-off error) adalah salah satu jenis

kesalahan paling mendasar dalam komputasi numerik yang berasal dari

keterbatasan sistem komputer dalam merepresentasikan bilangan real.

Dalam sistem digital, komputer menyimpan angka dalam bentuk biner

dengan jumlah digit terbatas. Akibatnya, banyak bilangan riil yang tidak

dapat direpresentasikan secara persis dalam sistem biner tersebut,

sehingga komputer harus melakukan pembulatan ke nilai terdekat yang

dapat direpresentasikan. Proses pembulatan inilah yang menghasilkan

galat pembulatan, yang dalam banyak kasus bersifat sangat kecil, tetapi

bisa menjadi signifikan ketika akumulatif dalam perhitungan yang

kompleks atau berulang.

Menurut Burden dan Faires (2011), galat pembulatan merupakan

konsekuensi langsung dari penggunaan bilangan floating-point dalam

sistem komputasi. Standar umum seperti IEEE 754 mendefinisikan

bagaimana bilangan disimpan dan dioperasikan dalam memori

komputer. Dalam standar ini, sebuah bilangan floating-point disusun dari

tiga bagian: bit tanda (sign), eksponen, dan mantissa (atau significand).

Karena panjang mantissa terbatas (misalnya, 23 bit untuk single

precision dan 52 bit untuk double precision), hanya sejumlah terbatas

angka desimal yang dapat diwakili secara tepat. Misalnya, angka 1/3

dalam sistem desimal adalah 0.333..., sebuah desimal tak hingga. Dalam

sistem biner, representasi ini lebih terbatas lagi dan pasti akan dipotong

atau dibulatkan pada digit tertentu, menghasilkan nilai yang sedikit

berbeda dari nilai eksaknya.

Pada praktiknya, galat pembulatan bisa muncul dalam berbagai

bentuk operasi numerik, termasuk penjumlahan, perkalian, pembagian,

dan terutama dalam operasi yang melibatkan selisih dua bilangan yang

hampir sama (dikenal sebagai cancellation). Misalnya, dalam operasi

x−y di mana x dan y bernilai sangat dekat, hasil selisihnya menjadi

sangat kecil dan dapat kehilangan digit signifikan, sehingga

116 Pemrograman dan Komputasi Numerik

meningkatkan proporsi galat pembulatan terhadap nilai hasil. Hal ini

sangat berbahaya dalam komputasi presisi tinggi karena galat kecil pada

digit rendah bisa menjadi dominan.

Pada iterasi numerik atau algoritma rekursif, galat pembulatan

bisa terpropagasi dan diperbesar. Sebagai contoh, dalam metode numerik

seperti metode Euler atau Runge-Kutta untuk menyelesaikan persamaan

diferensial, pembulatan hasil setiap langkah akan memengaruhi langkah

berikutnya. Jika tidak dikendalikan, hal ini dapat menyebabkan

akumulasi kesalahan yang signifikan dan mengarahkan solusi pada hasil

yang sangat menyimpang dari kenyataan. Oleh karena itu, analisis

stabilitas numerik menjadi penting dalam menilai sejauh mana suatu

metode tahan terhadap galat pembulatan.

Strategi untuk mengurangi dampak galat pembulatan mencakup

penggunaan presisi lebih tinggi (misalnya, menggunakan double

daripada single precision), pembulatan yang stabil secara numerik, dan

penataan ulang algoritma untuk menghindari pengurangan angka yang

hampir sama atau pembagian terhadap angka sangat kecil. Dalam

pengembangan perangkat lunak ilmiah dan rekayasa, teknik ini menjadi

bagian penting dari proses validasi hasil numerik.

2. Galat Pemotongan

Galat pemotongan (truncation error) adalah jenis kesalahan

numerik yang muncul ketika suatu metode numerik menggunakan

pendekatan yang menyederhanakan operasi matematis eksak dengan

memotong atau mengabaikan bagian dari ekspresi matematis tersebut.

Tidak seperti galat pembulatan yang berasal dari keterbatasan

representasi bilangan dalam komputer, galat pemotongan terjadi karena

metode numerik secara sadar memilih untuk hanya mempertahankan

sebagian komponen dari suatu operasi, seperti deret tak hingga, turunan,

atau integral. Galat ini bersifat sistematis dan dapat dihitung atau

dikendalikan melalui pemilihan metode serta pengaturan parameter

numerik seperti ukuran langkah diskrit.

Menurut Chapra dan Canale (2015) dalam Numerical Methods

for Engineers, galat pemotongan paling umum terjadi dalam pendekatan

numerik terhadap turunan dan integral. Misalnya, dalam metode selisih

hingga untuk menghitung turunan pertama dari suatu fungsi 𝑓(𝑥),

digunakan formula:

 117 Buku Referensi

Dengan mengabaikan suku
ℎ2

2
f′′(x)+…., maka terjadi galat

pemotongan. Semakin besar nilai hhh, maka semakin besar juga galat

pemotongan yang ditimbulkan karena kontribusi suku-suku yang

diabaikan menjadi signifikan.

Galat pemotongan juga terjadi dalam metode integrasi numerik

seperti metode trapezoid atau Simpson. Misalnya, dalam metode

trapezoid komposit, integral dihampiri oleh jumlah luas trapesium antara

titik-titik fungsi. Dalam pendekatan ini, bentuk kurva sebenarnya diganti

dengan garis lurus, sehingga bagian melengkung dari fungsi tidak

diperhitungkan secara tepat. Galat yang timbul dapat diekspresikan

secara matematis sebagai:

untuk suatu ξ∈[a,b], menunjukkan bahwa galat tergantung pada

turunan kedua fungsi dan jumlah subinterval nnn. Ini berarti bahwa galat

pemotongan dapat dikurangi dengan memperkecil h (yakni memperbesar

jumlah subinterval), atau dengan menggunakan metode numerik dengan

orde lebih tinggi seperti metode Simpson yang memperhitungkan

kelengkungan fungsi.

Salah satu keunggulan dari galat pemotongan dibanding galat

pembulatan adalah sifatnya yang dapat diprediksi dan dikendalikan. Jika

suatu metode memiliki orde galat tertentu, maka pengguna dapat secara

sistematis memperkirakan berapa banyak kesalahan yang akan terjadi

dan menyesuaikan parameter komputasi agar kesalahan tetap dalam

batas toleransi. Misalnya, metode dengan galat orde dua (O(h2)) akan

memiliki galat yang berkurang seperempat jika hhh dibagi dua.

118 Pemrograman dan Komputasi Numerik

Pemahaman ini memungkinkan desain algoritma yang adaptif terhadap

kebutuhan presisi.

Ada batas bawah di mana pengurangan hhh tidak lagi efektif

karena akan memicu galat pembulatan, sehingga terdapat trade-off

antara mengurangi galat pemotongan dan mencegah galat pembulatan.

Dalam pengembangan perangkat lunak numerik yang efisien, penting

untuk menyeimbangkan dua jenis galat ini agar diperoleh hasil

komputasi yang optimal.

3. Evaluasi Akurasi Secara Praktis

Evaluasi akurasi secara praktis dalam komputasi numerik adalah

proses menilai seberapa dekat hasil komputasi mendekati nilai eksak,

meskipun dalam banyak kasus nilai eksak tersebut tidak diketahui secara

pasti. Oleh karena itu, evaluasi akurasi tidak hanya bergantung pada

perhitungan galat absolut atau relatif, melainkan juga pada strategi-

strategi praktis yang dapat digunakan untuk memverifikasi dan

memvalidasi hasil aproksimasi numerik. Evaluasi ini menjadi sangat

penting dalam konteks aplikasi nyata, seperti simulasi fisika, optimasi

teknik, atau perhitungan statistik, di mana hasil komputasi sering

dijadikan dasar pengambilan keputusan atau desain sistem.

Salah satu pendekatan paling umum dalam evaluasi akurasi

adalah analisis konvergensi. Dalam metode ini, hasil komputasi numerik

diuji dengan melakukan perhitungan berulang menggunakan ukuran

langkah atau parameter diskret yang semakin kecil. Jika metode numerik

yang digunakan benar dan stabil, maka hasil perhitungan akan

menunjukkan pola konvergen menuju nilai tetap tertentu. Misalnya,

dalam integrasi numerik menggunakan metode trapezoid atau Simpson,

jika panjang langkah ℎ diperkecil, hasil integral yang diperoleh

seharusnya semakin mendekati nilai sejati. Pola konvergensi ini dapat

diukur dan divisualisasikan dengan memplot hasil terhadap ukuran h

atau jumlah subinterval. Dengan demikian, meskipun nilai eksak tidak

diketahui, kita dapat memperkirakan bahwa hasil sudah berada dalam

kisaran yang dapat diterima secara akurat.

Evaluasi akurasi juga dilakukan melalui perbandingan antar

metode numerik. Dalam banyak kasus, dua atau lebih metode dengan

orde akurasi berbeda digunakan untuk menyelesaikan masalah yang

sama. Selisih hasil antara metode berakurasi lebih tinggi (misalnya

Simpson atau Romberg) dengan metode lebih sederhana (misalnya

 119 Buku Referensi

trapezoid) dapat memberikan gambaran mengenai besar kesalahan

aproksimasi. Teknik ini dikenal sebagai pendekatan estimasi galat

melalui redundansi metode, dan sering digunakan dalam perangkat lunak

komputasi teknik untuk memberikan informasi kepercayaan terhadap

hasil.

Cara lainnya adalah menggunakan pendekatan nilai referensi

atau solusi benchmark, terutama dalam kasus di mana fungsi uji tertentu

telah diketahui nilai eksaknya. Ini sering digunakan dalam pengujian

algoritma numerik, di mana fungsi dengan solusi analitik digunakan

untuk membandingkan hasil aproksimasi. Jika hasil numerik mendekati

solusi referensi dengan galat relatif kecil, maka metode dianggap valid

dan akurat untuk konteks yang serupa.

Pada iterasi numerik seperti metode Newton-Raphson atau

metode Jacobi, galat antar iterasi sering digunakan sebagai indikator

akurasi. Jika perubahan nilai hasil antara dua iterasi berturut-turut sangat

kecil (misalnya kurang dari 10−6), maka hasil tersebut diasumsikan telah

konvergen. Meskipun bukan galat sejati, estimasi ini secara praktis

cukup efektif dalam menentukan titik henti perhitungan.

D. Aplikasi pada Persoalan Teknik

Pada bidang teknik, perhitungan analitik yang presisi sering kali

tidak memungkinkan karena kompleksitas sistem yang dianalisis. Oleh

sebab itu, metode numerik menjadi pendekatan utama dalam

menyelesaikan berbagai persoalan teknik yang melibatkan formulasi

matematika rumit, fungsi tak diketahui, dan sistem tak linear. Metode

numerik memungkinkan solusi pendekatan terhadap masalah teknik

dengan efisiensi tinggi, baik dari sisi waktu maupun sumber daya

komputasi. Persoalan teknik yang melibatkan mekanika struktur,

perpindahan panas, dinamika fluida, kelistrikan, kontrol sistem, dan

simulasi material kini hampir seluruhnya mengandalkan pendekatan

numerik.

Menurut Chapra dan Canale (2015) dalam Numerical Methods

for Engineers, metode numerik digunakan dalam teknik karena sebagian

besar masalah teknik nyata mengarah pada persamaan diferensial (biasa

atau parsial), sistem persamaan linier besar, atau fungsi-fungsi yang

tidak dapat diintegrasikan secara analitik. Dalam konteks ini, metode

seperti metode selisih hingga (finite difference method/FDM), metode

elemen hingga (finite element method/FEM), metode volume hingga

120 Pemrograman dan Komputasi Numerik

(finite volume method/FVM), dan metode Runge-Kutta menjadi tulang

punggung penyelesaian masalah-masalah teknik secara komputasional.

1. Mekanika Struktur

Mekanika struktur adalah cabang penting dalam bidang teknik

sipil, mesin, dan arsitektur yang mempelajari perilaku benda padat

terutama struktur teknik yang mengalami beban, tekanan, dan gaya

lainnya. Fokus utamanya adalah untuk menganalisis dan merancang

struktur seperti balok, kolom, rangka baja, jembatan, gedung, hingga

pesawat terbang, agar mampu menahan beban yang bekerja tanpa

mengalami kerusakan atau kegagalan. Konsep-konsep dasar dalam

mekanika struktur meliputi tegangan (stress), regangan (strain), lendutan

(deflection), momen lentur, gaya geser, dan stabilitas struktur. Prinsip-

prinsip ini diterapkan untuk memastikan bahwa struktur dirancang tidak

hanya kuat dan stabil, tetapi juga efisien dari segi material dan biaya.

Menurut Hibbeler (2012) dalam Mechanics of Materials,

mekanika struktur bekerja berdasarkan hukum-hukum dasar fisika,

khususnya hukum Newton dan prinsip keseimbangan gaya, serta prinsip

deformasi elastis dari bahan. Salah satu konsep inti dalam analisis

struktur adalah hukum Hooke, yang menjelaskan hubungan linear antara

tegangan dan regangan dalam batas elastis suatu material. Dalam konteks

teknik, hal ini memungkinkan insinyur untuk menghitung respons

struktur terhadap gaya yang bekerja, seperti lenturan balok akibat beban

merata atau gaya konsentris pada kolom.

Pada aplikasi praktisnya, mekanika struktur tidak hanya

berfungsi sebagai alat analisis, tetapi juga sebagai dasar untuk

pengambilan keputusan desain. Misalnya, dalam merancang jembatan

baja, insinyur harus menentukan ukuran, bentuk, dan jenis material yang

digunakan berdasarkan perhitungan tegangan maksimum, batas leleh

material, serta faktor keamanan. Selain itu, struktur harus memenuhi

kriteria batas (limit states), baik batas kekuatan (ultimate limit state)

maupun batas layan (serviceability limit state), agar tetap aman dan

nyaman digunakan sepanjang umur bangunan.

Seiring dengan kompleksitas bentuk struktur dan beban yang

semakin variatif, metode analisis manual menjadi terbatas. Oleh karena

itu, analisis numerik, khususnya metode elemen hingga (finite element

method/FEM), menjadi alat bantu utama dalam mekanika struktur

modern. Metode ini membagi struktur kompleks menjadi elemen-elemen

 121 Buku Referensi

kecil (seperti segitiga atau persegi), dan menghitung distribusi gaya,

tegangan, dan deformasi pada setiap elemen untuk kemudian

digabungkan menjadi analisis keseluruhan. Perangkat lunak berbasis

FEM seperti SAP2000, ANSYS, atau ABAQUS kini menjadi standar

dalam perencanaan struktur besar seperti gedung pencakar langit atau

jembatan gantung.

Mekanika struktur juga mencakup aspek dinamik struktur, di

mana struktur harus mampu menghadapi beban yang berubah terhadap

waktu, seperti gempa bumi, angin kencang, atau lalu lintas kendaraan

berat. Untuk kondisi seperti ini, struktur perlu dianalisis berdasarkan

respons dinamis, dan sering kali melibatkan simulasi berbasis metode

numerik yang memperhitungkan gaya inersia, redaman, dan frekuensi

alami sistem.

2. Perpindahan Panas dan Termodinamika

Perpindahan panas dan termodinamika merupakan dua cabang

ilmu penting dalam teknik mesin, teknik kimia, dan rekayasa energi yang

saling berkaitan erat dalam memahami dan mengendalikan fenomena

energi dalam sistem teknik. Termodinamika berfokus pada studi

mengenai hubungan antara panas, kerja, dan energi dalam suatu sistem,

serta kondisi kesetimbangan termal dan proses perubahan energi yang

terjadi. Di sisi lain, perpindahan panas (heat transfer) mempelajari

bagaimana energi dalam bentuk panas berpindah dari satu tempat ke

tempat lain melalui tiga mekanisme utama: konduksi, konveksi, dan

radiasi. Kedua cabang ini menjadi landasan dalam merancang mesin,

sistem pendingin, turbin, boiler, reaktor, dan banyak sistem teknik

lainnya yang melibatkan konversi dan transportasi energi.

Menurut Çengel dan Boles (2015) dalam Thermodynamics: An

Engineering Approach, termodinamika menjelaskan perubahan energi

melalui hukum-hukum dasar: Hukum Pertama Termodinamika yang

menyatakan kekekalan energi, dan Hukum Kedua Termodinamika yang

memperkenalkan konsep entropi dan arah alami dari proses termal.

Misalnya, dalam sistem mesin kalor seperti motor bakar atau turbin gas,

hukum pertama menjelaskan konversi panas menjadi kerja mekanis,

sedangkan hukum kedua membatasi efisiensi konversi tersebut, karena

selalu ada sebagian energi yang hilang sebagai panas yang tidak dapat

digunakan. Hukum-hukum ini digunakan untuk menganalisis siklus

termal seperti siklus Rankine, siklus Otto, dan siklus Brayton, yang

122 Pemrograman dan Komputasi Numerik

menjadi dasar dalam perancangan pembangkit listrik dan mesin

kendaraan.

Ilmu perpindahan panas menjadi penting dalam menentukan

bagaimana dan seberapa cepat panas berpindah dari satu bagian sistem

ke bagian lainnya. Dalam konduksi, panas mengalir dalam benda padat

dari suhu tinggi ke suhu rendah melalui getaran atom dan konduksi

elektron, dijelaskan dengan hukum Fourier. Dalam konveksi, panas

berpindah antara permukaan padat dan fluida yang mengalir, dan

dianalisis menggunakan bilangan Nusselt, bilangan Reynolds, dan

hukum Newton pendinginan. Sedangkan radiasi panas melibatkan energi

elektromagnetik yang dipancarkan oleh permukaan benda, dijelaskan

dengan hukum Stefan-Boltzmann dan konsep emisivitas.

Pada rekayasa, analisis perpindahan panas sering digunakan

untuk merancang sistem pendingin (seperti radiator, heat exchanger, dan

sistem HVAC), serta isolasi termal pada dinding bangunan atau pipa.

Misalnya, pada sistem penukar kalor (heat exchanger), insinyur harus

memperhitungkan laju perpindahan panas antara dua fluida tanpa

mencampurkannya secara langsung, guna memastikan efisiensi energi

dan stabilitas operasi. Untuk sistem elektronik, analisis termal

diperlukan untuk memastikan bahwa suhu komponen seperti prosesor

tidak melebihi batas operasionalnya.

Perhitungan perpindahan panas dan termodinamika sering kali

melibatkan persamaan diferensial parsial yang kompleks, sehingga

metode numerik seperti metode elemen hingga (FEM) atau metode beda

hingga (FDM) digunakan untuk menghitung distribusi suhu dalam

geometri yang rumit. Perangkat lunak seperti ANSYS, COMSOL, atau

MATLAB digunakan untuk simulasi termal secara menyeluruh, mulai

dari analisis stasioner hingga perpindahan panas transien.

Dengan memahami prinsip-prinsip perpindahan panas dan

termodinamika, para insinyur mampu mengendalikan aliran energi dan

suhu dalam sistem teknik secara efisien dan berkelanjutan. Ilmu ini

sangat vital dalam pengembangan teknologi energi terbarukan,

kendaraan hemat energi, bangunan ramah lingkungan, dan sistem

pendinginan berteknologi tinggi. Oleh karena itu, perpindahan panas dan

termodinamika terus menjadi pilar utama dalam inovasi teknologi energi

dan rekayasa masa depan.

 123 Buku Referensi

3. Dinamika Fluida Komputasi (CFD)

Dinamika Fluida Komputasi (Computational Fluid

Dynamics/CFD) adalah cabang teknik yang menggunakan metode

numerik dan algoritma komputasi untuk menganalisis dan memecahkan

persoalan yang melibatkan aliran fluida dan transfer energi. Dalam

konteks teknik, CFD menjadi alat penting dalam memahami perilaku

fluida (gas dan cairan), memprediksi distribusi tekanan, kecepatan, suhu,

dan berbagai parameter penting lainnya dalam sistem rekayasa yang

kompleks. Dengan kemampuan ini, CFD telah menjadi teknologi utama

dalam desain dan optimasi produk pada berbagai sektor seperti

penerbangan, otomotif, energi, lingkungan, hingga biomedis.

Menurut Versteeg dan Malalasekera (2007) dalam An

Introduction to Computational Fluid Dynamics, CFD bekerja dengan

cara mendiskretkan dan menyelesaikan persamaan Navier-Stokes, yaitu

persamaan diferensial parsial non-linier yang mendeskripsikan

konservasi massa (kontinuitas), momentum (hukum Newton), dan energi

dalam fluida. Karena sulit atau bahkan tidak mungkin menyelesaikan

persamaan tersebut secara analitik untuk kasus nyata yang kompleks,

maka metode numerik seperti finite volume method (FVM), finite

element method (FEM), dan finite difference method (FDM) digunakan

untuk menyelesaikannya dalam bentuk diskrit di atas grid atau mesh

yang menggambarkan domain aliran.

Pada aplikasi teknik, CFD memberikan keunggulan besar karena

mampu menggantikan eksperimen fisik yang mahal dan memakan

waktu. Misalnya, dalam industri otomotif, CFD digunakan untuk

menganalisis aerodinamika mobil guna mengurangi hambatan udara dan

meningkatkan efisiensi bahan bakar. Dalam teknik penerbangan, CFD

membantu mendesain bentuk sayap dan badan pesawat agar memiliki lift

optimal dan drag minimal. CFD juga digunakan dalam perencanaan

sistem HVAC (Heating, Ventilation, and Air Conditioning) di gedung

untuk memastikan aliran udara dan distribusi suhu sesuai standar

kenyamanan termal.

CFD memungkinkan simulasi berbagai jenis aliran, mulai dari

aliran laminar hingga turbulen, aliran termal konvektif, aliran multifase

(seperti campuran air dan udara), hingga reaksi kimia dalam aliran fluida.

Dengan kemajuan teknologi komputasi, perangkat lunak CFD modern

seperti ANSYS Fluent, OpenFOAM, COMSOL Multiphysics, dan

STAR-CCM+ menyediakan antarmuka dan solver canggih yang mampu

124 Pemrograman dan Komputasi Numerik

menangani geometri kompleks, berbagai kondisi batas, serta interaksi

fluida dengan struktur padat.

CFD bukan hanya soal menjalankan simulasi. Kualitas hasil

sangat bergantung pada pemahaman fisika aliran, pemilihan model

turbelensi yang tepat (misalnya k-ε atau Large Eddy Simulation),

pemilihan skema numerik yang stabil, serta resolusi mesh yang cukup

untuk menangkap fenomena aliran penting. Selain itu, proses validasi

dan verifikasi harus dilakukan untuk memastikan bahwa hasil simulasi

mendekati realitas fisik dan cocok dengan data eksperimen atau

perhitungan teoritis.

4. Teknik Elektro dan Elektronika

Teknik elektro dan elektronika merupakan cabang ilmu teknik

yang berfokus pada studi, perancangan, dan penerapan sistem yang

melibatkan listrik, elektromagnetisme, serta perangkat elektronik. Ruang

lingkup teknik elektro mencakup sistem tenaga listrik, kontrol,

komunikasi, dan komputer, sedangkan teknik elektronika lebih

menekankan pada perancangan dan pemrosesan sinyal dalam perangkat-

perangkat mikro seperti transistor, rangkaian terpadu (IC), sensor, dan

mikrokontroler. Kedua bidang ini menjadi fondasi utama dari berbagai

inovasi teknologi modern, mulai dari pembangkit listrik dan jaringan

distribusi hingga ponsel pintar dan perangkat Internet of Things (IoT).

Gambar 4. Internet of Things

Sumber:Binar

 125 Buku Referensi

Menurut Hambley (2014) dalam Electrical Engineering:

Principles and Applications, teknik elektro mempelajari bagaimana

energi listrik dihasilkan, ditransmisikan, dan digunakan secara efisien.

Di sektor pembangkitan tenaga listrik, para insinyur elektro merancang

sistem pembangkit seperti PLTA, PLTU, PLTS, dan PLTN, serta sistem

transmisi tegangan tinggi. Dalam proses ini, metode numerik digunakan

untuk menganalisis sistem jaringan listrik secara linier dan non-linier,

menentukan kestabilan tegangan, arus gangguan, serta distribusi beban.

Simulasi berbasis perangkat lunak seperti ETAP, MATLAB Simulink,

dan PowerWorld menjadi alat utama dalam perencanaan sistem tenaga

yang andal dan berkelanjutan.

Teknik elektronika berkaitan erat dengan pengembangan sirkuit

mikroelektronik dan sistem digital. Para insinyur elektronika merancang

sirkuit menggunakan komponen seperti resistor, kapasitor, dioda,

transistor, dan mikrokontroler untuk menciptakan perangkat seperti

sensor suhu, penguat sinyal, osilator, serta sistem tertanam (embedded

systems). Elektronika juga menjadi tulang punggung teknologi

komunikasi dan kontrol, misalnya pada pemancar radio, radar, perangkat

nirkabel, dan sistem kendali otomatis di industri. Dalam pengembangan

perangkat seperti ponsel, laptop, dan peralatan medis, prinsip-prinsip

elektronika digunakan untuk memastikan efisiensi energi, keandalan

sinyal, dan miniaturisasi perangkat.

Salah satu aspek penting dalam teknik elektro dan elektronika

modern adalah pengolahan sinyal digital (DSP), di mana sinyal analog

diubah menjadi bentuk digital agar dapat diolah, disimpan, dan

ditransmisikan secara efisien. Teknik ini digunakan dalam berbagai

aplikasi seperti pemrosesan audio, pengenalan suara, pengolahan gambar

digital, serta sistem komunikasi nirkabel. Dalam hal ini, metode numerik

seperti transformasi Fourier diskrit (DFT), filter digital (FIR dan IIR),

serta algoritma kompresi menjadi elemen penting dalam mendukung

kinerja sistem.

Perkembangan teknologi otomasi dan kontrol juga sangat

bergantung pada teknik elektro dan elektronika. Sistem kendali seperti

PID (Proportional-Integral-Derivative), kontrol logika fuzzy, hingga

kontrol adaptif digunakan untuk mengatur kecepatan motor, posisi robot,

suhu sistem, dan proses industri lainnya. Dengan dukungan sensor dan

aktuator, sistem ini mampu bekerja secara otomatis dan presisi tinggi.

Dalam dunia industri 4.0, integrasi antara teknik elektro, pemrograman,

126 Pemrograman dan Komputasi Numerik

dan komunikasi data membentuk sistem cerdas berbasis IoT dan AI yang

mampu mengoptimalkan produktivitas dan efisiensi.

5. Sistem Otomatisasi dan Kontrol

Sistem otomatisasi dan kontrol merupakan cabang penting dalam

teknik elektro, mekatronika, dan teknik industri yang berfokus pada

pengaturan perilaku sistem dinamis secara otomatis melalui penggunaan

perangkat keras (seperti sensor, aktuator, dan kontroler) dan perangkat

lunak (seperti algoritma kontrol dan sistem tertanam). Tujuan utama dari

sistem ini adalah menciptakan operasi yang efisien, presisi tinggi, stabil,

dan minim campur tangan manusia. Sistem kontrol banyak diterapkan

dalam berbagai bidang, mulai dari proses manufaktur, otomotif,

robotika, energi, transportasi, hingga peralatan rumah tangga pintar.

Menurut Ogata (2010) dalam Modern Control Engineering,

sistem kontrol bekerja berdasarkan prinsip pengumpanan (feedback) atau

umpan terbuka (open-loop). Dalam kontrol umpan balik, sensor

digunakan untuk mendeteksi keluaran sistem, lalu informasi ini

dibandingkan dengan nilai referensi (setpoint). Selisih antara keduanya

(disebut sebagai error) akan diproses oleh pengontrol (seperti pengontrol

PID) untuk menghasilkan sinyal yang mengatur aktuator, sehingga

sistem dapat menyesuaikan dirinya agar tetap berada dalam kondisi yang

diinginkan. Misalnya, dalam sistem kendali suhu ruangan, sensor suhu

mengukur kondisi aktual dan pengontrol mengatur pemanas atau

pendingin untuk mencapai suhu target.

Pengontrol PID (Proportional-Integral-Derivative) adalah jenis

kontroler yang paling umum dan banyak digunakan karena

kesederhanaannya serta efektivitasnya dalam berbagai jenis sistem.

Komponen proporsional (P) memberikan respons terhadap error saat ini,

integral (I) mengatasi error jangka panjang (akumulasi error), dan

turunan (D) merespons perubahan cepat dari error. Dengan penyesuaian

parameter yang tepat, pengontrol PID mampu mengendalikan sistem

dengan respons yang cepat dan stabil tanpa overshoot atau osilasi

berlebih.

Pada sistem industri modern, otomatisasi dikembangkan melalui

penggunaan Programmable Logic Controller (PLC), yang merupakan

komputer industri tahan lingkungan yang diprogram untuk mengatur

proses produksi secara berurutan atau paralel. PLC membaca sinyal dari

sensor, memproses logika kendali, dan mengaktifkan output seperti

 127 Buku Referensi

motor, katup, atau lampu indikator. PLC menjadi komponen inti dalam

sistem otomasi pabrik, termasuk pada lini perakitan mobil, pengemasan

makanan, dan pengolahan air bersih.

Integrasi sistem kontrol dengan teknologi informasi telah

melahirkan konsep kontrol berbasis komputer dan jaringan. Dalam

pendekatan ini, sistem kendali terhubung secara digital dan dapat diakses

serta dikendalikan secara jarak jauh melalui antarmuka manusia-mesin

(HMI) atau Supervisory Control and Data Acquisition (SCADA). Ini

memungkinkan perusahaan memantau seluruh proses produksi secara

real-time, meningkatkan efisiensi operasional, deteksi kesalahan lebih

awal, dan pengambilan keputusan yang berbasis data.

Di sektor transportasi, sistem kontrol digunakan dalam cruise

control mobil, sistem navigasi pesawat terbang, hingga kendali otomatis

kereta cepat. Sementara dalam dunia robotika, sistem kontrol

memastikan gerakan lengan robot presisi sesuai dengan jalur atau posisi

targetnya. Dalam energi, sistem kontrol berperan dalam manajemen grid

listrik, pengaturan turbin pembangkit, dan sistem energi terbarukan yang

dinamis seperti panel surya dan turbin angin.

Dengan perkembangan teknologi sensor, kecerdasan buatan (AI),

dan komunikasi data, sistem otomatisasi dan kontrol kini berkembang

menuju arah cyber-physical systems dan internet of things (IoT). Sistem-

sistem ini mampu beradaptasi secara cerdas terhadap perubahan

lingkungan, melakukan prediksi kegagalan, serta belajar dari data

historis untuk mengoptimalkan performa secara berkelanjutan. Oleh

karena itu, pemahaman terhadap sistem otomatisasi dan kontrol sangat

penting bagi para insinyur dan teknolog modern yang ingin membangun

sistem yang efisien, adaptif, dan siap menghadapi tantangan industri

masa depan.

6. Rekayasa Material dan Struktur Mikro

Rekayasa material dan struktur mikro adalah bidang

interdisipliner dalam teknik dan ilmu material yang mempelajari

hubungan antara struktur internal material pada skala mikro dan nano

terhadap sifat mekanik, termal, listrik, maupun kimianya. Tujuan utama

dari bidang ini adalah merekayasa bahan dengan sifat yang diinginkan

melalui kontrol atas komposisi, morfologi, dan struktur mikroskopik.

Rekayasa material sangat penting dalam mendukung inovasi teknologi,

mulai dari pengembangan bahan ringan untuk pesawat terbang, logam

128 Pemrograman dan Komputasi Numerik

tahan panas untuk turbin gas, hingga material superkonduktor,

biomaterial, dan nanokomposit untuk perangkat elektronik canggih.

Menurut Callister dan Rethwisch (2020) dalam Materials

Science and Engineering: An Introduction, sifat makroskopik suatu

material sangat dipengaruhi oleh struktur mikronya, seperti ukuran butir,

orientasi kristal, cacat kristal, serta distribusi fasa. Misalnya, logam

dengan ukuran butir yang lebih kecil cenderung memiliki kekuatan tarik

yang lebih tinggi, sebagaimana dijelaskan dalam prinsip Hall-Petch,

yang menyatakan bahwa kekuatan logam meningkat seiring dengan

berkurangnya ukuran butir. Oleh karena itu, proses-proses seperti

pengerjaan dingin, pemanasan ulang (annealing), atau rekayasa

solidifikasi dimanfaatkan untuk mengubah struktur mikro demi

mendapatkan karakteristik mekanik yang diinginkan.

Rekayasa struktur mikro tidak hanya terbatas pada logam, tetapi

juga mencakup keramik, polimer, dan komposit. Dalam pengembangan

komposit, misalnya, struktur mikro dirancang sedemikian rupa agar serat

penguat (seperti serat karbon atau serat kaca) terdistribusi merata dalam

matriks polimer atau logam. Hal ini menghasilkan material dengan

kombinasi kekuatan tinggi, ringan, dan ketahanan terhadap keausan atau

korosi. Sifat-sifat seperti ini sangat dibutuhkan dalam industri otomotif,

pesawat terbang, serta konstruksi infrastruktur yang mengutamakan

efisiensi dan daya tahan.

Perkembangan teknologi juga memungkinkan analisis struktur

mikro hingga ke tingkat nano dengan menggunakan teknik karakterisasi

canggih seperti mikroskop elektron transmisi (TEM), mikroskop

elektron pemindaian (SEM), dan difraksi sinar-X (XRD). Teknik ini

memungkinkan para insinyur dan ilmuwan material memahami

distribusi fasa, cacat kristal, atau interaksi atom dalam material.

Informasi ini menjadi dasar dalam pemodelan material berbasis

komputer, termasuk simulasi molekuler dan metode elemen hingga

(FEM) untuk memprediksi perilaku material dalam kondisi ekstrem,

seperti tekanan tinggi atau suhu tinggi. Selain itu, struktur mikro sangat

berperan dalam rekayasa material fungsional, seperti bahan magnetik,

piezoelektrik, termolistrik, dan superkonduktor. Dalam bidang

biomaterial, struktur mikro digunakan untuk merekayasa implan tulang

dan jaringan buatan agar memiliki porositas dan kekasaran permukaan

yang sesuai dengan proses regenerasi biologis.

 129 Buku Referensi

BAB VII

PENYELESAIAN

PERSAMAAN

NONLINEAR

Persamaan nonlinear merupakan salah satu fondasi penting

dalam dunia sains dan teknik, yang sering kali muncul dalam berbagai

permasalahan nyata seperti mekanika, dinamika fluida, ekonomi, serta

sistem kendali. Tidak seperti persamaan linear yang memiliki sifat

sederhana dan solusi langsung, persamaan nonlinear menghadirkan

kompleksitas tinggi dan memerlukan pendekatan khusus untuk

menemukan solusinya. Dalam dunia komputasi modern, penyelesaian

persamaan nonlinear secara numerik menjadi sangat relevan karena

sering kali tidak tersedia solusi analitik yang eksak. Oleh karena itu,

metode numerik seperti bisection, regula falsi, Newton-Raphson, dan

secant method dikembangkan untuk memberikan solusi pendekatan yang

efisien dan stabil. Melalui bab ini, pembaca akan diperkenalkan pada

prinsip dasar penyelesaian persamaan nonlinear, karakteristik

konvergensi metode-metode yang digunakan, serta kelebihan dan

keterbatasan masing-masing pendekatan.

A. Metode Bagi Dua dan Regulafalsi

Di dunia komputasi numerik, penyelesaian persamaan nonlinear

menjadi salah satu topik penting, khususnya ketika solusi analitik tidak

dapat ditemukan secara langsung. Dua metode paling dasar namun

efektif yang digunakan untuk menyelesaikan persamaan nonlinear

130 Pemrograman dan Komputasi Numerik

adalah Metode Bagi Dua (Bisection Method) dan Metode Regula Falsi

(False Position Method). Kedua metode ini tergolong dalam kelompok

metode bracketing, yaitu teknik yang memerlukan dua nilai awal yang

mengurung akar fungsi.

1. Metode Bagi Dua

Metode Bagi Dua atau Bisection Method merupakan salah satu

teknik paling dasar dan penting dalam penyelesaian persamaan nonlinear

secara numerik. Metode ini tergolong dalam kategori bracketing

methods, yakni pendekatan yang bekerja dengan menyempitkan interval

yang mengandung akar dari suatu fungsi secara bertahap. Prinsip

dasarnya sangat sederhana namun kuat, yakni jika suatu fungsi kontinu

f(x) memiliki tanda yang berlawanan pada dua titik, misalnya f(a)<0 dan

f(b)>0, maka menurut Teorema Nilai Antara (Intermediate Value

Theorem) pasti terdapat setidaknya satu akar c∈(a,b) yang memenuhi

f(c)=0. Inilah dasar teoritis dari metode bagi dua.

Langkah pertama dalam metode ini adalah menentukan interval

awal [a,b] di mana nilai fungsi pada kedua ujung memiliki tanda yang

berlawanan. Setelah itu, titik tengah dari interval dihitung, yaitu 𝑐 =
𝑎+𝑏

2
,

dan nilai fungsi di titik tersebut, f(c) dievaluasi. Jika f(c)=0, maka c

adalah solusi akar yang dicari. Namun dalam praktiknya, sangat jarang

nilai fungsi di titik tengah benar-benar nol. Oleh karena itu, proses

dilanjutkan dengan menentukan subinterval baru yang masih

mengandung akar, yaitu antara [a,c] atau [c,b], tergantung pada tanda

fungsi di titik-titik tersebut. Proses ini diulang terus-menerus dengan cara

yang sama hingga panjang interval ∣b−a∣ menjadi sangat kecil atau nilai

fungsi ∣f(c)∣ mendekati nol, sesuai dengan tingkat toleransi kesalahan

yang telah ditentukan.

Kekuatan utama metode bagi dua terletak pada stabilitas dan

jaminan konvergensi. Selama syarat dasar f(a)×f(b)<0 dipenuhi dan

fungsi bersifat kontinu pada interval tersebut, maka metode ini pasti akan

menemukan akar atau pendekatannya. Oleh karena itu, metode ini

dianggap sangat andal, terutama dalam kondisi di mana fungsi memiliki

bentuk yang kompleks atau tidak mudah diturunkan secara analitik.

Pendekatan ini juga tidak bergantung pada kemiringan fungsi atau

perubahan bentuk grafiknya, yang membuatnya sangat berguna untuk

 131 Buku Referensi

fungsi-fungsi yang tidak diketahui bentuk pastinya atau yang memiliki

perilaku tidak terduga di antara titik a dan b.

Keunggulan dalam kestabilan dan kesederhanaan ini juga disertai

dengan kelemahan, terutama dalam hal kecepatan konvergensi. Metode

bagi dua hanya menunjukkan konvergensi linier, artinya error berkurang

secara bertahap dan cukup lambat dari iterasi ke iterasi. Dalam

praktiknya, dibutuhkan banyak iterasi untuk mencapai ketelitian yang

tinggi, terutama jika akar berada sangat dekat dengan salah satu ujung

interval. Hal ini menjadikan metode ini kurang efisien dibandingkan

metode yang menggunakan informasi tambahan, seperti Newton-

Raphson atau metode secant, yang memiliki kecepatan konvergensi yang

lebih tinggi. Selain itu, metode bagi dua tidak dapat digunakan jika

fungsi tidak berubah tanda pada interval awal, yang berarti proses seleksi

interval awal menjadi sangat penting.

Aplikasi metode bagi dua sangat luas dan mencakup berbagai

bidang, mulai dari fisika, teknik elektro, teknik mesin, hingga ekonomi.

Contohnya, dalam teknik sipil, metode ini dapat digunakan untuk

menghitung titik netral dalam sistem struktur lentur. Dalam ilmu

ekonomi, metode bagi dua bisa diterapkan untuk mencari nilai suku

bunga internal (IRR) yang membuat nilai kini bersih (NPV) sama dengan

nol. Dalam pengembangan perangkat lunak atau pemrograman, metode

ini juga sangat sering digunakan sebagai bagian dari modul numerik,

terutama dalam bahasa seperti Python, MATLAB, C++, dan Java.

Implementasinya relatif mudah dan tidak memerlukan struktur data

kompleks, hanya membutuhkan iterasi sederhana berbasis logika

percabangan dan perhitungan aritmatika dasar.

Sebagai ilustrasi, pertimbangkan fungsi f(x) = x3- x - 2. Kita ingin

mencari akar fungsi tersebut dalam interval [1, 2]. Evaluasi awal

menunjukkan f(1)=−2 dan f(2)=2, sehingga fungsi memenuhi syarat

metode bagi dua. Titik tengah pertama adalah c1=1.5, di mana

f(1.5)=−0.125, masih negatif, yang berarti akar ada pada interval [1.5,

2]. Proses ini terus diulang: hitung titik tengah baru, evaluasi nilai fungsi,

dan perbarui interval. Setelah beberapa iterasi, nilai pendekatan akar

akan mendekati 1.521, yang merupakan akar nyata dari fungsi tersebut.

Meskipun konvergensinya lambat, hasil akhirnya sangat presisi jika

dilakukan hingga toleransi tertentu.

Secara implementatif, metode bagi dua dapat dituliskan dalam

bentuk program komputasi sederhana. Misalnya, dalam Python, cukup

132 Pemrograman dan Komputasi Numerik

menggunakan perulangan while dan logika pembaruan nilai aaa atau bbb

berdasarkan hasil evaluasi fungsi di titik tengah. Fungsi umum biasanya

juga dilengkapi parameter toleransi dan jumlah iterasi maksimum untuk

mencegah komputasi tak berujung akibat fungsi yang sangat mendekati

datar di sekitar akar.

Pada pengajaran dan pembelajaran komputasi numerik, metode

bagi dua sangat direkomendasikan sebagai titik awal untuk

memperkenalkan prinsip penyelesaian persamaan nonlinear. Ini karena

metode ini mengajarkan banyak konsep mendasar seperti pemilihan

interval, evaluasi fungsi, penggunaan toleransi kesalahan, dan

pentingnya sifat kontinuitas. Bahkan ketika mahasiswa atau peneliti

akhirnya beralih ke metode yang lebih kompleks, pemahaman yang kuat

tentang metode bagi dua tetap menjadi landasan penting dalam

memahami bagaimana pendekatan numerik bekerja secara umum.

Dengan segala kelebihan dan keterbatasannya, metode bagi dua

tetap menjadi alat yang relevan, terutama ketika kestabilan dan

keandalan lebih diprioritaskan daripada kecepatan. Dalam dunia di mana

solusi eksak semakin langka dan model numerik semakin dominan,

metode seperti ini memberikan alternatif yang kuat dan dapat dipercaya

untuk menyelesaikan masalah nonlinear dalam berbagai disiplin ilmu.

Cari akar dalam interval [1,2], dan lakukan tiga iterasi.

 133 Buku Referensi

Setelah tiga iterasi, kita mendekati akar dalam interval [1.5,

1.625], dengan nilai pendekatan terakhir x≈1.625. Metode ini akan terus

mempersempit interval hingga mendekati akar sejati dari f(x)=0.

2. Metode Regula Falsi

Metode Regula Falsi, atau sering disebut juga False Position

Method, merupakan salah satu metode numerik yang digunakan untuk

menyelesaikan persamaan nonlinear f(x)=0 dengan cara yang lebih

cerdas dibandingkan metode bagi dua. Sama seperti metode bisection,

Regula Falsi termasuk dalam kategori bracketing methods, yaitu metode

yang memerlukan dua titik awal aaa dan bbb sehingga f(a)×f(b)<0,

artinya terdapat perubahan tanda nilai fungsi di antara dua titik tersebut.

Berdasarkan Teorema Nilai Antara (Intermediate Value Theorem), jika

fungsi f(x) bersifat kontinu dalam interval tersebut, maka dijamin

terdapat setidaknya satu akar di antara aaa dan bbb. Namun, keunikan

metode Regula Falsi terletak pada cara pendekatannya dalam

menentukan nilai x baru (akar pendekatan), yakni dengan menggunakan

persamaan garis lurus yang menghubungkan dua titik fungsi tersebut dan

menghitung titik potong garis dengan sumbu x. Secara matematis, titik

pendekatan akar c dihitung berdasarkan rumus:

Rumus ini secara geometris berarti bahwa C adalah titik potong

garis lurus antara titik (a,f(a)) dan (b,f(b)) terhadap sumbu x. Dengan

kata lain, alih-alih memilih titik tengah seperti dalam metode bagi dua,

134 Pemrograman dan Komputasi Numerik

metode Regula Falsi memilih titik yang diperkirakan lebih dekat dengan

akar karena mempertimbangkan nilai fungsi itu sendiri. Pendekatan ini

membuat metode ini memiliki potensi konvergensi yang lebih cepat

daripada metode bisection, karena lebih "menyesuaikan diri" dengan

bentuk kurva fungsi.

Langkah-langkah metode Regula Falsi cukup sederhana dan

efisien. Pertama, tentukan dua nilai awal aaa dan bbb yang memenuhi

syarat bracketing f(a)×f(b)<0. Kedua, hitung nilai C menggunakan

rumus di atas. Ketiga, evaluasi f(c); jika f(c)=0, maka C adalah akar dari

fungsi. Jika tidak, perbarui nilai interval: jika f(a)×f(c)<0, maka akar

berada dalam interval [a,c], sehingga b diganti dengan C; jika

f(c)×f(b)<0, maka akar berada dalam interval [c,b], sehingga a diganti

dengan C. Proses ini diulang hingga nilai absolut f(c) lebih kecil dari

toleransi yang ditentukan atau panjang interval sudah sangat kecil.

Keunggulan utama metode Regula Falsi adalah kecepatannya

dalam konvergensi pada banyak kasus, terutama dibandingkan dengan

metode bagi dua. Karena pendekatan nilai C lebih bersifat adaptif dan

tergantung pada bentuk fungsi, maka dalam fungsi-fungsi yang tidak

terlalu datar atau memiliki gradien yang cukup tajam, metode ini dapat

mencapai solusi lebih cepat. Sebagai contoh, dalam fungsi f(x)=x3-x-2,

jika digunakan Regula Falsi dengan nilai awal a=1 dan b=2, nilai akar

akan mendekati x≈1.521 dalam iterasi yang lebih sedikit dibandingkan

metode bagi dua.

Regula Falsi juga memiliki kelemahan tertentu yang perlu

diperhatikan. Salah satu kelemahan signifikan adalah potensi stagnasi

konvergensi. Ini terjadi ketika salah satu dari dua titik aaa atau bbb tetap

tidak berubah dalam banyak iterasi karena nilai fungsi di titik tersebut

sangat kecil atau tidak berubah secara signifikan. Dalam kasus seperti

ini, meskipun metode masih bekerja, konvergensinya menjadi sangat

lambat dan mendekati metode bagi dua. Untuk mengatasi masalah ini,

beberapa varian dari metode Regula Falsi telah dikembangkan, seperti

metode Modified Regula Falsi, Illinois Method, dan Pegasus Method,

yang mencoba mengoreksi titik stagnan agar proses konvergensi tetap

cepat.

Pada praktik komputasi, Regula Falsi sering kali digunakan

ketika metode yang lebih kompleks seperti Newton-Raphson tidak bisa

diaplikasikan karena fungsi tidak terdiferensiasi dengan mudah, atau

nilai turunan tidak tersedia atau tidak stabil. Karena metode ini hanya

 135 Buku Referensi

membutuhkan evaluasi fungsi, tanpa perlu menghitung turunan, maka ia

sangat cocok untuk fungsi-fungsi kompleks atau eksperimental yang

diperoleh dari data empiris. Selain itu, metode ini relatif mudah

diimplementasikan dalam bahasa pemrograman seperti Python,

MATLAB, maupun C++. Berikut merupakan ilustrasi implementasi

sederhana metode Regula Falsi dalam Python.

Dengan contoh fungsi:

Dari penjelasan tersebut, dapat disimpulkan bahwa metode

Regula Falsi merupakan kompromi antara kesederhanaan metode

bisection dan kecepatan metode Newton-Raphson. Ia tidak secepat

metode berbasis turunan, namun lebih aman karena tidak bergantung

pada informasi turunan fungsi. Metode ini sangat cocok untuk digunakan

dalam tahap awal pemrograman numerik atau ketika menghadapi fungsi

yang sulit dianalisis secara simbolik. Dengan memilih interval awal yang

tepat dan toleransi yang sesuai, metode ini mampu memberikan solusi

yang akurat dan efisien untuk berbagai jenis permasalahan nonlinear

yang kompleks.

136 Pemrograman dan Komputasi Numerik

Setelah 3 iterasi, akar pendekatan berada di sekitar x≈1.505.

Metode Regula Falsi lebih cepat dari metode Bisection karena

menggunakan pendekatan garis lurus antara titik-titik.

B. Metode Newton-Raphson dan Secant

Pada penyelesaian persamaan nonlinear 𝑓(𝑥)=0, metode numerik

sangat penting ketika solusi eksak tidak tersedia atau sulit ditemukan.

 137 Buku Referensi

Dua metode populer yang digunakan untuk pendekatan akar adalah

metode Newton-Raphson dan metode Secant. Keduanya merupakan

bagian dari metode terbuka (open methods), yang tidak mensyaratkan

nilai awal harus mengurung akar seperti pada metode bracketing

(misalnya metode bagi dua atau regula falsi). Karena itulah, kedua

metode ini dikenal memiliki konvergensi yang lebih cepat, meskipun

dengan risiko konvergensi yang tidak dijamin jika pemilihan titik awal

kurang tepat.

1. Metode Newton-Raphson

Metode Newton-Raphson adalah salah satu teknik numerik

paling populer dan efisien untuk mencari akar persamaan nonlinear

f(x)=0. Metode ini dikenal luas dalam bidang teknik, fisika, matematika

terapan, dan ilmu komputer karena konvergensinya yang cepat dan

kemampuannya menyelesaikan berbagai permasalahan kompleks

dengan pendekatan iteratif. Diperkenalkan oleh Sir Isaac Newton dan

Joseph Raphson pada abad ke-17, metode ini memanfaatkan pendekatan

kalkulus, khususnya turunan pertama fungsi, untuk memperkirakan nilai

akar secara bertahap dengan tingkat ketelitian yang semakin tinggi.

Dasar teori dari metode Newton-Raphson didasarkan pada

perluasan Taylor orde pertama dari fungsi f(x). Jika kita

mengembangkan f(x) di sekitar titik x=xn, maka dapat dituliskan:

Dengan mengasumsikan 𝑓(𝑥)=0 dan menyelesaikan persamaan

tersebut untuk 𝑥, maka diperoleh rumus iteratif:

Rumus ini merupakan inti dari metode Newton-Raphson, di

mana xn+1 adalah pendekatan akar yang lebih baik berdasarkan nilai

xnx_nxn sebelumnya. Iterasi ini terus dilakukan sampai diperoleh nilai

xn+1 yang mendekati akar sebenarnya dengan tingkat kesalahan yang bisa

ditoleransi.

Salah satu keunggulan utama metode Newton-Raphson adalah

kecepatan konvergensinya yang kuadratik, artinya jika pendekatan awal

cukup dekat dengan akar sebenarnya, maka jumlah digit benar dari hasil

perhitungan akan bertambah dua kali lipat di setiap iterasi. Hal ini

138 Pemrograman dan Komputasi Numerik

membuat metode ini sangat efisien dibandingkan metode lain seperti

bisection atau regula falsi yang hanya konvergen secara linier. Namun,

kecepatan ini hanya dapat dicapai apabila kondisi ideal terpenuhi, seperti

turunan fungsi tidak mendekati nol dan nilai awal tidak terlalu jauh dari

akar.

Pada implementasinya, metode Newton-Raphson memerlukan

dua komponen utama: nilai fungsi f(x) dan turunan pertamanya f′(x). Ini

menjadi kekuatan sekaligus keterbatasan metode. Pada satu sisi,

informasi turunan memberikan arah dan kecepatan pergerakan menuju

akar, sehingga konvergensi menjadi sangat efisien. Namun di sisi lain,

metode ini menjadi sulit atau tidak praktis jika turunan fungsi tidak

diketahui secara eksplisit, sulit dihitung, atau fungsi tidak

terdiferensialkan dengan baik di sekitar titik yang sedang dianalisis.

Dalam kasus semacam ini, pengguna dapat mempertimbangkan metode

alternatif seperti metode secant, yang tidak memerlukan turunan

eksplisit.

Contoh sederhana penerapan metode Newton-Raphson adalah

pada fungsi f(x)=x3 - x - 2, di mana akar nyata dari persamaan ini terletak

di sekitar x≈1.521. Dengan memilih titik awal x0=1.5x, kita dapat

menghitung f(x0)=−0.125 dan f′(x0)=3(1.5)2−1=5.75. Maka:

Dengan hanya satu iterasi, nilai pendekatan akar sudah sangat

dekat dengan solusi sebenarnya. Dalam beberapa iterasi berikutnya, hasil

perhitungan akan semakin mendekati akar sejati dengan tingkat

kesalahan yang sangat kecil.

Meski sangat efektif, metode Newton-Raphson memiliki

sejumlah potensi masalah. Jika nilai awal terlalu jauh dari akar, atau jika

fungsi memiliki turunan nol di titik tertentu (seperti di puncak atau

lembah grafik), maka perhitungan bisa tidak stabil atau bahkan gagal

konvergen. Dalam beberapa kasus ekstrem, iterasi dapat menyimpang

jauh dari akar sebenarnya, atau masuk ke dalam siklus tak berujung yang

tidak menghasilkan konvergensi. Oleh karena itu, pemilihan nilai awal

yang baik dan pemahaman bentuk fungsi menjadi sangat krusial dalam

menjamin keberhasilan metode ini.

Pada praktik pemrograman, implementasi metode Newton-

Raphson relatif mudah. Bahasa seperti Python, MATLAB, atau C++

 139 Buku Referensi

menyediakan cara cepat untuk menghitung fungsi dan turunannya.

Sebagai contoh, implementasi sederhana dalam Python dapat dituliskan

sebagai berikut:

Dalam penggunaan dunia nyata, metode Newton-Raphson

banyak diterapkan dalam berbagai bidang. Dalam teknik sipil, digunakan

untuk menghitung deformasi struktur nonlinear. Dalam bidang

keuangan, digunakan untuk menghitung akar dari persamaan nilai kini

bersih (NPV) dalam penentuan IRR (Internal Rate of Return). Dalam

bidang optimisasi dan pembelajaran mesin, metode ini menjadi dasar

bagi algoritma yang lebih kompleks seperti gradient descent dan

Newton's optimization method dalam pelatihan model.

140 Pemrograman dan Komputasi Numerik

Setelah tiga iterasi, diperoleh akar pendekatan x≈1.5211. Metode

Newton-Raphson sangat cepat konvergen jika tebakan awal dekat

dengan akar dan turunan tidak mendekati nol.

2. Metode Secant

Metode Secant merupakan salah satu metode numerik yang

digunakan untuk menyelesaikan persamaan nonlinear dalam bentuk

f(x)=0, dan secara khusus merupakan variasi dari metode Newton-

Raphson yang tidak memerlukan turunan eksplisit dari fungsi yang

dianalisis. Metode ini menjadi alternatif praktis ketika fungsi f(x) terlalu

kompleks atau tidak memiliki turunan yang dapat dihitung dengan

mudah. Oleh karena itu, metode Secant menjadi sangat relevan dalam

banyak aplikasi komputasi teknik, fisika, dan ekonomi, di mana bentuk

fungsi sering kali tidak diketahui secara simbolik atau hanya tersedia

dalam bentuk data numerik.

Secara konseptual, metode Secant memanfaatkan pendekatan

turunan numerik berdasarkan dua titik pendekatan sebelumnya. Jika

pada metode Newton-Raphson digunakan turunan analitik f′(x), maka

pada metode Secant, turunan didekati dengan:

Rumus ini kemudian disubstitusikan ke dalam formula Newton-

Raphson, sehingga diperoleh rumus iteratif metode Secant:

Dengan demikian, metode ini hanya memerlukan dua nilai awal,

yaitu x0 dan x1, yang digunakan untuk memulai iterasi dalam mencari

akar fungsi. Berbeda dengan metode bracketing seperti metode bisection

atau regula falsi, metode Secant termasuk dalam kategori open methods,

yang tidak mengharuskan kedua nilai awal mengurung akar (tidak harus

f(x0)×f(x1)<0.

 141 Buku Referensi

Kekuatan utama dari metode Secant terletak pada kesederhanaan

perhitungannya dan kecepatan konvergensi yang relatif tinggi

dibandingkan metode-metode bracketing. Meskipun kecepatan

konvergensi metode Secant tidak secepat Newton-Raphson yang bersifat

kuadratik, metode ini memiliki konvergensi super-linear dengan laju

mendekati 1.618, yakni golden ratio. Artinya, dalam banyak kasus,

metode ini tetap memberikan hasil yang cukup cepat dan efisien, tanpa

syarat ketersediaan turunan fungsi.

Sebagai ilustrasi, pertimbangkan fungsi nonlinear f(x)=x3-x-2.

Kita ingin mencari akar fungsi tersebut menggunakan metode Secant.

Misalkan dua nilai awal adalah x0=1 dan x1=2. Maka, f(1)=−2 dan

f(2)=2. Iterasi pertama akan menghasilkan:

Dengan terus melanjutkan proses iteratif menggunakan dua nilai

pendekatan terakhir, kita akan mendekati akar sejati dari fungsi tersebut,

yaitu sekitar x≈1.521. Meskipun pada contoh ini metode regula falsi juga

dapat digunakan, metode Secant cenderung lebih cepat karena tidak

memerlukan validasi tanda fungsi untuk memperbarui interval.

Metode Secant bukan tanpa kelemahan. Salah satu kelemahan

utama adalah tidak adanya jaminan konvergensi. Karena metode ini tidak

menggunakan prinsip bracketing, maka jika nilai awal tidak dipilih

dengan tepat atau jika fungsi memiliki perilaku tak menentu (seperti

perubahan kemiringan ekstrem atau osilasi lokal), maka iterasi dapat

menyimpang jauh dari akar atau bahkan tidak konvergen sama sekali.

Selain itu, jika dua nilai pendekatan menghasilkan f(xn)=f(xn−1), maka

metode akan gagal karena menghasilkan pembagian nol. Oleh karena itu,

kontrol terhadap nilai-nilai awal dan pemeriksaan stabilitas perhitungan

menjadi aspek penting dalam penerapan metode ini.

Pada praktiknya, metode Secant dapat diimplementasikan

dengan sangat mudah dalam bahasa pemrograman seperti Python,

MATLAB, atau C++. Contoh implementasi sederhana metode ini dalam

Python adalah sebagai berikut:

142 Pemrograman dan Komputasi Numerik

Penggunaan metode ini sangat cocok untuk fungsi-fungsi yang

tidak diketahui bentuk turunannya, seperti fungsi empiris yang diperoleh

dari hasil eksperimen atau pengukuran. Misalnya, dalam rekayasa sistem

kontrol, kita bisa menggunakannya untuk menyetel parameter sistem

berdasarkan fungsi karakteristik hasil simulasi. Dalam ekonomi, metode

ini bisa digunakan untuk menghitung tingkat diskonto dari arus kas

dengan model yang tidak memiliki turunan eksplisit. Dalam ilmu data,

metode Secant bahkan dapat digunakan dalam pencarian nilai minimum

fungsi loss secara numerik.

Dari perspektif pendidikan, metode Secant juga sangat

bermanfaat untuk memperkenalkan konsep turunan numerik dan

pendekatan iteratif. Mahasiswa dapat memahami bagaimana perbedaan

antara metode terbuka dan tertutup memengaruhi hasil akhir, serta

menyadari pentingnya pemilihan nilai awal. Selain itu, metode ini

menjadi jembatan alami antara metode reguler dan metode berbasis

turunan seperti Newton-Raphson.

 143 Buku Referensi

Maka,

Setelah tiga iterasi, pendekatan akar dari f(x)=0 berada di sekitar

x≈1.112. Metode secant cepat dan tidak memerlukan turunan, berbeda

dengan Newton-Raphson.

C. Konvergensi dan Stabilitas Solusi

Pada bidang komputasi numerik dan penyelesaian persamaan

matematis secara numerik, dua konsep yang sangat fundamental adalah

konvergensi dan stabilitas solusi. Kedua konsep ini menentukan

keberhasilan dan keandalan suatu metode numerik dalam memberikan

solusi yang mendekati nilai sebenarnya. Sebuah metode yang akurat

tetapi tidak stabil, atau metode yang stabil tetapi tidak konvergen, tidak

akan dapat digunakan secara efektif dalam praktik nyata. Oleh karena

itu, memahami konvergensi dan stabilitas secara mendalam sangat

144 Pemrograman dan Komputasi Numerik

penting, baik dalam pengembangan algoritma maupun dalam

penerapannya untuk menyelesaikan masalah ilmiah dan rekayasa.

1. Konvergensi

Konvergensi merupakan konsep fundamental dalam komputasi

numerik yang mengukur seberapa efektif suatu metode numerik dalam

menghampiri solusi sebenarnya dari sebuah masalah matematis. Dalam

konteks penyelesaian persamaan nonlinear, sistem linier, maupun

persamaan diferensial, konvergensi menentukan apakah urutan solusi

mendekati nilai yang benar saat jumlah iterasi bertambah. Dengan kata

lain, suatu metode dikatakan konvergen jika hasil pendekatan

numeriknya semakin dekat ke solusi eksak seiring bertambahnya iterasi

atau penyempurnaan partisi numerik. Konsep ini tidak hanya penting

secara teoritis, tetapi juga sangat menentukan keberhasilan metode

numerik dalam berbagai aplikasi dunia nyata seperti simulasi teknik,

optimisasi, pemodelan ilmiah, dan pemrosesan data.

Menurut Burden dan Faires (2010), konvergensi suatu metode

numerik secara formal dapat didefinisikan sebagai berikut: jika terdapat

suatu solusi eksak x∗ dan urutan hasil pendekatan {xn}, maka metode

dikatakan konvergen jika:

Artinya, seiring dengan bertambahnya iterasi atau

penyempurnaan skema (seperti langkah waktu atau ukuran grid), solusi

numerik xn semakin dekat ke nilai x∗. Dalam praktiknya, pengguna akan

menghentikan proses iterasi pada titik di mana selisih antara dua iterasi

berturut-turut sudah berada di bawah toleransi kesalahan tertentu,

misalnya ∣xn+1 - xn∣ < ϵ.

Salah satu aspek penting dari konvergensi adalah kecepatan

konvergensi atau rate of convergence. Ini menjelaskan seberapa cepat

pendekatan menuju solusi sebenarnya. Terdapat beberapa tingkatan

konvergensi yang umum digunakan dalam teori numerik:

Kecepatan konvergensi sangat memengaruhi efisiensi

komputasi. Dalam metode iteratif, semakin tinggi laju konvergensi,

 145 Buku Referensi

semakin sedikit iterasi yang dibutuhkan untuk mencapai presisi tertentu,

sehingga waktu komputasi lebih singkat dan penggunaan sumber daya

menjadi lebih efisien. Oleh karena itu, analisis konvergensi sering kali

dilakukan sebelum memilih atau merancang metode numerik yang akan

digunakan untuk menyelesaikan suatu masalah.

Tidak semua metode dijamin konvergen dalam segala situasi.

Kondisi awal, sifat fungsi, dan parameter numerik sangat memengaruhi

konvergensi. Misalnya, dalam metode Newton-Raphson, konvergensi

kuadratik hanya dapat dicapai jika titik awal cukup dekat dengan akar

dan fungsi memiliki turunan yang tidak nol di sekitar akar. Jika tidak,

iterasi bisa menyimpang jauh dan bahkan tidak pernah mendekati akar

(divergen). Hal ini menunjukkan bahwa analisis konvergensi tidak hanya

bergantung pada rumus iteratif, tetapi juga pada pemahaman sifat

masalah yang sedang diselesaikan.

Pada konteks penyelesaian persamaan diferensial numerik,

konvergensi memiliki definisi yang sedikit berbeda tetapi prinsipnya

serupa. Misalnya, dalam penyelesaian persamaan diferensial biasa

(ODE) dengan metode numerik seperti Euler atau Runge-Kutta,

konvergensi mengacu pada apakah solusi numerik mendekati solusi

eksak ketika langkah waktu (Δ𝑡) didekati ke nol. Suatu metode dikatakan

konvergen jika kesalahan total (global error) mendekati nol ketika

ukuran langkah mendekati nol. Oleh karena itu, dalam banyak kasus,

konvergensi dinyatakan sebagai fungsi dari ukuran langkah:

Error∼𝑂(ℎ𝑝)p), di mana 𝑝 menunjukkan orde akurasi dari metode

tersebut.

Hubungan antara konsistensi, stabilitas, dan konvergensi juga

dijelaskan dalam Teorema Lax (Lax Equivalence Theorem), yang

menyatakan bahwa untuk skema linear yang stabil dan konsisten, maka

metode tersebut pasti konvergen. Ini berarti bahwa konvergensi tidak

bisa dilihat secara terpisah dari aspek stabilitas dan keakuratan metode.

Jika suatu metode tidak stabil atau tidak konsisten, maka meskipun

secara matematis menjanjikan, metode tersebut bisa gagal menghampiri

solusi sebenarnya.

Pada praktik rekayasa dan ilmu terapan, konvergensi tidak hanya

menjadi syarat teoritis, melainkan juga panduan penting dalam validasi

simulasi numerik. Misalnya, dalam simulasi struktur bangunan

menggunakan metode elemen hingga (finite element method), hasil yang

146 Pemrograman dan Komputasi Numerik

diperoleh pada model kasar (coarse mesh) harus diverifikasi dengan

memperkecil ukuran elemen (mesh refinement). Jika solusi tidak berubah

secara signifikan saat mesh diperhalus, maka solusi dianggap konvergen

dan valid. Konsep ini juga diterapkan dalam simulasi fluida, analisis

medan elektromagnetik, dan berbagai bidang yang memerlukan

pendekatan numerik berbasis grid.

Secara praktis, untuk mengukur konvergensi, para insinyur dan

ilmuwan biasanya melakukan studi konvergensi (convergence study),

yaitu dengan mencoba berbagai nilai parameter numerik (misalnya

ukuran grid atau langkah waktu) dan membandingkan hasilnya. Jika

perbedaan hasil menjadi semakin kecil, dan mendekati nilai tetap, maka

metode dianggap telah mencapai konvergensi numerik.

Konvergensi adalah fondasi dari setiap algoritma numerik yang

andal. Metode yang tidak konvergen tidak dapat dipercaya dalam

menghasilkan hasil yang benar, betapapun canggih atau cepatnya metode

tersebut. Oleh karena itu, dalam pengembangan algoritma, simulasi

numerik, dan penerapan di dunia nyata, analisis konvergensi harus

menjadi bagian utama dalam evaluasi keakuratan dan efisiensi metode

numerik. Pemahaman yang baik tentang karakteristik konvergensi

memungkinkan praktisi memilih metode yang paling tepat sesuai dengan

jenis masalah, struktur matematis fungsi, serta keterbatasan sumber daya

komputasi yang tersedia.

Tentukan apakah metode ini konvergen, dan hitung galat relatif pada

iterasi ke-3.

 147 Buku Referensi

Kesimpulan

• Karena nilai xn dari iterasi ke iterasi semakin mendekati suatu nilai

tetap, metode ini menunjukkan konvergensi.

• Galat relatif sebesar 1.74% menunjukkan bahwa hasil sudah cukup

dekat, meskipun belum sangat presisi.

• Untuk keperluan praktis, konvergensi biasanya diterima jika galat

relatif < 1% (tergantung toleransi yang ditentukan pengguna).

2. Stabilitas Solusi

Stabilitas solusi merupakan konsep kunci dalam komputasi

numerik yang berkaitan erat dengan keandalan dan ketahanan suatu

metode numerik terhadap gangguan atau kesalahan kecil dalam proses

perhitungan. Dalam konteks penyelesaian masalah numerik baik itu

persamaan aljabar, diferensial, maupun sistem linear stabilitas mengukur

seberapa besar efek kesalahan kecil pada data input atau pembulatan

selama iterasi dapat mempengaruhi solusi akhir. Dengan kata lain,

stabilitas solusi menggambarkan apakah sebuah metode mampu menjaga

agar kesalahan kecil tidak berkembang secara signifikan sehingga

menyebabkan penyimpangan besar pada hasil akhir. Konsep ini sangat

penting dalam dunia nyata karena setiap komputasi yang dilakukan

dengan komputer digital pasti mengandung kesalahan pembulatan akibat

keterbatasan presisi representasi bilangan floating point.

Menurut Chapra dan Canale (2015), stabilitas numerik adalah

kemampuan metode untuk membatasi pertumbuhan kesalahan selama

proses iteratif berlangsung. Kesalahan tersebut bisa berasal dari dua

sumber utama: (1) kesalahan pembulatan, yang terjadi ketika hasil

perhitungan dibatasi oleh jumlah digit yang dapat direpresentasikan

komputer, dan (2) kesalahan gangguan input, yaitu ketidakakuratan pada

data awal atau nilai awal iterasi. Dalam algoritma yang tidak stabil,

kesalahan-kesalahan kecil ini bisa diperkuat oleh struktur perhitungan

148 Pemrograman dan Komputasi Numerik

hingga mengakibatkan hasil akhir yang menyimpang jauh dari solusi

sebenarnya.

Salah satu ilustrasi paling umum dari pentingnya stabilitas adalah

pada metode numerik untuk menyelesaikan persamaan diferensial biasa

(ODE). Misalnya, dalam metode Euler eksplisit, hasil iterasi sangat

bergantung pada ukuran langkah waktu (Δ𝑡). Jika Δ𝑡 terlalu besar,

kesalahan lokal yang terjadi dalam satu iterasi bisa diperkuat secara

eksponensial di iterasi-iterasi berikutnya. Akibatnya, meskipun metode

Euler secara teori konsisten (yakni mampu mendekati solusi sebenarnya

jika langkah waktu cukup kecil), tetapi bila digunakan dengan langkah

waktu yang tidak sesuai, hasil akhirnya bisa menjadi tidak masuk akal

atau bahkan mengalami numerical blow-up. Oleh karena itu, untuk

metode eksplisit seperti Euler, hanya nilai-nilai langkah waktu tertentu

yang menjamin stabilitas solusi wilayah nilai ini disebut daerah

stabilitas.

Pada konteks metode numerik untuk sistem persamaan linear,

stabilitas berkaitan dengan kondisi matriks yang digunakan dalam

perhitungan. Jika sebuah matriks koefisien dari sistem linear sangat

sensitif terhadap perubahan kecil dalam data (disebut ill-conditioned),

maka solusi yang dihasilkan dapat berubah drastis bahkan ketika

perubahan data sangat kecil. Kondisi seperti ini biasanya dinyatakan

dalam bentuk angka kondisi (condition number). Matriks dengan angka

kondisi tinggi menunjukkan bahwa metode yang digunakan untuk

menyelesaikannya bisa sangat tidak stabil. Oleh karena itu, stabilitas

solusi dalam sistem linear sangat dipengaruhi oleh struktur aljabar dari

sistem tersebut, bukan hanya oleh metode yang digunakan.

Pada metode iteratif, seperti metode Gauss-Seidel atau Jacobi

untuk sistem linear, stabilitas juga berperan penting. Algoritma iteratif

harus dirancang agar error tidak diperbesar pada setiap langkah,

melainkan diminimalkan. Ketika algoritma terus menerus memperkuat

error dari langkah sebelumnya, maka proses iterasi akan menyimpang

dari hasil sebenarnya dan menjadi divergen. Oleh karena itu, analisis

spektral radius dari matriks iterasi sering digunakan untuk menilai

stabilitas suatu metode iteratif. Jika spektral radius lebih kecil dari satu,

maka metode dijamin stabil dan konvergen.

Salah satu aspek penting lainnya dari stabilitas adalah dalam

simulasi waktu atau pemodelan dinamika sistem yang berlangsung

 149 Buku Referensi

selama periode tertentu. Dalam konteks ini, stabilitas menentukan

apakah solusi numerik akan terus mengikuti perilaku sistem aktual atau

mengalami deviasi seiring waktu. Sebagai contoh, dalam simulasi

pergerakan partikel atau simulasi dinamika fluida, kesalahan kecil pada

posisi atau kecepatan bisa menyebabkan solusi yang menyimpang jauh

jika metode yang digunakan tidak stabil terhadap waktu. Oleh karena itu,

para insinyur dan ilmuwan sering kali melakukan analisis sensitivitas

dan uji kestabilan waktu sebelum menggunakan hasil simulasi untuk

pengambilan keputusan.

Stabilitas solusi juga sangat penting dalam pemrosesan sinyal

dan analisis numerik data eksperimen. Ketika data input mengandung

noise atau gangguan, metode numerik yang tidak stabil dapat

memperbesar efek noise tersebut dan menghasilkan kesimpulan yang

salah. Oleh karena itu, dalam bidang seperti rekonstruksi citra,

pemodelan keuangan, dan pembelajaran mesin, pemilihan metode yang

stabil menjadi keharusan untuk menjaga validitas hasil akhir.

Pada praktiknya, untuk menjamin stabilitas solusi, beberapa

pendekatan umum digunakan: (1) penggunaan metode implisit pada

sistem diferensial, seperti metode Backward Euler yang dikenal lebih

stabil dibandingkan metode eksplisit; (2) penyesuaian parameter

numerik, seperti langkah waktu atau toleransi kesalahan; (3)

pengondisian ulang data atau sistem, untuk menghindari sistem ill-

conditioned; dan (4) penerapan analisis kestabilan teoritis terhadap

metode numerik sebelum diimplementasikan.

3. Studi Kasus Komputasional

Di era modern yang semakin mengandalkan teknologi untuk

mendukung pengambilan keputusan, pendekatan komputasional telah

menjadi elemen penting dalam analisis sistem kompleks, termasuk

dalam isu lingkungan. Salah satu permasalahan yang krusial di banyak

kota besar di dunia adalah polusi udara. Emisi dari kendaraan bermotor,

industri, dan pembakaran sampah memberikan kontribusi signifikan

terhadap pencemaran udara, yang berdampak pada kesehatan manusia

dan lingkungan. Untuk itu, studi kasus ini mengangkat permasalahan

penyebaran polusi udara di kawasan perkotaan dengan menggunakan

pendekatan komputasi numerik berbasis metode Finite Difference dan

pemrograman Python, guna memprediksi distribusi konsentrasi polutan

150 Pemrograman dan Komputasi Numerik

dalam suatu wilayah dan membantu pemerintah merumuskan kebijakan

mitigasi yang lebih akurat.

4. Latar Belakang Permasalahan

Kawasan padat penduduk dengan kepadatan kendaraan tinggi

menghasilkan emisi karbon monoksida (CO), nitrogen dioksida (NO₂),

dan partikel-partikel berbahaya (PM2.5) dalam jumlah besar. Dalam

banyak kasus, sensor pengukuran polusi udara hanya dipasang di

beberapa titik tertentu, sehingga informasi distribusi spasial dan

temporal polutan bersifat terbatas. Oleh karena itu, dibutuhkan model

simulasi berbasis komputasi untuk memperkirakan bagaimana polutan

menyebar di wilayah tersebut dalam kurun waktu tertentu, dengan

mempertimbangkan pengaruh kecepatan angin, arah angin, dan

perubahan konsentrasi emisi. Simulasi ini tidak hanya berfungsi untuk

menggambarkan kondisi saat ini, tetapi juga digunakan untuk

memprediksi skenario masa depan, seperti dampak pembangunan jalan

baru atau pengurangan volume kendaraan.

5. Formulasi Masalah Secara Matematis

Model dasar yang digunakan dalam studi ini adalah Persamaan

Adveksi-Difusi dua dimensi yang menyatakan perubahan konsentrasi

polutan 𝐶(𝑥,𝑦,𝑡) seiring waktu:

Persamaan ini mencerminkan bahwa polutan menyebar karena

efek adveksi oleh angin, difusi karena perbedaan konsentrasi, dan

bertambah karena sumber emisi.

Untuk menyelesaikannya secara numerik, persamaan diferensial

parsial tersebut didiskretisasi menggunakan skema Finite Difference

eksplisit. Domain wilayah dibagi menjadi grid dua dimensi, dan waktu

 151 Buku Referensi

dipecah dalam langkah-langkah kecil. Komputasi dilakukan untuk

menghitung konsentrasi polutan di setiap titik grid pada setiap langkah

waktu.

6. Implementasi Komputasional

Simulasi ini diimplementasikan menggunakan bahasa

pemrograman Python karena kemudahan dalam manipulasi matriks serta

ketersediaan pustaka ilmiah seperti NumPy dan Matplotlib. Wilayah

simulasi dibuat dalam ukuran 1 km x 1 km yang dibagi menjadi 100 x

100 grid, dengan setiap grid berukuran 10 meter. Kecepatan angin diatur

tetap, misalnya 2 m/s ke arah timur dan 1 m/s ke arah utara. Emisi dari

kendaraan dimodelkan sebagai sumber tetap yang berada di tengah kota.

Potongan kode Python untuk skema numerik eksplisit sebagai berikut:

Visualisasi distribusi konsentrasi polusi dilakukan dengan

menggunakan Matplotlib. Hasil simulasi menunjukkan bahwa polusi

tertinggi terkonsentrasi di dekat sumber emisi dan menyebar mengikuti

arah angin. Distribusi konsentrasi ini dapat dipetakan dalam bentuk

kontur warna, sehingga memberikan pemahaman spasial yang jelas

kepada pengambil kebijakan.

7. Analisis Hasil dan Validasi

Setelah simulasi dijalankan selama 24 jam waktu simulasi,

diperoleh peta distribusi konsentrasi polusi pada setiap titik grid. Nilai

tertinggi terdeteksi di wilayah pusat kota, sementara nilai terendah

berada di pinggiran kota, mengikuti arah dominan angin. Selain itu,

ketika skenario penurunan emisi sebesar 50% dari sektor kendaraan

diterapkan, konsentrasi polutan menurun secara signifikan, terutama

pada area padat lalu lintas. Untuk memvalidasi model, data sensor nyata

dari stasiun pemantau kualitas udara kota digunakan. Hasil simulasi

dibandingkan dengan data aktual dan menunjukkan deviasi kurang dari

10%, yang menandakan bahwa model cukup akurat dalam memprediksi

152 Pemrograman dan Komputasi Numerik

pola sebaran polusi udara. Dalam dunia komputasi lingkungan, selisih di

bawah 15% dianggap masih dalam batas yang bisa diterima untuk model

prediktif.

8. Relevansi dan Implikasi Kebijakan

Studi kasus ini menunjukkan bahwa pendekatan komputasional

berbasis metode numerik dapat memberikan informasi spasial yang jauh

lebih lengkap daripada data pengamatan saja. Pemerintah daerah dapat

memanfaatkan hasil simulasi ini untuk:

a. Menentukan zona emisi rendah (low emission zones).

b. Menyesuaikan arah pembangunan jalan agar tidak memusatkan

lalu lintas di area padat.

c. Menentukan lokasi strategis pemasangan alat pemantau kualitas

udara.

d. Mensimulasikan skenario darurat jika terjadi lonjakan polusi

akibat kebakaran hutan atau kecelakaan industri.

Model ini juga dapat diperluas ke simulasi multi-pollutan dan

integrasi data waktu nyata dari sensor Internet of Things (IoT), sehingga

prediksi menjadi lebih responsif dan adaptif terhadap kondisi terkini.

9. Kesimpulan

Studi kasus ini membuktikan bahwa pendekatan komputasi

numerik memiliki peran penting dalam memahami dan mengelola

permasalahan lingkungan yang kompleks seperti polusi udara. Dengan

menggunakan model matematis yang diformulasikan dalam persamaan

diferensial parsial dan diselesaikan menggunakan metode numerik Finite

Difference, simulasi distribusi polutan dapat dilakukan secara efisien dan

akurat. Implementasi berbasis Python membuat proses ini dapat diakses

oleh banyak pihak tanpa memerlukan perangkat lunak mahal. Lebih dari

itu, pendekatan ini memperlihatkan bagaimana teknologi komputasi

dapat berperan langsung dalam mendukung kebijakan berbasis data

(data-driven policy) untuk meningkatkan kualitas hidup masyarakat

perkotaan. Ke depannya, integrasi metode ini dengan data penginderaan

jauh, big data, dan kecerdasan buatan akan memperkuat kapasitas

pemodelan lingkungan yang lebih dinamis dan adaptif.

 153 Buku Referensi

BAB VIII

PERSAMAAN

DIFERENSIAL BIASA

(PDB)

Persamaan Diferensial Biasa (PDB) merupakan salah satu pilar

utama dalam matematika terapan yang berperan penting dalam

memahami dan memodelkan dinamika berbagai fenomena alam maupun

rekayasa. Dari gerak planet di langit hingga penyebaran penyakit

menular, dari getaran mekanik hingga dinamika keuangan, PDB menjadi

alat matematis yang tak tergantikan dalam menjelaskan perubahan

variabel terhadap waktu atau parameter lainnya. Dalam konteks

komputasi numerik, penyelesaian PDB secara analitik sering kali tidak

memungkinkan, sehingga pendekatan numerik menjadi solusi yang

sangat vital. Melalui metode seperti Euler, Runge-Kutta, dan multi-step

methods, kita mampu memperoleh pendekatan solusi yang cukup akurat

dengan efisiensi komputasi yang tinggi. Pemahaman terhadap teori

dasar, kestabilan metode, serta implementasi algoritma dalam platform

pemrograman modern seperti Python atau MATLAB menjadi

kompetensi penting bagi mahasiswa, peneliti, dan praktisi.

A. Pengenalan PDB dan Model Aplikatif

Persamaan Diferensial Biasa (PDB) atau Ordinary Differential

Equation (ODE) merupakan salah satu bentuk persamaan matematika

yang melibatkan turunan suatu fungsi terhadap satu variabel bebas.

Dalam bentuk paling umum, PDB menyatakan hubungan antara fungsi

tak diketahui dan turunannya, yang sangat berguna untuk memodelkan

154 Pemrograman dan Komputasi Numerik

fenomena dinamis dalam berbagai disiplin ilmu. Tidak hanya terbatas

pada fisika dan teknik, PDB juga banyak diaplikasikan dalam biologi,

ekonomi, ekologi, kedokteran, hingga ilmu sosial.

Menurut Zill dan Wright (2017) dalam bukunya "Differential

Equations with Boundary-Value Problems", Persamaan Diferensial

Biasa adalah persamaan yang mengandung turunan dari suatu fungsi

dengan satu variabel bebas, berbeda dengan Partial Differential

Equations (PDE) yang melibatkan turunan parsial dari fungsi beberapa

variabel. Secara umum, PDB dapat dituliskan dalam bentuk:

atau dalam bentuk eksplisit sebagai fungsi dari turunan:

Klasifikasi PDB (Persamaan Diferensial Biasa) didasarkan pada

beberapa kategori:

• Orde: Derajat tertinggi dari turunan yang terdapat dalam persamaan.

• Linearitas: Suatu persamaan dikatakan linear jika tidak ada

perkalian antara fungsi tak diketahui dan turunannya.

• Homogenitas: Suatu persamaan dikatakan homogen jika semua suku

bergantung pada fungsi dan turunannya, tanpa adanya konstanta

bebas.

1. Fisika dan Teknik

Pada bidang fisika dan teknik, Persamaan Diferensial Biasa

(PDB) merupakan alat fundamental untuk memodelkan berbagai

fenomena dinamis yang melibatkan perubahan terhadap waktu atau

ruang dalam sistem fisis. Salah satu contoh paling mendasar adalah

dalam mekanika klasik, di mana hukum kedua Newton yang berbunyi F

= ma dapat diubah menjadi bentuk PDB orde dua:

Dengan menyusun gaya 𝐹 sebagai fungsi dari posisi, kecepatan,

dan waktu, kita dapat memodelkan gerak partikel secara lengkap.

Misalnya, dalam sistem pegas-massa tanpa redaman, gaya pemulih

𝐹=−𝑘𝑥 menghasilkan persamaan:

 155 Buku Referensi

yang merupakan PDB linier homogen orde dua dan memiliki solusi

osilasi harmonik.

Pada teknik elektro, PDB juga berperan penting. Sebagai contoh,

analisis rangkaian RLC (Resistor, Induktor, Kapasitor) menghasilkan

persamaan diferensial yang menggambarkan tegangan atau arus dalam

waktu. Untuk rangkaian seri, hukum Kirchoff menyatakan bahwa jumlah

gaya gerak listrik sama dengan jumlah tegangan di tiap komponen,

sehingga diperoleh:

yang merupakan PDB orde dua dengan koefisien konstan, di

mana 𝑞 dalah muatan, dan 𝐸(𝑡) adalah tegangan sumber.

Pada teknik mesin, getaran mekanis pada struktur seperti balok

atau jembatan juga dimodelkan dengan PDB. Bahkan dalam sistem

termal dan fluida, meskipun umumnya menggunakan persamaan

diferensial parsial (PDE), pendekatan PDB sering digunakan untuk

penyederhanaan model sistem dinamis seperti lumped parameter

systems. Keseluruhan ini menunjukkan bahwa PDB adalah dasar dari

analisis sistem teknik dan fisika, serta menjadi penghubung antara teori

matematis dan implementasi teknologi nyata.

2. Biologi dan Kedokteran

Pada bidang biologi dan kedokteran, Persamaan Diferensial

Biasa (PDB) berperan penting dalam memodelkan dinamika sistem

biologis yang kompleks dan sering kali tidak dapat diamati secara

langsung. Salah satu aplikasi paling umum adalah dalam model

pertumbuhan populasi, di mana perubahan jumlah individu dalam suatu

populasi dari waktu ke waktu dapat dijelaskan menggunakan PDB.

Model Malthus, yang merupakan model pertumbuhan eksponensial

paling sederhana, dinyatakan sebagai
𝑑𝑃

𝑑𝑡
= 𝑟𝑃 dengan P sebagai populasi

dan r sebagai laju pertumbuhan. Namun, model ini tidak realistis untuk

jangka panjang karena tidak mempertimbangkan keterbatasan sumber

daya. Oleh karena itu, diperkenalkan model logistik oleh Verhulst:

156 Pemrograman dan Komputasi Numerik

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝐾
)

di mana K adalah kapasitas dukung lingkungan. Model ini banyak

digunakan dalam studi ekologi, mikrobiologi, hingga pertumbuhan

tumor.

Di bidang kedokteran dan epidemiologi, PDB menjadi dasar

dalam pengembangan model penyebaran penyakit. Salah satu model

paling terkenal adalah SIR model (Susceptible-Infected-Recovered),

yang terdiri dari sistem PDB yang menggambarkan interaksi antara

populasi yang rentan, terinfeksi, dan sembuh:

Model ini sangat penting dalam memprediksi dinamika wabah,

merancang intervensi seperti vaksinasi, dan menentukan kebijakan

kesehatan masyarakat.

PDB juga digunakan dalam farmakokinetika, untuk memodelkan

penyerapan, distribusi, dan eliminasi obat dalam tubuh. Misalnya,

perubahan konsentrasi obat dalam plasma darah sering digambarkan

dengan model eksponensial sederhana berdasarkan hukum laju pertama.

Secara keseluruhan, PDB memberikan kerangka matematis yang sangat

kuat untuk menjelaskan, memprediksi, dan mengendalikan fenomena

biologis dan medis yang kompleks secara kuantitatif.

3. Ekonomi dan Keuangan

Pada ekonomi dan keuangan, Persamaan Diferensial Biasa

(PDB) digunakan secara luas untuk memodelkan dinamika sistem

ekonomi yang berkembang terhadap waktu, seperti akumulasi modal,

konsumsi, suku bunga, inflasi, hingga harga aset. Salah satu contoh

paling terkenal adalah model pertumbuhan Solow, yang menjelaskan

bagaimana modal per pekerja berubah seiring waktu:

 157 Buku Referensi

di mana K adalah modal per pekerja, sss adalah tingkat tabungan,

f(k)f(k)f(k) adalah fungsi produksi, δ\deltaδ adalah tingkat depresiasi

modal, dan nnn adalah laju pertumbuhan penduduk. Model ini

memberikan wawasan penting tentang bagaimana negara-negara dapat

tumbuh secara berkelanjutan dan mengapa ada perbedaan pendapatan

antarnegara.

Pada teori konsumsi antar waktu, PDB digunakan untuk

menggambarkan bagaimana individu merencanakan konsumsi dan

tabungan sepanjang hidupnya berdasarkan preferensi waktu dan suku

bunga. Model Ramsey misalnya, menggunakan PDB untuk merumuskan

dinamika konsumsi optimal dan kapitalisasi dalam jangka panjang.

Pada keuangan matematika, PDB menjadi dasar dalam

penentuan harga opsi dan derivatif. Model Black-Scholes, meskipun

merupakan persamaan diferensial parsial, sering kali direduksi ke bentuk

PDB untuk derivatif sederhana. Selain itu, perubahan nilai portofolio

atau obligasi jangka panjang dapat dimodelkan dengan PDB berbasis

suku bunga acuan dan risiko. Lebih lanjut, dalam analisis makroekonomi

dinamis seperti Dynamic Stochastic General Equilibrium (DSGE), PDB

membentuk kerangka utama untuk menggambarkan ekspektasi agen

ekonomi dan interaksi antar variabel ekonomi. Keseluruhannya, PDB

memberikan alat kuantitatif penting untuk memodelkan dan

memprediksi perilaku ekonomi dalam jangka pendek dan panjang secara

sistematis.

4. Kimia dan Reaksi Biokimia

Pada kimia dan reaksi biokimia, Persamaan Diferensial Biasa

(PDB) merupakan alat penting untuk memodelkan laju perubahan

konsentrasi zat kimia dalam suatu reaksi seiring waktu. PDB digunakan

dalam kinetika kimia untuk menggambarkan bagaimana konsentrasi

reaktan dan produk berubah berdasarkan mekanisme reaksi dan hukum

laju. Sebagai contoh, untuk reaksi berorde satu seperti peluruhan zat A:

dengan laju reaksi v = −k[A], maka perubahan konsentrasi A

terhadap waktu dinyatakan dalam bentuk PDB:

158 Pemrograman dan Komputasi Numerik

yang memiliki solusi eksponensial [A](t)=[A]0e−kt, menggambarkan

penurunan konsentrasi secara bertahap. Model ini penting dalam studi

reaksi kimia sederhana, termasuk peluruhan radioaktif dan reaksi

pembakaran.

Pada sistem reaksi berantai atau reaksi simultan, seperti dalam

sintesis senyawa kompleks atau degradasi senyawa kimia, dibutuhkan

sistem PDB untuk melacak perubahan konsentrasi beberapa spesies

secara bersamaan. Contohnya adalah reaksi A→B→C, yang

menghasilkan dua PDB terhubung secara simultan.

Lebih kompleks lagi, dalam reaksi enzimatik dan biokimia, PDB

digunakan untuk menggambarkan dinamika sistem biologis seperti

model Michaelis-Menten, yang menyederhanakan interaksi antara enzim

dan substrat:

di mana [𝑆] adalah konsentrasi substrat, [𝑃] produk, 𝑉max laju

maksimum, dan 𝐾𝑚 konstanta Michaelis. PDB semacam ini banyak

diterapkan dalam farmakologi, metabolisme, dan sintesis protein.

5. Lingkungan dan Ekologi

Pada lingkungan dan ekologi, Persamaan Diferensial Biasa

(PDB) merupakan alat analitis penting untuk memodelkan dinamika

ekosistem, perubahan lingkungan, serta interaksi antara komponen biotik

dan abiotik. Salah satu penerapan utama PDB adalah dalam model

transportasi dan peluruhan polutan, misalnya untuk menggambarkan

konsentrasi zat pencemar dalam air atau udara. Jika suatu sungai

menerima limbah dari sumber tertentu, maka perubahan konsentrasi

polutan C(t) dapat dimodelkan sebagai:

di mana k adalah konstanta peluruhan alami dan S(t) adalah laju

suplai polutan. Model ini sangat relevan untuk mengkaji efektivitas

kebijakan pengendalian pencemaran dan memprediksi dampak

lingkungan dalam jangka waktu tertentu.

Pada ekologi populasi, PDB digunakan untuk memodelkan

dinamika predator-mangsa, kompetisi antarspesies, dan keseimbangan

 159 Buku Referensi

ekosistem. Model klasik Lotka-Volterra menggambarkan interaksi dua

spesies:

di mana N adalah populasi mangsa, P populasi predator, r laju

pertumbuhan mangsa, a laju konsumsi, b efisiensi konversi energi, dan

𝑚 mortalitas predator. Model ini memberikan wawasan tentang fluktuasi

populasi dan titik-titik kestabilan ekosistem.

PDB juga digunakan dalam model perubahan iklim, seperti

dalam menghitung penyerapan karbon oleh hutan, akumulasi gas rumah

kaca di atmosfer, serta respons termal laut dan daratan. Model ini

mendukung penelitian lingkungan jangka panjang dan pengambilan

kebijakan berbasis sains. Dengan demikian, PDB menjadi fondasi

penting dalam upaya memahami dan mengelola perubahan lingkungan

serta menjaga keberlanjutan sumber daya alam melalui pendekatan

kuantitatif dan prediktif.

B. Metode Euler dan Runge-Kutta Orde 4

Menurut Zill dan Wright (2017) dalam Differential Equations

with Boundary-Value Problems, banyak persoalan dalam fisika, teknik,

dan ilmu terapan yang dinyatakan dalam bentuk Persamaan Diferensial

Biasa (PDB) tidak dapat diselesaikan secara analitik karena

kompleksitas bentuknya. Oleh karena itu, pendekatan numerik menjadi

penting untuk memperoleh solusi pendekatan. Dua metode numerik

paling dikenal dan banyak digunakan adalah Metode Euler dan Runge-

Kutta Orde 4 (RK4). Keduanya digunakan untuk menyelesaikan masalah

nilai awal (initial value problems/IVP), yaitu PDB yang memiliki nilai

fungsi diketahui pada titik awal.

Secara umum, masalah nilai awal untuk PDB orde pertama

dinyatakan sebagai:

160 Pemrograman dan Komputasi Numerik

di mana f(x,y) adalah fungsi yang diketahui, dan y(x) adalah fungsi tak

diketahui yang akan diaproksimasi secara numerik.

1. Metode Euler

Pada lingkungan dan ekologi, Persamaan Diferensial Biasa

(PDB) berperan krusial dalam membentuk model matematis yang

menjelaskan dinamika sistem alam secara kuantitatif dan prediktif. Alam

merupakan sistem kompleks yang mengalami perubahan seiring waktu,

mulai dari populasi makhluk hidup, penyebaran polutan, hingga

perubahan iklim dan semua dinamika ini dapat dirumuskan dalam bentuk

PDB untuk memungkinkan analisis sistematis serta proyeksi ke depan.

Salah satu contoh paling mendasar adalah dalam model pencemaran

lingkungan, khususnya dalam air dan udara. Misalnya, konsentrasi

polutan kimia dalam sungai atau danau dapat dimodelkan dengan PDB

berbentuk:

di mana C(t) adalah konsentrasi polutan pada waktu t, 𝑘 adalah

konstanta peluruhan atau degradasi alami, dan S(t) adalah laju input dari

sumber pencemar seperti pabrik atau limbah rumah tangga. Dengan

model ini, para peneliti dapat memperkirakan berapa lama waktu yang

dibutuhkan untuk air kembali ke kualitas normal, serta mengevaluasi

skenario intervensi seperti pengurangan sumber pencemar atau

pengolahan limbah.

Pada konteks ekologi, PDB digunakan untuk menggambarkan

pertumbuhan dan interaksi antar populasi. Model pertumbuhan

eksponensial digunakan untuk menjelaskan dinamika populasi tanpa

hambatan, tetapi dalam kenyataannya sumber daya terbatas, sehingga

model logistik yang memperhitungkan kapasitas dukung lingkungan (𝐾)

menjadi lebih realistis:

Model ini menggambarkan bagaimana populasi tumbuh pesat

pada awalnya namun melambat ketika mendekati batas sumber daya

lingkungan. Dalam ekosistem yang lebih kompleks, interaksi antara

 161 Buku Referensi

spesies, seperti predator dan mangsa, dapat dimodelkan menggunakan

model Lotka-Volterra:

dengan N sebagai populasi mangsa, P sebagai predator, dan parameter

𝑟,𝑎,𝑏,𝑚 mewakili laju reproduksi dan interaksi antar spesies. Model ini

memungkinkan pemahaman fluktuasi populasi dalam jangka panjang

dan penentuan kondisi stabil atau bencana ekologis.

PDB digunakan dalam perubahan iklim dan siklus biogeokimia.

Misalnya, penyerapan karbon oleh tumbuhan dan pelepasannya kembali

ke atmosfer dapat dimodelkan untuk mengkaji keseimbangan karbon

global. PDB juga digunakan untuk mensimulasikan dinamika suhu bumi

berdasarkan masukan energi matahari, emisi gas rumah kaca, dan umpan

balik albedo permukaan. Selain itu, dalam studi konservasi, model

berbasis PDB digunakan untuk mengevaluasi risiko kepunahan spesies

langka dan menentukan kebijakan pengelolaan habitat atau perlindungan

hutan.

Penerapan PDB dalam lingkungan dan ekologi tidak hanya

membantu dalam memahami fenomena kompleks secara teoritis, tetapi

juga memberikan alat praktis untuk pengambilan keputusan berbasis

data. Model numerik yang dibangun dari PDB dapat dimasukkan ke

dalam simulasi komputer untuk memprediksi dampak perubahan iklim,

efek deforestasi, atau keberhasilan program restorasi lingkungan.

Dengan demikian, PDB merupakan fondasi penting bagi sains

lingkungan modern, yang menggabungkan matematika, teknologi, dan

kebijakan untuk mendukung pengelolaan alam yang berkelanjutan dan

adaptif.

Gunakan Metode Euler untuk menghitung nilai pendekatan dari

y pada x=0,1dan x=0,2 dengan langkah h=0,1.

 Jawaban:

162 Pemrograman dan Komputasi Numerik

Maka,

Maka,

2. Metode Runge-Kutta Orde 4 (RK4)

Metode Runge-Kutta Orde 4 (RK4) adalah salah satu metode

numerik paling populer dan andal dalam menyelesaikan Persamaan

Diferensial Biasa (PDB), khususnya pada masalah nilai awal. Metode ini

merupakan bagian dari keluarga Runge-Kutta yang dikembangkan oleh

matematikawan Jerman, Carl Runge dan Martin Wilhelm Kutta, pada

awal abad ke-20. Dibandingkan dengan metode numerik dasar seperti

metode Euler, RK4 menawarkan akurasi jauh lebih tinggi tanpa

menambah kerumitan algoritma secara signifikan, sehingga sangat

cocok digunakan dalam pemrograman komputasi sains dan teknik.

Secara prinsip, RK4 bekerja dengan menghitung estimasi rata-

rata kemiringan fungsi f(x,y) di sekitar titik xn, lalu menggunakannya

untuk memperkirakan nilai yn+1 di titik xn+1=xn+h, dengan h sebagai

panjang langkah. Dalam setiap iterasi, RK4 menghitung empat nilai

gradien (kemiringan):

 163 Buku Referensi

yang merupakan rata-rata tertimbang dari keempat kemiringan tersebut.

Strategi ini memberikan galat lokal orde lima dan galat global orde

empat, yang berarti tingkat kesalahan menurun secara signifikan dengan

penambahan jumlah langkah yang lebih halus (nilai h lebih kecil).

Kelebihan RK4 terletak pada kombinasi antara akurasi dan

efisiensi. Dalam praktiknya, RK4 sangat stabil dan mampu menangani

berbagai jenis PDB termasuk yang non-linear, tanpa memerlukan

penurunan turunan tingkat lebih tinggi atau penyesuaian khusus. Oleh

karena itu, metode ini banyak diterapkan dalam berbagai bidang:

simulasi gerak partikel dalam fisika, dinamika populasi dalam ekologi,

perhitungan orbit dalam astronomi, serta model ekonomi dan keuangan.

Metode ini juga memiliki batasan. Karena sifatnya eksplisit, RK4

tidak cocok untuk PDB yang stiff, yaitu sistem yang memiliki laju

perubahan sangat berbeda dalam satu sistem persamaan, di mana metode

implisit seperti Backward Euler atau metode Gear lebih disarankan.

Selain itu, meskipun RK4 cukup akurat, ia memerlukan empat evaluasi

fungsi per langkah, sehingga bisa memakan waktu komputasi lebih lama

dibanding metode eksplisit orde rendah dalam sistem berskala besar.

C. Sistem PDB dan Solusi Numerik

Menurut Zill dan Wright (2017) dalam buku Differential

Equations with Boundary-Value Problems, Persamaan Diferensial Biasa

(PDB) adalah persamaan yang menghubungkan suatu fungsi dengan satu

variabel bebas dan turunannya. Dalam banyak kasus nyata seperti

dinamika sistem fisika, interaksi biologi populasi, atau ekonomi makro

masalah yang muncul tidak hanya terdiri dari satu PDB, melainkan

beberapa persamaan yang saling berkaitan, dikenal sebagai sistem PDB

(system of ordinary differential equations). Sistem ini sangat penting

karena hampir semua sistem dinamis kompleks di dunia nyata

melibatkan beberapa variabel yang berubah secara simultan dan saling

memengaruhi. Sistem PDB adalah himpunan dua atau lebih PDB yang

memiliki keterkaitan satu sama lain dan harus diselesaikan secara

bersamaan. Secara umum, sistem PDB orde pertama dapat dituliskan

sebagai:

164 Pemrograman dan Komputasi Numerik

dengan kondisi awal yi (t0)=yi,0. Sistem seperti ini banyak ditemukan

dalam bidang teknik, epidemiologi, dan astrofisika. Salah satu contoh

klasik adalah model SIR dalam epidemiologi, yang menggambarkan

dinamika tiga populasi: rentan (S), terinfeksi (I), dan pulih (R), sebagai

berikut:

1. Penyelesaian Analitik dan Keterbatasannya

Penyelesaian analitik dalam konteks Persamaan Diferensial

Biasa (PDB) merujuk pada proses memperoleh solusi eksplisit dari suatu

persamaan diferensial dalam bentuk fungsi yang memenuhi persamaan

tersebut dan kondisi awal yang diberikan. Menurut Zill dan Wright

(2017), penyelesaian analitik idealnya memberikan representasi eksak

dari fungsi tak diketahui, biasanya dalam bentuk kombinasi fungsi

aljabar, eksponensial, trigonometri, atau logaritmik. Dalam kasus

sederhana seperti PDB linear orde satu, misalnya:

𝑑𝑦

𝑑𝑥
= 𝑘𝑦

solusi analitiknya mudah diperoleh:

y(x)=Cekx

dengan C sebagai konstanta integrasi yang ditentukan dari kondisi awal.

Penyelesaian analitik semacam ini sangat berguna karena memberikan

wawasan langsung mengenai perilaku sistem misalnya, apakah sistem

 165 Buku Referensi

bersifat stabil, apakah solusi akan tumbuh tanpa batas, atau apakah akan

konvergen menuju keadaan tunak.

Seiring bertambahnya kompleksitas sistem, keterbatasan

pendekatan analitik menjadi sangat nyata. Sebagian besar PDB yang

muncul dari model dunia nyata misalnya sistem non-linear, sistem

dengan banyak variabel, atau dengan fungsi koefisien yang kompleks

tidak dapat diselesaikan secara analitik. Hal ini disebabkan oleh

ketidakmampuan metode aljabar konvensional untuk menangani struktur

non-linear atau bentuk turunan yang saling terkait secara kompleks.

Sebagai contoh, dalam model predasi Lotka-Volterra atau model

penyebaran penyakit SIR, meskipun bentuk matematisnya jelas, solusi

eksplisit dalam bentuk tertutup (closed-form solution) jarang tersedia.

Dalam banyak kasus, bahkan jika solusi analitik ada secara teoritis,

bentuknya terlalu rumit atau melibatkan fungsi-fungsi khusus (seperti

fungsi Bessel atau fungsi gamma) yang tidak praktis digunakan dalam

perhitungan teknis atau interpretasi.

Penyelesaian analitik biasanya hanya berlaku dalam domain

terbatas dan sangat sensitif terhadap kondisi awal. Artinya, sedikit

perubahan pada parameter atau kondisi awal dapat mengubah bentuk

solusi secara signifikan. Ini menjadi kendala besar ketika menangani

sistem parameterisasi atau simulasi skenario dalam aplikasi dunia nyata

seperti dinamika fluida, ekosistem kompleks, atau model ekonomi

dinamis, yang sering kali memerlukan evaluasi berulang dengan variasi

parameter.

Keterbatasan lain dari pendekatan analitik adalah

ketidakfleksibelannya dalam mengakomodasi data aktual atau input

tidak kontinu. Dalam kenyataannya, banyak sistem bekerja dengan data

pengamatan atau sinyal tak kontinu yang tidak dapat dicocokkan secara

langsung dengan fungsi analitik. Oleh karena itu, penggunaan metode

numerik menjadi pendekatan dominan dalam praktik modern, karena

mampu mengakomodasi struktur sistem yang kompleks, kondisi batas

arbitrer, dan ketidakteraturan data yang khas dalam pemodelan dunia

nyata.

Dengan demikian, meskipun penyelesaian analitik memiliki

keunggulan dalam hal ketepatan dan kejelasan matematis,

keterbatasannya dalam fleksibilitas, skalabilitas, dan penerapan praktis

menjadikannya kurang memadai untuk banyak aplikasi modern. Di

sinilah pendekatan numerik, seperti metode Euler atau Runge-Kutta,

166 Pemrograman dan Komputasi Numerik

mengambil peran penting dalam menghasilkan solusi pendekatan yang

cukup akurat dan dapat diimplementasikan secara luas melalui perangkat

lunak dan simulasi komputer.

2. Solusi Numerik untuk Sistem PDB

Solusi numerik untuk sistem Persamaan Diferensial Biasa (PDB)

merupakan pendekatan komputasional yang sangat penting dalam

menyelesaikan persoalan dinamis yang tidak dapat ditangani secara

analitik. Sistem PDB terdiri dari dua atau lebih persamaan diferensial

yang saling terkait, menggambarkan interaksi antar variabel yang

berubah terhadap satu variabel bebas, biasanya waktu. Dalam dunia

nyata, sistem seperti ini banyak ditemukan, misalnya dalam model

penyebaran penyakit (model SIR), dinamika populasi (model Lotka-

Volterra), interaksi kimia multikomponen, sistem mekanis multibenda,

dan pemodelan lingkungan. Karena sebagian besar sistem ini bersifat

non-linear dan tidak memiliki solusi eksplisit, maka pendekatan numerik

menjadi metode yang paling umum dan efektif.

Menurut Burden dan Faires (2015), metode numerik bekerja

dengan cara mendiskretisasi domain waktu menjadi langkah-langkah

kecil, lalu memperkirakan nilai variabel di setiap langkah berdasarkan

informasi pada langkah sebelumnya. Untuk sistem PDB, metode seperti

Euler dan Runge-Kutta Orde 4 (RK4) dapat diperluas secara langsung.

Dalam metode Euler, misalnya, setiap persamaan dalam sistem diupdate

secara simultan pada setiap langkah waktu menggunakan formula

𝑦𝑛+1=𝑦𝑛+ℎ𝑓(𝑥𝑛,𝑦𝑛). Meskipun metode ini sederhana, akurasinya rendah

dan rentan terhadap instabilitas, terutama untuk sistem yang kompleks

atau "stiff". Sebagai alternatif, RK4 menawarkan peningkatan akurasi

yang signifikan dengan menghitung rata-rata gradien dari beberapa titik

evaluasi di dalam interval waktu yang sama. Untuk sistem PDB, RK4

menghitung empat vektor gradien untuk semua komponen sistem, lalu

menggabungkannya menjadi solusi pendekatan di langkah berikutnya.

Metode ini sangat populer karena memberikan keseimbangan antara

presisi dan efisiensi komputasi.

Solusi numerik sistem PDB juga sangat bergantung pada

pemilihan ukuran langkah (step size). Langkah yang terlalu besar dapat

menghasilkan error yang besar dan solusi tidak stabil, sedangkan langkah

yang terlalu kecil memperlambat komputasi dan meningkatkan

 167 Buku Referensi

kebutuhan memori. Oleh karena itu, dalam praktiknya sering digunakan

metode adaptif seperti Runge-Kutta-Fehlberg atau solver otomatis

seperti ode45 di MATLAB dan solve_ivp di Python, yang dapat

menyesuaikan ukuran langkah secara otomatis untuk menjaga kestabilan

dan akurasi.

Pada sistem yang sangat kompleks atau stiff, metode eksplisit

seperti RK4 tidak lagi cukup. Sebagai solusinya, digunakan metode

implisit seperti Backward Euler atau metode BDF (Backward

Differentiation Formula) yang memiliki stabilitas numerik lebih baik.

Metode ini biasanya memerlukan penyelesaian sistem aljabar non-linear

di setiap langkah waktu, tetapi mampu menangani dinamika cepat tanpa

menyebabkan osilasi numerik yang tidak diinginkan.

Solusi numerik sistem PDB telah menjadi tulang punggung

berbagai aplikasi ilmiah dan rekayasa modern. Ia memungkinkan

simulasi jangka panjang, analisis sensitivitas parameter, dan optimisasi

proses. Keunggulan metode numerik terletak pada fleksibilitasnya dalam

menangani sistem non-linear, batasan waktu arbitrer, dan masukan

berbasis data, menjadikannya alat yang sangat esensial dalam pemodelan

kuantitatif berbasis komputer.

3. Implementasi Komputasi

Implementasi komputasi dalam penyelesaian Persamaan

Diferensial Biasa (PDB) merupakan langkah krusial dalam menerapkan

metode numerik secara praktis untuk berbagai kebutuhan pemodelan

ilmiah dan rekayasa. Karena sebagian besar PDB tidak memiliki solusi

analitik atau memiliki bentuk solusi yang terlalu kompleks untuk

dievaluasi secara langsung, pendekatan numerik berbasis komputasi

menjadi solusi utama untuk memperoleh estimasi solusi secara efisien

dan akurat. Proses ini melibatkan penerjemahan metode numerik seperti

Euler, Runge-Kutta, atau metode implisit ke dalam bentuk algoritma

yang dapat dijalankan oleh komputer, serta mengoptimalkan kecepatan

dan stabilitas perhitungan dalam berbagai platform pemrograman.

Bahasa pemrograman seperti Python, MATLAB, R, Julia, dan

C++ merupakan alat utama dalam implementasi komputasi. Python,

misalnya, sangat populer karena memiliki pustaka numerik yang kaya

seperti NumPy, SciPy, dan Matplotlib, yang memudahkan proses

integrasi numerik, manipulasi data, dan visualisasi hasil. Fungsi odeint

dari pustaka scipy.integrate digunakan untuk menyelesaikan sistem PDB

168 Pemrograman dan Komputasi Numerik

berbasis metode LSODA, yang secara otomatis memilih antara metode

stiff dan non-stiff. Untuk penggunaan lanjutan, solve_ivp menawarkan

kontrol yang lebih detail terhadap metode integrasi (misalnya RK45,

RK23, BDF), toleransi error, dan pencatatan hasil.

Contoh implementasi sederhana dari model SIR dalam Python

menunjukkan bagaimana PDB diubah menjadi fungsi Python, kemudian

diselesaikan menggunakan odeint dalam beberapa baris kode. Demikian

pula, MATLAB menyediakan fungsi ode45, ode23, dan ode15s untuk

berbagai jenis sistem, dengan dokumentasi luas dan visualisasi

terintegrasi. Keunggulan MATLAB terletak pada antarmuka numerik

yang stabil dan kuat, serta kemudahan dalam menyusun model simulasi

dinamis melalui Simulink untuk sistem kontrol atau mekanika.

Implementasi komputasi juga mencakup visualisasi hasil,

validasi solusi, dan efisiensi pemrosesan. Visualisasi hasil, seperti

plotting grafik 𝑦(𝑡) terhadap waktu, sangat membantu dalam memahami

perilaku sistem dinamis, mendeteksi stabilitas, osilasi, atau kondisi

tunak. Validasi hasil dapat dilakukan dengan membandingkan solusi

numerik terhadap solusi analitik (jika tersedia), atau menggunakan

pengujian konsistensi model dan sensitivitas terhadap perubahan

parameter. Sementara itu, efisiensi pemrosesan dapat ditingkatkan

melalui optimasi kode, pemilihan metode integrasi adaptif, atau

penggunaan paralelisasi untuk sistem berdimensi tinggi.

Implementasi komputasi juga sangat penting dalam konteks

simulasi jangka panjang dan sistem real-time, seperti pemodelan

epidemiologi untuk kebijakan kesehatan, sistem kontrol otomatis pada

robotika, atau dinamika struktural dalam teknik sipil. Kemampuan untuk

mengintegrasikan solusi PDB dengan antarmuka pengguna, database,

dan sistem pemantauan menjadikan komputasi numerik tidak hanya

sebagai alat teoritis, tetapi juga bagian integral dari pengambilan

keputusan berbasis sains dan teknologi. Dengan demikian, penguasaan

implementasi komputasi menjadi keterampilan kunci dalam era

pemodelan numerik modern.

 169 Buku Referensi

D. Simulasi Dinamis dalam Sistem Teknik dan Biologi

Menurut Ogata (2010) dalam Modern Control Engineering,

simulasi dinamis adalah proses untuk merepresentasikan perilaku sistem

fisik dalam bentuk model matematika yang disimulasikan terhadap

waktu menggunakan komputer. Dalam konteks ini, sistem dinamis

berarti sistem yang perilakunya berubah terhadap waktu dan dipengaruhi

oleh kondisi awal serta input tertentu. Baik di bidang teknik maupun

biologi, simulasi dinamis berbasis persamaan diferensial biasa (PDB)

menjadi pendekatan utama untuk memahami dan memprediksi perilaku

sistem kompleks yang tidak bisa dianalisis secara statis atau linear.

170 Pemrograman dan Komputasi Numerik

1. Simulasi Dinamis dalam Sistem Teknik

Simulasi dinamis dalam sistem teknik merupakan pendekatan

komputasi yang digunakan untuk memodelkan dan menganalisis

perilaku sistem teknik yang berubah terhadap waktu. Menurut Ogata

(2010) dalam Modern Control Engineering, simulasi dinamis

memungkinkan insinyur untuk merepresentasikan sistem fisis seperti

mekanika, elektrikal, termal, dan sistem kendali dalam bentuk

persamaan diferensial biasa (PDB) yang kemudian diselesaikan secara

numerik menggunakan perangkat lunak komputasi. Tujuan utama dari

simulasi ini adalah untuk memahami respons sistem terhadap masukan,

mengevaluasi stabilitas, efisiensi, dan kinerja, serta menguji desain

sebelum direalisasikan dalam bentuk fisik. Dalam era teknik modern,

simulasi dinamis telah menjadi bagian integral dari proses perancangan

dan pengujian sistem teknik di berbagai sektor industri.

Pada rekayasa mekanik, sistem dinamis muncul dalam bentuk

gerakan benda, osilasi, getaran, dan interaksi gaya. Salah satu contoh

klasik adalah sistem massa-pegas-redaman, yang dirumuskan sebagai

PDB orde dua:

dengan m sebagai massa, C koefisien redaman, K konstanta pegas, dan

F(t) sebagai gaya luar. Simulasi dinamis memungkinkan insinyur untuk

mengevaluasi bagaimana sistem merespon terhadap impuls, osilasi, atau

gangguan. Dalam analisis struktur dan kendaraan, simulasi ini digunakan

untuk menilai ketahanan terhadap getaran, prediksi resonansi, dan

pengujian sistem suspensi. Dengan pemodelan yang akurat, pengujian

fisik yang mahal dapat diminimalkan, serta peningkatan desain dapat

dilakukan lebih efisien.

Di bidang teknik elektro dan kontrol, simulasi dinamis digunakan

untuk menganalisis sistem listrik seperti rangkaian RLC, motor listrik,

dan sistem kendali tertutup. Misalnya, rangkaian RLC seri dijelaskan

oleh PDB:

di mana q adalah muatan, dan E(t) tegangan masukan. Dalam konteks

sistem kendali, persamaan tersebut digabungkan dengan elemen kendali

 171 Buku Referensi

seperti pengendali PID (Proportional-Integral-Derivative) untuk

mengatur keluaran agar mengikuti masukan referensi. Simulasi

digunakan untuk menganalisis respon transien (waktu naik, waktu turun,

overshoot), respon mantap, serta kestabilan sistem. Software seperti

MATLAB/Simulink sangat populer di kalangan insinyur kontrol karena

menyediakan lingkungan visual dan numerik untuk memodelkan sistem

dinamis, melakukan tuning parameter, serta melakukan simulasi real-

time dan hardware-in-the-loop (HIL).

Simulasi dinamis juga penting dalam sistem termal dan energi,

termasuk analisis perpindahan panas, efisiensi sistem pendinginan, dan

desain pembangkit listrik. Contohnya, pendinginan sistem elektronik

dapat dimodelkan dengan PDB:

yang menggambarkan perubahan suhu terhadap waktu berdasarkan

perpindahan panas ke lingkungan dan sumber panas internal. Dengan

simulasi, insinyur dapat mengevaluasi bagaimana suhu sistem bereaksi

terhadap perubahan beban, ventilasi, atau desain heatsink. Dalam

konteks yang lebih besar, simulasi termal digunakan dalam desain sistem

HVAC (Heating, Ventilation, and Air Conditioning) untuk bangunan

hemat energi dan efisien secara lingkungan.

Pada bidang robotika dan mekatronika, simulasi dinamis sangat

penting untuk mengembangkan kontrol gerak robot, lengan manipulator,

atau kendaraan otomatis. Sistem ini umumnya memiliki banyak derajat

kebebasan dan dinamika non-linier yang kompleks. PDB yang mewakili

sistem robot sering kali mencakup interaksi gaya, torsi, percepatan, dan

kontrol feedback. Dengan simulasi dinamis, desainer dapat

mengevaluasi jalur lintasan, konsumsi energi, dan respons kontrol

terhadap perubahan lingkungan, bahkan sebelum perangkat keras robot

dibangun. Hal ini mempercepat iterasi desain dan mengurangi kesalahan

saat implementasi fisik.

Simulasi dinamis dalam teknik sipil digunakan untuk

menganalisis respons struktur terhadap beban dinamis seperti gempa

bumi, angin, atau kendaraan yang melintas. Model struktur bangunan

atau jembatan dapat direpresentasikan sebagai sistem massa-terdistribusi

dan diredam, yang kemudian dianalisis menggunakan metode numerik

172 Pemrograman dan Komputasi Numerik

berbasis PDB. Simulasi ini sangat penting dalam desain bangunan tahan

gempa dan infrastruktur yang aman terhadap gangguan lingkungan.

Secara implementatif, simulasi dinamis dilakukan melalui

perangkat lunak seperti MATLAB/Simulink, ANSYS, OpenModelica,

atau platform pemrograman seperti Python yang menggunakan pustaka

scipy.integrate untuk menyelesaikan sistem PDB. Pendekatan numerik

seperti Runge-Kutta orde 4 (RK4) atau solver adaptif seperti ode45 dan

solve_ivp digunakan untuk menyelesaikan sistem secara akurat dengan

kontrol terhadap galat numerik dan kestabilan solusi. Visualisasi hasil

simulasi berupa grafik waktu terhadap posisi, kecepatan, suhu, atau

tegangan memungkinkan insinyur mengevaluasi performa sistem dan

melakukan optimasi desain.

Dengan demikian, simulasi dinamis dalam sistem teknik tidak

hanya memperkuat pemahaman teoritis tentang perilaku sistem, tetapi

juga menjadi alat praktis untuk eksperimen virtual, pengujian desain, dan

validasi sistem. Ia menggabungkan teori matematika, algoritma numerik,

dan implementasi komputasi dalam satu kerangka kerja yang sangat

penting bagi perkembangan rekayasa modern. Seiring dengan

berkembangnya teknologi komputasi dan sensor cerdas, simulasi

dinamis akan semakin terintegrasi dalam proses rekayasa canggih seperti

sistem kendali adaptif, perancangan berbasis model (model-based

design), dan digital twin.

2. Simulasi Dinamis dalam Sistem Biologi

Simulasi dinamis dalam sistem biologi merupakan pendekatan

matematis dan komputasional yang digunakan untuk memahami dan

memprediksi perilaku sistem biologis yang kompleks, yang berubah

seiring waktu. Sistem-sistem ini mencakup berbagai skala, mulai dari

dinamika molekuler di dalam sel hingga interaksi antarpopulasi dalam

ekosistem. Menurut Murray (2002), simulasi dinamis pada dasarnya

dibangun di atas persamaan diferensial biasa (PDB), yang digunakan

untuk menggambarkan laju perubahan variabel-variabel biologis seperti

populasi, konsentrasi molekul, atau penyebaran penyakit terhadap

waktu. Dengan simulasi ini, para ilmuwan dapat melakukan eksperimen

virtual yang mendekati realitas biologis, menguji hipotesis, dan

merancang intervensi medis atau ekologis tanpa harus langsung

melakukan uji laboratorium yang mahal dan rumit.

 173 Buku Referensi

Salah satu aplikasi paling awal dan luas dari simulasi dinamis

dalam biologi adalah dalam model populasi dan ekologi. Model

pertumbuhan eksponensial dan logistik, misalnya, menggambarkan

bagaimana populasi makhluk hidup bertambah dengan

mempertimbangkan sumber daya lingkungan. Model logistik, yang

menggunakan PDB
dN

dt
= rN (1 −

N

K
) mampu menangkap fenomena

batas kapasitas lingkungan (carrying capacity) yang menjadi pembatas

alami dalam pertumbuhan populasi. Model ini diperluas dalam bentuk

model Lotka-Volterra, yang mensimulasikan interaksi predator-mangsa.

Dalam model ini, dua PDB saling terkait digunakan untuk

merepresentasikan perubahan jumlah populasi mangsa dan predator,

menghasilkan dinamika fluktuatif yang menyerupai pola-pola yang

diamati di alam.

Simulasi dinamis juga sangat penting dalam bidang

epidemiologi, yaitu studi tentang penyebaran penyakit menular. Model

klasik yang digunakan adalah model SIR (Susceptible-Infected-

Recovered) yang menggunakan sistem PDB:

di mana S, I, dan R masing-masing mewakili jumlah individu yang

rentan, terinfeksi, dan sembuh. Parameter β adalah tingkat penularan,

dan γ adalah tingkat pemulihan. Dengan simulasi numerik terhadap

sistem ini, para ahli kesehatan dapat memperkirakan kapan puncak

wabah akan terjadi, berapa jumlah maksimum kasus, serta mengevaluasi

dampak strategi intervensi seperti vaksinasi, karantina, atau pembatasan

sosial. Selama pandemi COVID-19, model seperti ini menjadi dasar

berbagai simulasi skenario yang membantu pengambilan kebijakan di

seluruh dunia.

Simulasi dinamis juga digunakan dalam farmakokinetika dan

farmakodinamika, yaitu studi tentang bagaimana obat bekerja di dalam

tubuh dan bagaimana tubuh mempengaruhi obat. Misalnya, dalam model

satu kompartemen, konsentrasi obat dalam darah sering digambarkan

dengan persamaan

174 Pemrograman dan Komputasi Numerik

𝑑𝐶

𝑑𝑡
= −𝑘𝐶

di mana C adalah konsentrasi dan k adalah laju eliminasi. Simulasi model

ini membantu menentukan dosis optimal, durasi pemberian obat, serta

mengevaluasi efek samping yang mungkin terjadi akibat akumulasi obat

di dalam tubuh. Model ini dapat diperluas menjadi model multi-

kompartemen yang mempertimbangkan jaringan dan organ berbeda,

serta interaksi kompleks antara metabolisme dan ekskresi.

Pada skala molekuler dan seluler, simulasi dinamis menjadi alat

penting dalam biologi sistem, yaitu studi tentang jaringan interaksi gen,

protein, dan metabolit. Model regulasi genetik, misalnya, dapat

menggunakan PDB untuk menggambarkan ekspresi dan supresi gen,

serta osilasi dalam sistem biologis seperti jam biologis sirkadian. Salah

satu contoh adalah model Goodwin yang menggambarkan osilasi

konsentrasi protein yang mengatur ritme harian organisme. Di sini,

simulasi membantu memprediksi efek dari mutasi genetik, pengaruh

obat, dan interaksi sinyal biokimia dalam sel. Simulasi juga mendukung

desain terapi berbasis genetik, serta rekayasa jaringan dan sintesis sistem

biologis baru (biologi sintetik).

Perangkat lunak yang umum digunakan dalam simulasi dinamis

sistem biologi mencakup Python dengan pustaka SciPy dan NumPy,

MATLAB, serta perangkat khusus seperti COPASI, CellDesigner, dan

BioNetGen. Simulasi dilakukan dengan menyelesaikan sistem PDB

menggunakan metode numerik seperti Runge-Kutta Orde 4 (RK4) atau

solver adaptif seperti odeint dan solve_ivp. Dalam model dengan banyak

variabel dan parameter, teknik seperti analisis sensitivitas dan estimasi

parameter digunakan untuk mengevaluasi seberapa kuat model terhadap

variasi input, dan untuk menyesuaikan model dengan data eksperimen.

Secara umum, keunggulan utama dari simulasi dinamis dalam

sistem biologi adalah kemampuannya untuk menangani kompleksitas

sistem hidup, baik dalam skala mikro (seluler) maupun makro (populasi

atau ekosistem), yang hampir mustahil dipecahkan secara analitik.

Dengan simulasi, para peneliti dapat mengamati konsekuensi dari

intervensi yang belum pernah diuji, mengevaluasi ketidakpastian

biologis, dan merancang sistem biologis baru berdasarkan prinsip

dinamika dan kontrol. Namun demikian, tantangan utama tetap ada,

 175 Buku Referensi

terutama dalam hal ketersediaan data parameter, validasi eksperimental,

serta ketidakpastian biologis yang sulit dimodelkan secara deterministik.

Dengan demikian, simulasi dinamis telah menjadi bagian integral

dari biologi modern. Tidak hanya sebagai alat bantu visualisasi dan

prediksi, tetapi juga sebagai kerangka konseptual yang memungkinkan

integrasi berbagai tingkat informasi biologis dari genetik hingga

populasi ke dalam satu sistem yang bisa dianalisis, dimodifikasi, dan

diaplikasikan secara nyata dalam riset kesehatan, konservasi, dan

bioteknologi. Seiring berkembangnya teknologi komputasi dan integrasi

data biologis berbasis omik, simulasi dinamis diperkirakan akan terus

berperan sentral dalam inovasi biomedis dan bioinformatika masa depan.

176 Pemrograman dan Komputasi Numerik

 177 Buku Referensi

BAB IX

KOMPUTASI MATRIKS

DAN ALJABAR LINIER

LANJUT

Matriks dan transformasi linier bukan hanya bagian dari teori

matematika, melainkan juga alat komputasi yang sangat kuat dalam

menyelesaikan berbagai persoalan di bidang teknik, fisika, data science,

dan pemodelan numerik. Dalam bab ini, pembaca akan diperkenalkan

pada topik-topik lanjutan seperti dekomposisi matriks (LU, QR, dan

SVD), eigenvalue-eigenvector, serta sistem persamaan linier berskala

besar yang menuntut pendekatan algoritmik efisien. Penekanan

diberikan pada bagaimana teori aljabar linier dapat diimplementasikan

secara numerik melalui pemrograman, serta bagaimana kestabilan

numerik dan efisiensi algoritma menjadi pertimbangan utama dalam

aplikasi dunia nyata. Pendekatan yang digunakan dalam bab ini bersifat

praktis namun tetap memperhatikan landasan teoritis, sehingga pembaca

tidak hanya mampu memahami konsep, tetapi juga menguasai cara

penerapannya secara langsung.

A. Eigenvalue dan Eigenvector

Eigenvalue dan eigenvector adalah konsep fundamental dalam

aljabar linier yang memiliki peranan penting dalam banyak bidang sains

dan teknik, termasuk fisika, rekayasa, ilmu komputer, pembelajaran

mesin, serta pemrosesan citra dan suara. Konsep ini memungkinkan kita

memahami bagaimana transformasi linier mempengaruhi ruang vektor

dan bagaimana sistem dapat direduksi atau disederhanakan menjadi

178 Pemrograman dan Komputasi Numerik

bentuk yang lebih terstruktur untuk analisis atau komputasi. Saat

merujuk pada Lay, D.C. (2012) Linear Algebra and Its Applications,

Pearson dijelaskan bahwa eigenvalue (nilai eigen) dan eigenvector

(vektor eigen) adalah solusi dari transformasi linier berbasis matriks.

Secara formal, diberikan sebuah matriks persegi

A ∈ Rn×n,

vektor tak nol

v ∈ Rn

dan skalar

λ ∈ R

maka v disebut sebagai eigenvector dari A, dan λ adalah eigenvalue yang

sesuai jika memenuhi:

Artinya, jika suatu vektor dikenai transformasi oleh matriks A, hasilnya

tetap searah dengan vektor semula, hanya mengalami perubahan skala

oleh faktor λ.

1. Interpretasi Geometris

Interpretasi geometris dari eigenvalue dan eigenvector

merupakan fondasi visual yang kuat dalam memahami bagaimana suatu

transformasi linier bekerja terhadap ruang vektor. Jika kita

membayangkan sebuah matriks A sebagai suatu transformasi linier

dalam ruang dua atau tiga dimensi, maka eigenvector dapat dipahami

sebagai arah tertentu dalam ruang tersebut yang tetap tidak berubah arah

ketika dikenai transformasi oleh A; hanya panjangnya yang berubah,

diperbesar, diperkecil, atau bahkan dibalik arah tergantung pada nilai

eigenvalue-nya. Pandangan ini sangat penting dalam memahami struktur

sistem dinamis, deformasi spasial, dan perilaku asimtotik dari banyak

sistem matematika dan fisik.

Bayangkan bidang dua dimensi R2, dan vektor v adalah suatu

panah yang menunjuk ke suatu arah tertentu dari titik asal. Ketika kita

menerapkan transformasi linier dengan matriks A terhadap vektor ini,

hasilnya adalah vektor baru Av. Untuk vektor biasa, arah dari Av akan

berubah tergantung pada bagaimana matriks A bertindak terhadap

komponen-komponen x dan y dari vektor tersebut. Namun, jika v adalah

 179 Buku Referensi

sebuah eigenvector dari A, maka arah Av tetap searah atau berlawanan

arah dengan v. Perubahan yang terjadi hanyalah skala panjangnya, yang

diatur oleh eigenvalue λ sehingga:

Av = λv

Ini berarti transformasi oleh A "memanjangkan", "memendekkan", atau

"membalik" vektor tersebut tanpa mengubah orientasinya di dalam

ruang. Sebagai contoh konkret, pertimbangkan matriks dua dimensi

sederhana seperti:

Matriks ini adalah transformasi skala (stretching) terhadap

sumbu x sebesar faktor 3 dan sumbu y sebesar faktor 2. Dalam hal ini,

vektor v1 =[
1
0

] dan v2 = [
0
1

] adalah eigenvector dari A karena ketika

dikalikan oleh A, masing-masing hanya mengalami perubahan panjang:

Dari sini, kita dapat memahami bahwa kedua arah x dan y adalah

arah "khusus" yang tidak berubah arah ketika dikenai transformasi oleh

A. Inilah yang dimaksud dengan arah tetap dari transformasi linier. Jika

kita mengambil vektor sembarang yang bukan kombinasi linear dari

vektor eigen ini, maka hasil transformasi tidak akan searah dengan

vektor semula, arahnya akan berubah karena komponennya mengalami

transformasi yang berbeda di setiap sumbu.

Interpretasi ini menjadi semakin menarik ketika kita berhadapan

dengan transformasi rotasi, refleksi, atau shearing (geseran). Misalnya,

dalam kasus rotasi murni pada bidang dua dimensi, tidak ada vektor

(selain nol) yang tetap pada arah yang sama setelah transformasi; oleh

karena itu, tidak ada eigenvector nyata untuk rotasi murni dengan sudut

bukan kelipatan 180°. Sebaliknya, dalam refleksi terhadap garis tertentu,

maka garis refleksi itu sendiri adalah arah eigenvector dengan eigenvalue

1, dan garis tegaknya adalah arah eigenvector dengan eigenvalue -1,

karena arah tegak lurus tersebut dibalik oleh transformasi.

180 Pemrograman dan Komputasi Numerik

Interpretasi geometris ini juga sangat berguna dalam memahami

sistem dinamik. Dalam sistem dinamis linier, misalnya
𝑑𝑥

𝑑𝑡
= 𝐴𝑥, arah

vektor eigen menggambarkan arah mode pertumbuhan atau peluruhan

sistem. Eigenvalue positif menunjukkan arah di mana sistem tumbuh

secara eksponensial seiring waktu, sedangkan eigenvalue negatif

menunjukkan arah peluruhan. Eigenvalue kompleks dengan bagian

imajiner menggambarkan rotasi atau osilasi dalam sistem, dengan bagian

real menentukan apakah amplitudo osilasi meningkat, menurun, atau

tetap.

Pada tiga dimensi (R3), interpretasi serupa berlaku. Eigenvector

direpresentasikan sebagai arah tertentu dalam ruang tiga dimensi yang

tidak berubah arah setelah dikenai transformasi. Eigenvalue menentukan

perubahan panjang sepanjang arah tersebut. Visualisasi dalam ruang tiga

dimensi umumnya lebih sulit, namun secara konseptual sama vektor

tetap pada garis yang sama dari asal, hanya jaraknya dari titik asal yang

berubah.

Interpretasi geometris ini juga mendasari teknik komputasional

seperti Principal Component Analysis (PCA). Dalam PCA, kita mencari

arah (komponen utama) dalam data multidimensi di mana varians

(penyebaran data) paling besar. Arah ini merupakan eigenvector dari

matriks kovarian data, dan besarnya penyebaran di sepanjang arah

tersebut diwakili oleh eigenvalue-nya. Dengan kata lain, PCA

merepresentasikan data ke dalam sumbu-sumbu baru (basis baru) yang

ditentukan oleh arah geometri intrinsik dari distribusi data itu sendiri

sebuah aplikasi langsung dari interpretasi geometris eigenvalue dan

eigenvector.

Dengan pemahaman geometris ini, kita dapat lebih intuitif

mengenali dan menjelaskan bagaimana sistem bekerja dan berubah

dalam ruang vektor. Daripada hanya melihat eigenvalue dan eigenvector

sebagai hasil aljabar, interpretasi ini membawa kita lebih dekat pada

pemahaman fungsional dalam dunia nyata mulai dari arah getaran dalam

struktur teknik, rotasi dalam grafik komputer, hingga pola dominan

dalam data statistik.

2. Cara Menentukan Eigenvalue dan Eigenvector

Menentukan eigenvalue dan eigenvector dari sebuah matriks

merupakan salah satu proses inti dalam aljabar linier yang banyak

 181 Buku Referensi

diterapkan dalam komputasi ilmiah, teknik, statistik, dan berbagai

cabang matematika terapan. Proses ini melibatkan dua langkah utama:

pertama, menemukan nilai-nilai eigen (eigenvalue) dari matriks; dan

kedua, mencari vektor-vektor yang sesuai (eigenvector) untuk masing-

masing nilai tersebut. Meskipun secara konseptual sederhana,

perhitungannya bisa menjadi kompleks, tergantung pada ukuran dan sifat

matriks yang dianalisis.

Langkah pertama dalam menentukan eigenvalue dimulai dengan

menyusun persamaan karakteristik dari matriks tersebut. Misalkan

diberikan sebuah matriks kuadrat A berukuran n×n, maka kita mencari

nilai skalar λ dan vektor tak nol v yang memenuhi hubungan:

di mana I adalah matriks identitas berukuran n×n. Agar persamaan ini

memiliki solusi non-trivial (selain solusi vektor nol), maka matriks

(A−λI) harus bersifat singular, yaitu memiliki determinan nol. Oleh

karena itu, kita harus menyelesaikan persamaan determinan berikut:

Inilah yang disebut persamaan karakteristik, dan penyelesaian

dari persamaan ini memberikan kita nilai-nilai eigen dari matriks A.

Persamaan ini umumnya berupa polinomial berderajat n, dan solusinya

bisa berupa bilangan real, kompleks, atau bahkan berulang (multiplikitas

lebih dari satu). Sebagai contoh, misalkan kita memiliki matriks dua

dimensi berikut:

182 Pemrograman dan Komputasi Numerik

Sistem ini bersifat dependen, dan memiliki solusi tak hingga.

Kita bisa memilih v1 =1 maka v2 = q, sehingga salah satu eigenvector-

nya adalah 𝑣1 = [
1
1

]. Hal yang sama dilakukan untuk λ=2 dan kita

dapatkan eigenvector lainnya, misalnya 𝑣2 = [
1
2

]. Secara umum, sistem

(A−λI)v=0 adalah sistem linier homogen yang selalu memiliki solusi

non-trivial jika dan hanya jika λ adalah nilai eigen dari A.

Penyelesaiannya dapat dilakukan menggunakan eliminasi Gauss,

substitusi, atau dengan bantuan perangkat lunak matematika seperti

MATLAB, Python (NumPy/SciPy), Mathematica, atau R.

Pada kasus ketika nilai eigen memiliki multiplikitas lebih dari

satu, kita juga perlu memperhatikan dimensi dari ruang eigennya. Ini

berkaitan dengan jumlah vektor eigen linier independen yang dapat

dihasilkan untuk satu nilai eigen. Jika jumlah ini sama dengan

multiplicity-nya, maka matriks tersebut dapat didiagonalisasi, yaitu

direpresentasikan sebagai A=PDP−1, di mana D adalah matriks diagonal

dari eigenvalue dan P adalah matriks yang kolom-kolomnya terdiri dari

eigenvector yang bersesuaian.

Prosedur di atas menjadi lebih kompleks untuk matriks

berdimensi besar atau matriks dengan elemen kompleks. Dalam banyak

 183 Buku Referensi

kasus praktis, terutama untuk matriks berukuran besar, pendekatan

numerik digunakan untuk menghitung nilai eigen secara efisien. Metode

populer meliputi Power Iteration untuk mencari nilai eigen terbesar, QR

Algorithm untuk menemukan semua nilai eigen, dan Jacobi Method

untuk matriks simetris.

Cara menentukan eigenvalue dan eigenvector memerlukan

pemahaman aljabar linier yang mendalam, penguasaan terhadap

manipulasi matriks, serta keterampilan komputasional dalam

menyelesaikan sistem linier. Proses ini bukan sekadar manipulasi

simbolik, tetapi berakar pada pemahaman struktur dan dinamika sistem

linier, serta penting dalam banyak aplikasi mulai dari stabilitas struktur

dalam teknik sipil, analisis data dalam statistik, hingga pembelajaran

mesin dan pencitraan digital.

3. Aplikasi Eigenvalue dan Eigenvector

Eigenvalue dan eigenvector memiliki peran penting dalam

berbagai bidang sains dan teknik karena kemampuannya dalam

menyederhanakan analisis sistem yang kompleks melalui pendekatan

struktural. Konsep ini tidak hanya relevan dalam matematika murni,

tetapi juga menjadi tulang punggung banyak metode numerik dan teknik

komputasi modern. Dalam dunia nyata, banyak fenomena fisika, sistem

mekanik, jaringan sosial, pemrosesan sinyal, serta pembelajaran mesin

dapat dimodelkan dan diselesaikan lebih efisien dengan memahami

struktur eigennya. Berikut ini adalah uraian mendalam mengenai

beberapa aplikasi utama dari eigenvalue dan eigenvector dalam berbagai

konteks.

Pada bidang rekayasa struktur dan mekanika, eigenvalue

digunakan dalam analisis getaran. Ketika sebuah struktur seperti

jembatan, gedung pencakar langit, atau pesawat mengalami gangguan

atau gaya luar, sistem tersebut akan berosilasi pada frekuensi-frekuensi

tertentu yang disebut frekuensi alami (natural frequencies). Frekuensi

ini adalah akar dari eigenvalue dari sistem matriks massa dan kekakuan

(mass and stiffness matrices). Misalnya, dalam analisis mode getar suatu

bangunan, setiap eigenvalue merepresentasikan kuadrat dari frekuensi

alami, dan eigenvectornya menunjukkan bentuk mode (mode shape) dari

getaran tersebut. Dengan demikian, memahami eigenstructure dari

sistem mekanik sangat penting untuk desain struktur yang aman terhadap

resonansi atau beban dinamis.

184 Pemrograman dan Komputasi Numerik

Pada fisika kuantum, konsep eigenvalue sangat fundamental.

Persamaan Schrödinger, yang menggambarkan perilaku sistem kuantum,

secara matematis merupakan persamaan eigen. Fungsi gelombang

kuantum (wavefunction) dari suatu partikel merupakan eigenvector, dan

energi-energi diskrit yang dapat dimiliki oleh partikel tersebut adalah

nilai eigen. Setiap operator fisika seperti momentum, energi, dan spin

direpresentasikan sebagai operator linier, dan hasil pengukuran nilai-

nilainya adalah nilai eigen dari operator tersebut. Oleh karena itu, seluruh

struktur teori kuantum dibangun di atas landasan eigenvalue-

eigenvector.

Pada analisis data dan pembelajaran mesin, eigenvalue dan

eigenvector menjadi alat utama dalam teknik reduksi dimensi, terutama

dalam Principal Component Analysis (PCA). PCA adalah metode

statistik yang digunakan untuk mengurangi kompleksitas data

berdimensi tinggi dengan menemukan sumbu-sumbu utama (principal

components) dari distribusi data. Sumbu-sumbu ini ditentukan oleh

eigenvector dari matriks kovarian data, dan sumbu-sumbu dengan

eigenvalue terbesar mewakili arah dengan variasi data paling signifikan.

Dengan memilih beberapa komponen utama pertama, kita dapat

mengurangi dimensi data tanpa kehilangan informasi penting secara

signifikan. Ini sangat berguna dalam pengolahan citra, pengenalan pola,

dan kompresi data.

Pada graf teori dan analisis jaringan, eigenvalue digunakan dalam

banyak aspek, salah satunya adalah algoritma PageRank milik Google.

Dalam pendekatan ini, halaman web direpresentasikan sebagai simpul

(nodes) dalam graf terarah, dan hubungan antar halaman sebagai sisi

(edges). Matriks transisi dari graf ini digunakan untuk membentuk sistem

Markov, dan peringkat halaman ditentukan oleh eigenvector dominan

dari matriks tersebut. Halaman dengan bobot (komponen) terbesar dalam

eigenvector tersebut dianggap paling penting. Selain itu, dalam analisis

jaringan sosial atau jaringan biologis, spektrum eigen dari matriks

ketetanggaan (adjacency matrix) atau matriks Laplacian jaringan

memberikan informasi penting tentang struktur jaringan, seperti

keterhubungan, jumlah komunitas, dan ketahanan terhadap gangguan.

Pada sistem dinamik dan kontrol, terutama sistem diferensial

linier seperti
𝑑𝑥

𝑑𝑡
= 𝐴𝑥, eigenvalue dari matriks 𝐴 menentukan perilaku

jangka panjang sistem tersebut. Jika semua eigenvalue memiliki bagian

 185 Buku Referensi

real negatif, maka sistem bersifat stabil karena semua solusi cenderung

ke nol. Jika ada eigenvalue dengan bagian real positif, sistem bersifat

tidak stabil. Di sinilah peran penting analisis eigensistem untuk

memastikan kestabilan sistem kontrol, baik dalam robotika, pesawat

terbang, maupun sistem otomatisasi industri.

Di bidang komputasi citra dan pemrosesan sinyal, transformasi

yang melibatkan matriks kovarian atau matriks transformasi sering kali

memanfaatkan eigenvalue dan eigenvector. Misalnya, dalam face

recognition (pengenalan wajah), metode seperti Eigenfaces membangun

basis wajah dari kumpulan gambar pelatihan dengan mencari

eigenvector dari matriks citra. Setiap gambar wajah kemudian dapat

direpresentasikan sebagai kombinasi linear dari basis ini, sehingga

identifikasi dan klasifikasi wajah menjadi lebih efisien dan akurat.

Pada bidang ekonomi dan ekonometri, eigenvalue digunakan

dalam analisis input-output antar sektor, serta dalam model stokastik

seperti analisis Markov Chain, di mana matriks transisi menyimpan

probabilitas perpindahan antara keadaan-keadaan sistem. Eigenvector

stasioner dari matriks transisi menggambarkan distribusi jangka panjang

dari sistem ekonomi tersebut. Di bidang biologi matematika, terutama

dalam model populasi, eigenvalue membantu menentukan pertumbuhan

populasi jangka panjang dan stabilitas ekosistem. Contohnya, dalam

model Leslie matrix (model pertumbuhan populasi terstruktur menurut

usia), nilai eigen terbesar (dominant eigenvalue) merepresentasikan

tingkat pertumbuhan populasi, sedangkan eigenvectornya memberi

distribusi populasi dalam keadaan stabil.

Gambar 5. Big Data

Sumber: Dqlab

186 Pemrograman dan Komputasi Numerik

Dari berbagai bidang ini, dapat disimpulkan bahwa eigenvalue

dan eigenvector menyediakan kerangka kerja matematis untuk

mengevaluasi dan menyederhanakan sistem yang kompleks. Kekuatan

utama dari konsep ini adalah kemampuannya dalam mengubah sistem

menjadi bentuk diagonal atau hampir-diagonal, di mana analisis dan

perhitungan menjadi jauh lebih sederhana. Dalam era big data dan

komputasi intensif, pemanfaatan struktur eigen menjadi semakin penting

karena efisiensinya dalam menangani persoalan berdimensi besar dan

kompleks. Oleh karena itu, penguasaan terhadap konsep dan aplikasi

eigenvalue dan eigenvector adalah keterampilan esensial bagi ilmuwan,

insinyur, dan analis data modern.

B. Dekomposisi LU, QR, dan SVD

Dekomposisi matriks merupakan teknik fundamental dalam

aljabar linier numerik yang digunakan untuk menyederhanakan berbagai

perhitungan matematis, seperti penyelesaian sistem persamaan linier,

komputasi nilai eigen, dan reduksi dimensi. Tiga metode dekomposisi

paling penting dan sering digunakan adalah LU decomposition (Lower-

Upper decomposition), QR decomposition, dan Singular Value

Decomposition (SVD). Masing-masing memiliki peran dan keunggulan

tertentu dalam penerapan praktis dan komputasi numerik.

1. Dekomposisi LU (Lower-Upper Decomposition)

Dekomposisi LU (Lower-Upper Decomposition) adalah teknik

aljabar linier yang memfaktorkan sebuah matriks persegi A menjadi hasil

perkalian dua matriks segitiga: matriks segitiga bawah L (Lower) dan

matriks segitiga atas U (Upper), sehingga diperoleh bentuk A=LU.

Konsep ini sangat penting dalam komputasi numerik karena

menyederhanakan berbagai perhitungan, terutama dalam penyelesaian

sistem persamaan linier, invers matriks, dan perhitungan determinan.

Dengan mendekomposisi matriks ke dalam bentuk segitiga, kita dapat

memanfaatkan sifat-sifat sederhana dari sistem linier segitiga untuk

menyelesaikan masalah dengan efisien dan stabil.

Secara umum, dekomposisi LU hanya berlaku untuk matriks

persegi n×n, dan tidak semua matriks memiliki dekomposisi LU tanpa

modifikasi. Untuk menjamin dekomposisi ini bisa dilakukan secara

stabil, sering kali diperlukan pivoting, yaitu pertukaran baris untuk

 187 Buku Referensi

menghindari pembagian oleh nol atau bilangan sangat kecil. Dalam

kasus ini, dekomposisi menjadi PA=LU, di mana P adalah matriks

permutasi yang menyatakan posisi baris yang ditukar. Proses

dekomposisi dilakukan melalui metode eliminasi Gauss, di mana

elemen-elemen di bawah diagonal utama diubah menjadi nol

menggunakan operasi baris elementer, dan koefisien yang digunakan

untuk operasi tersebut disimpan dalam matriks L.

Dekomposisi LU memiliki keuntungan besar dalam

menyelesaikan sistem persamaan linier:

Ax=b

Setelah matriks A didekomposisi menjadi LU, kita dapat menyelesaikan

sistem tersebut dalam dua tahap:

1. Menyelesaikan

Ly=b

menggunakan substitusi maju (forward substitution), karena L

adalah matriks segitiga bawah;

2. Menyelesaikan

Ux=y

menggunakan substitusi mundur (back substitution), karena U

adalah matriks segitiga atas. Proses ini jauh lebih efisien

dibandingkan langsung menggunakan invers matriks atau eliminasi

Gauss berulang untuk setiap vektor ƅ.

Dekomposisi LU juga sangat berguna dalam konteks faktorisasi

matriks untuk perhitungan determinan. Jika:

A = LU

maka determinan det(A) = det(L) ⋅ det(U). Karena determinan dari

matriks segitiga adalah hasil kali elemen diagonalnya, maka perhitungan

determinan menjadi sangat cepat dan stabil.

Pada implementasi komputasi, dekomposisi LU tersedia dalam

berbagai bahasa dan pustaka numerik seperti:

• MATLAB ([L,U,P] = lu(A)ʺ

• Python melalui SciPy (scipy.linalg.lu)

• Julia

Keunggulannya adalah dapat digunakan secara efisien dalam

perhitungan berskala besar, misalnya dalam simulasi struktur teknik,

analisis jaringan listrik, atau model-model numerik fisika dan kimia.

188 Pemrograman dan Komputasi Numerik

2. Dekomposisi QR

Dekomposisi QR adalah salah satu metode faktorisasi matriks

yang sangat penting dalam aljabar linier numerik dan memiliki beragam

aplikasi dalam penyelesaian sistem overdetermined (jumlah persamaan

lebih banyak dari variabel), pencarian solusi least squares, serta dalam

algoritma komputasi nilai eigen. Dalam dekomposisi ini, sebuah matriks

A ∈ Rm×n (dengan m≥n) difaktorkan menjadi hasil perkalian dua matriks,

yaitu matriks ortogonal QQQ dan matriks segitiga atas RRR, sehingga

diperoleh bentuk:

A = QR

Matriks Q ∈ Rm×m memiliki sifat ortogonal, yang berarti kolom-

kolomnya adalah vektor ortonormal dan memenuhi QTQ = I, sementara

matriks R ∈ Rm×n adalah matriks segitiga atas, yang menyimpan

koefisien kombinasi linier dari kolom-kolom vektor asli pada A. Salah

satu aplikasi utama dekomposisi QR adalah dalam penyelesaian masalah

least squares. Ketika sistem linier Ax = b tidak memiliki solusi eksak

karena sistemnya overdetermined, solusi terbaik dalam arti minimum

kesalahan kuadrat dapat dicari dengan mengubahnya menjadi sistem

normal: ATAx = ATb.

Namun, pendekatan ini bisa menghasilkan instabilitas numerik

karena meningkatkan kondisi numerik yang buruk. Alternatif yang lebih

stabil adalah dengan menggunakan dekomposisi QR. Jika A = QR, maka

Ax = QRx = b, dan dengan mengalikan kedua sisi dengan QT, diperoleh

sistem sederhana Rx = QTb, yang kemudian diselesaikan dengan

substitusi mundur karena RRR berbentuk segitiga atas.

Secara praktis, dekomposisi QR dapat dilakukan dengan

beberapa metode, antara lain metode Gram-Schmidt, Householder

reflections, dan Givens rotations. Metode Gram-Schmidt menggunakan

proses ortonormalisasi vektor dan lebih intuitif secara konsep, tetapi

kurang stabil secara numerik. Metode Householder, yang menggunakan

refleksi ortogonal, lebih stabil dan sering digunakan dalam perangkat

lunak numerik seperti MATLAB dan SciPy. Givens rotations, di sisi

lain, lebih cocok untuk matriks besar dan jarang (sparse matrices) karena

memodifikasi dua baris pada satu waktu.

Pada algoritma komputasi nilai eigen, QR decomposition

menjadi komponen utama dalam algoritma QR iteration, yang

 189 Buku Referensi

digunakan untuk menghitung spektrum eigen suatu matriks. Keuntungan

dari metode ini adalah kemampuannya menangani matriks non-simetri

dan mengkonsolidasikan informasi struktural dari matriks melalui proses

berulang.

Dekomposisi QR juga digunakan dalam analisis numerik,

pemrosesan sinyal, dan pembelajaran mesin, terutama ketika stabilitas

numerik dan ortogonalitas menjadi penting. Karena kemampuan QR

decomposition dalam menjaga kestabilan komputasi dan struktur

geometri data, metode ini menjadi alat utama dalam berbagai bidang

ilmiah dan teknis. Dengan berbagai metode implementasinya dan

dukungan dari perangkat lunak komputasi ilmiah, dekomposisi QR

merupakan teknik faktorisasi yang tak tergantikan dalam praktik

komputasi numerik modern.

3. Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) adalah salah satu teknik

dekomposisi matriks paling kuat dan serbaguna dalam aljabar linier

numerik. Berbeda dengan dekomposisi LU atau QR yang hanya berlaku

pada matriks dengan syarat tertentu (seperti matriks persegi atau penuh-

rangking), SVD dapat diterapkan pada semua jenis matriks, baik persegi,

persegi panjang, penuh-rangking maupun rangking rendah. Secara

formal, jika diberikan matriks A∈Rm×n, maka SVD memfaktorkan

matriks tersebut menjadi hasil perkalian tiga matriks:

Di sini, U∈Rm×m adalah matriks ortogonal yang kolom-

kolomnya disebut left singular vectors.

Σ∈Rm×n

adalah matriks diagonal (atau hampir diagonal) yang elemen-elemen

diagonalnya adalah bilangan non-negatif dan disebut singular values.

VT∈Rn×n

adalah transpose dari matriks ortogonal V, dengan kolom-kolom V

disebut right singular vectors. Nilai-nilai dalam Σ biasanya disusun

190 Pemrograman dan Komputasi Numerik

dalam urutan menurun dan memberikan ukuran kontribusi dari masing-

masing komponen basis terhadap struktur asli data.

Keunggulan utama SVD terletak pada stabilitas numerik dan

fleksibilitasnya, sehingga sangat cocok untuk pemrosesan matriks yang

tidak simetris, tidak persegi, bahkan ketika tidak memiliki invers. Dalam

konteks reduksi dimensi dan kompresi data, SVD memungkinkan kita

melakukan aproksimasi matriks dengan hanya mempertahankan

beberapa singular values terbesar dan mengabaikan yang kecil, sehingga

informasi utama tetap terjaga sementara kompleksitas dikurangi. Teknik

ini menjadi dasar dalam Principal Component Analysis (PCA), di mana

vektor-vektor singular dari SVD digunakan sebagai sumbu baru

(komponen utama) yang memaksimalkan variansi data.

Pada kompresi citra digital, misalnya, SVD dapat digunakan

untuk menyimpan representasi gambar dalam basis singular vectors.

Dengan hanya menyimpan sejumlah kecil singular values dan vektor

terkait, gambar dapat direkonstruksi dengan kualitas yang masih baik

namun ukuran file jauh lebih kecil. Selain itu, dalam Natural Language

Processing (NLP), SVD digunakan dalam metode Latent Semantic

Analysis (LSA) untuk menemukan struktur laten dalam dokumen teks,

dengan cara mengurai matriks term-document menjadi komponen

semantik dominan. SVD juga berperan penting dalam pseudoinvers

matriks (Moore-Penrose inverse), yaitu ketika kita ingin menyelesaikan

sistem Ax=b namun A tidak memiliki invers atau berbentuk tidak

persegi. Dengan SVD, kita dapat menghitung solusi terkecil dalam

norma Euclidean dengan cara yang stabil dan akurat.

C. Aplikasi dalam Pemrosesan Data dan Machine Learning

Pemrograman dan komputasi numerik menjadi fondasi utama

dalam pengolahan data dan pengembangan metode machine learning

(ML) modern. Dalam konteks ini, teknik-teknik komputasi numerik,

seperti dekomposisi matriks, optimasi numerik, dan algoritma statistik,

berperan penting dalam mengolah data besar, membangun model

prediktif, serta meningkatkan akurasi dan efisiensi pembelajaran mesin

(Goodfellow, Bengio, & Courville, 2016). Dengan ketersediaan data

yang masif dan kebutuhan analisis yang kompleks, pemrograman

numerik memungkinkan transformasi data mentah menjadi informasi

bermakna serta model yang dapat diandalkan.

 191 Buku Referensi

1. Pemrosesan Data

Pemrosesan data adalah rangkaian aktivitas yang bertujuan untuk

mengubah data mentah menjadi informasi yang bermakna dan berguna

untuk pengambilan keputusan, analisis, dan berbagai aplikasi lanjutan.

Proses ini sangat penting dalam era digital di mana data dihasilkan secara

masif dari berbagai sumber seperti sensor IoT, transaksi bisnis, media

sosial, dan sistem informasi lainnya. Data mentah yang tidak terstruktur,

bising, dan berdimensi tinggi harus diolah melalui serangkaian tahap

agar dapat diekstrak pola, insight, atau model prediktif yang akurat. Oleh

karena itu, pemrosesan data menjadi fondasi utama dalam bidang data

science dan machine learning.

Tahap awal dalam pemrosesan data adalah pengumpulan data, di

mana data dikumpulkan dari berbagai sumber dengan berbagai format.

Data tersebut kemudian mengalami pembersihan (data cleaning) untuk

mengatasi masalah seperti nilai yang hilang (missing values), duplikasi,

dan kesalahan input. Pembersihan data penting karena data yang tidak

konsisten atau rusak dapat menghasilkan model yang bias dan tidak

akurat (Rahm & Do, 2000). Selanjutnya, data mengalami transformasi

dan normalisasi. Transformasi mencakup pengubahan format,

pengkodean variabel kategorikal menjadi numerik, dan penanganan

outlier. Normalisasi, seperti skala min-max atau standardisasi, dilakukan

agar fitur-fitur data berada pada rentang yang sama, sehingga algoritma

machine learning dapat bekerja lebih efektif dan cepat konvergen (Han,

Kamber, & Pei, 2011).

Reduksi dimensi juga merupakan tahap penting dalam

pemrosesan data, terutama untuk dataset berdimensi tinggi yang dapat

menyebabkan masalah curse of dimensionality. Teknik seperti Principal

Component Analysis (PCA) dan Singular Value Decomposition (SVD)

digunakan untuk mereduksi fitur menjadi komponen-komponen utama

yang mewakili variansi terbesar dari data tanpa kehilangan informasi

penting. Dengan cara ini, kompleksitas data berkurang, yang

mempercepat proses pelatihan model sekaligus meningkatkan

interpretabilitas (Jolliffe, 2002). Setelah data siap, dilakukan eksplorasi

data (Exploratory Data Analysis, EDA) untuk memahami karakteristik

data, distribusi, korelasi antar variabel, dan pola tersembunyi. Visualisasi

data seperti histogram, scatter plot, dan heatmap sangat membantu dalam

tahap ini untuk mengidentifikasi tren dan anomali (Tukey, 1977).

192 Pemrograman dan Komputasi Numerik

Pemrosesan data juga mencakup teknik feature engineering,

yaitu proses menciptakan fitur baru yang lebih representatif berdasarkan

fitur asli. Misalnya, menggabungkan beberapa fitur menjadi indeks atau

menghitung rata-rata per periode waktu tertentu dalam data waktu (time-

series). Feature engineering yang baik dapat meningkatkan performa

model secara signifikan (Kuhn & Johnson, 2013). Dalam konteks data

streaming dan big data, pemrosesan data harus dilakukan secara real-

time dan skalabel. Teknologi seperti Apache Hadoop dan Apache Spark

memungkinkan pemrosesan paralel dan distribusi data yang efisien di

cluster komputer besar. Pendekatan ini sangat penting untuk menangani

volume data yang sangat besar dengan kecepatan tinggi (Zaharia et al.,

2010). Pemrosesan data juga mengantisipasi aspek keamanan dan

privasi, dengan menerapkan teknik seperti enkripsi data dan anonimasi

agar data sensitif tidak disalahgunakan selama proses analisis (Dwork,

2008).

2. Machine Learning

Machine learning (ML) merupakan cabang dari kecerdasan

buatan (artificial intelligence) yang memungkinkan sistem komputer

untuk belajar dari data dan meningkatkan performa tanpa diprogram

secara eksplisit. ML berfokus pada pengembangan algoritma dan model

matematis yang dapat mengidentifikasi pola, membuat prediksi, dan

mengambil keputusan berdasarkan data yang tersedia. Konsep inti ML

adalah bahwa sistem belajar dengan mengenali pola dalam data dan

menggeneralisasi pola tersebut ke data baru yang belum pernah ditemui

sebelumnya (Mitchell, 1997).

ML dapat dibagi menjadi beberapa kategori utama berdasarkan

jenis data dan cara belajar, yaitu supervised learning, unsupervised

learning, dan reinforcement learning. Pada supervised learning, model

dilatih menggunakan data berlabel, di mana input dan output yang

diinginkan sudah diketahui. Contoh algoritma supervised learning

meliputi regresi linier, pohon keputusan, dan neural networks. Model

bertujuan mempelajari hubungan antara input dan output agar dapat

memprediksi output pada data baru dengan akurat (Hastie et al., 2009).

Sebaliknya, pada unsupervised learning, data yang digunakan tidak

berlabel, sehingga model mencoba menemukan struktur atau pola

tersembunyi dalam data. Teknik umum termasuk clustering seperti k-

means dan hierarchical clustering, serta reduksi dimensi seperti PCA.

 193 Buku Referensi

Unsur utama di sini adalah mengenali kelompok data atau fitur penting

tanpa panduan output (Aggarwal, 2015).

Reinforcement learning berbeda dengan kedua pendekatan

sebelumnya karena sistem belajar melalui interaksi dengan lingkungan

dan mendapatkan umpan balik berupa reward atau penalti. Pendekatan

ini banyak digunakan dalam pengembangan agen cerdas untuk

permainan dan robotika (Sutton & Barto, 2018). Model ML modern

semakin kompleks dengan hadirnya deep learning, yaitu subbidang yang

menggunakan jaringan saraf tiruan bertingkat (deep neural networks).

Deep learning mampu mengolah data yang sangat besar dan kompleks,

seperti gambar, suara, dan teks, dengan tingkat akurasi yang tinggi.

Jaringan saraf konvolusional (CNN) untuk pengolahan citra dan jaringan

saraf rekuren (RNN) untuk data urutan adalah contoh aplikasi deep

learning yang sangat populer (Goodfellow et al., 2016).

Proses machine learning umumnya melibatkan beberapa

tahapan: pengumpulan data, pembersihan dan praproses data, pemilihan

dan ekstraksi fitur, pemilihan model, pelatihan model, validasi, dan

evaluasi performa. Pemilihan fitur yang relevan sangat penting karena

dapat meningkatkan efisiensi dan akurasi model. Selain itu, teknik

validasi seperti cross-validation digunakan untuk menghindari

overfitting, yaitu kondisi di mana model terlalu menghafal data latih

sehingga gagal menggeneralisasi ke data baru (Kuhn & Johnson, 2013).

ML juga memanfaatkan metode optimasi numerik untuk meminimalkan

fungsi kerugian (loss function) selama pelatihan. Algoritma optimasi

seperti gradient descent dan variannya berperan penting dalam

mempercepat proses pelatihan dan menemukan solusi optimal (Bottou,

2010). Aplikasi machine learning sangat luas dan berkembang pesat di

berbagai bidang. Dalam kesehatan, ML digunakan untuk diagnosis

penyakit dan analisis citra medis. Dalam bisnis, ML mendukung analisis

pelanggan, prediksi penjualan, dan sistem rekomendasi. Di bidang

transportasi, ML menggerakkan teknologi kendaraan otonom dan

prediksi lalu lintas (Jordan & Mitchell, 2015).

D. Optimasi Performa Komputasi Matriks

Optimasi performa komputasi matriks merupakan aspek penting

dalam komputasi numerik, ilmu komputer, dan berbagai aplikasi teknik

serta ilmiah. Matriks adalah struktur data dasar yang digunakan secara

194 Pemrograman dan Komputasi Numerik

luas dalam pemodelan matematis, pemrosesan sinyal, pembelajaran

mesin, grafik komputer, dan simulasi ilmiah. Namun, komputasi matriks,

terutama pada skala besar, bisa sangat intensif secara komputasi dan

memori. Oleh karena itu, mengoptimalkan kinerja operasi matriks sangat

penting untuk mengurangi waktu komputasi dan pemakaian sumber daya

komputer (Demmel, 1997).

1. Pemilihan Algoritma yang Efisien

Pemilihan algoritma yang efisien merupakan aspek krusial dalam

optimasi performa komputasi matriks karena algoritma menentukan

bagaimana operasi matematika dijalankan dan berdampak langsung pada

kecepatan serta penggunaan sumber daya komputasi. Dalam konteks

komputasi matriks, efisiensi algoritma terutama diukur dari

kompleksitas waktu (time complexity) dan kompleksitas ruang (space

complexity) yang diperlukan untuk menyelesaikan operasi, seperti

perkalian matriks, invers matriks, dekomposisi, dan penyelesaian sistem

linear (Demmel, 1997).

Misalnya, perkalian matriks standar menggunakan metode

iteratif dengan kompleksitas O(n³) untuk matriks berukuran n×n.

Algoritma ini cukup sederhana dan mudah diimplementasikan, tetapi

menjadi sangat lambat untuk matriks besar. Oleh karena itu, algoritma

alternatif seperti algoritma Strassen yang memiliki kompleksitas lebih

rendah yaitu O(n^2.81) dapat dipilih untuk mempercepat komputasi,

meskipun implementasinya lebih rumit dan memiliki overhead yang

signifikan pada matriks berukuran kecil (Strassen, 1969). Algoritma

yang lebih canggih, seperti algoritma Coppersmith-Winograd, bahkan

menurunkan kompleksitas perkalian matriks hingga sekitar O(n^2.37),

tetapi biasanya hanya digunakan dalam penelitian dan aplikasi khusus

karena kompleksitas implementasi yang tinggi (Williams, 2012).

Pemilihan algoritma juga harus mempertimbangkan karakteristik

matriks, seperti kepadatan elemen (dense vs sparse). Untuk matriks

jarang, algoritma khusus yang mengabaikan elemen nol dapat

mengurangi komputasi dan penggunaan memori secara drastis.

Contohnya adalah penggunaan metode iteratif seperti Conjugate

Gradient atau GMRES yang lebih efisien untuk sistem linear sparse

dibandingkan metode langsung seperti eliminasi Gauss (Saad, 2003).

Selain itu, algoritma harus diadaptasi dengan arsitektur perangkat keras

yang digunakan. Algoritma yang mendukung paralelisasi atau yang

 195 Buku Referensi

dioptimalkan untuk memanfaatkan cache dan instruksi SIMD akan jauh

lebih efisien pada sistem modern (Kirk & Hwu, 2016). Dengan

demikian, pemilihan algoritma yang efisien adalah keputusan strategis

yang menggabungkan analisis kompleksitas, karakteristik data, dan

pemahaman terhadap perangkat keras agar hasil komputasi matriks dapat

dicapai secara optimal dan efektif.

2. Pengelolaan Memori

Pengelolaan memori adalah salah satu faktor kunci dalam

optimasi performa komputasi matriks karena kecepatan akses data

sangat menentukan efisiensi keseluruhan operasi. Dalam komputasi

matriks, data biasanya disimpan dalam array dua dimensi yang

ukurannya bisa sangat besar, sehingga cara penyimpanan dan

pengaksesan data harus diatur sedemikian rupa agar dapat memanfaatkan

hirarki memori komputer secara optimal (Hennessy & Patterson, 2017).

Komputer modern memiliki beberapa tingkat memori, mulai dari

register, cache (L1, L2, L3), RAM, hingga penyimpanan sekunder.

Cache, yang berukuran kecil tetapi sangat cepat, sangat penting dalam

mempercepat akses data. Oleh karena itu, strategi pengelolaan memori

seperti blocking atau tiling diterapkan untuk memecah operasi matriks

menjadi sub-bagian kecil yang dapat dimuat sekaligus ke dalam cache.

Teknik ini mengurangi cache miss dan latensi akses memori, sehingga

meningkatkan throughput komputasi (Gustavson, 1997).

Pola akses memori juga penting. Pengaksesan data secara

kontigu (sekuensial) lebih cepat dibandingkan akses acak karena prinsip

spatial locality yang dimanfaatkan oleh sistem cache. Oleh sebab itu,

dalam operasi matriks seperti perkalian atau dekomposisi, pengaturan

iterasi yang memprioritaskan akses baris demi baris atau kolom demi

kolom sangat dianjurkan agar data dapat diakses secara efisien.

Pengelolaan memori juga mempertimbangkan format penyimpanan

matriks. Untuk matriks padat, penyimpanan secara row-major atau

column-major mempengaruhi cara data diakses. Sementara pada matriks

jarang, format seperti CSR (Compressed Sparse Row) dan CSC

(Compressed Sparse Column) menghemat ruang memori dan

mengurangi waktu akses elemen non-nol saja, sehingga meningkatkan

performa operasi (Saad, 2003).

196 Pemrograman dan Komputasi Numerik

3. Paralelisasi Komputasi

Paralelisasi komputasi merupakan teknik penting dalam optimasi

performa operasi matriks yang memanfaatkan kemampuan perangkat

keras modern untuk menjalankan banyak proses secara bersamaan. Pada

dasarnya, paralelisasi membagi tugas komputasi besar menjadi bagian-

bagian kecil yang dapat dikerjakan secara simultan oleh beberapa inti

(core) prosesor atau unit pemrosesan grafis (GPU). Pendekatan ini sangat

efektif mengingat operasi matriks, seperti perkalian atau dekomposisi,

sering kali dapat diparalelisasi karena setiap elemen hasil biasanya

dihitung secara independen (Kirk & Hwu, 2016).

Komputasi paralel dapat dilakukan pada berbagai tingkatan. Pada

level CPU, model pemrograman seperti OpenMP memungkinkan

pembagian pekerjaan ke beberapa core melalui threading. Sementara

pada skala lebih besar, MPI (Message Passing Interface) digunakan

untuk mengkoordinasi komputasi di cluster komputer, mendistribusikan

data dan tugas ke banyak node. Di sisi lain, GPU dengan ribuan core

kecil yang dirancang untuk komputasi paralel massal, menjadi sangat

populer untuk mempercepat operasi matriks besar dengan menggunakan

platform seperti CUDA atau OpenCL (Nickolls et al., 2008).

Efektivitas paralelisasi sangat bergantung pada bagaimana tugas

dibagi dan komunikasi antar unit dilakukan. Pembagian tugas harus

seimbang agar tidak ada core yang idle terlalu lama, dan overhead

komunikasi antar unit harus diminimalkan agar keuntungan paralelisasi

tidak hilang. Teknik seperti data parallelism yang membagi data menjadi

potongan-potongan kecil dan task parallelism yang membagi proses

menjadi tugas-tugas berbeda sering digunakan dalam optimasi

komputasi matriks (Grama et al., 2003).

Paralelisasi juga memungkinkan pemrosesan matriks yang

sangat besar yang tidak mungkin dilakukan secara efisien oleh satu core

saja. Banyak perpustakaan numerik populer, seperti Intel MKL dan

cuBLAS, sudah mengimplementasikan paralelisasi secara otomatis

untuk memanfaatkan perangkat keras modern sehingga pengguna dapat

merasakan peningkatan performa tanpa perlu menulis kode paralel

secara eksplisit.

4. Instruksi SIMD

Instruksi SIMD (Single Instruction, Multiple Data) adalah fitur

pada prosesor modern yang memungkinkan eksekusi satu instruksi yang

 197 Buku Referensi

sama secara simultan pada beberapa data sekaligus. Konsep SIMD

sangat efektif dalam mempercepat komputasi matriks dan operasi vektor

karena banyak dari operasi ini melibatkan penerapan fungsi yang sama

pada elemen-elemen data yang berbeda secara paralel (Williams et al.,

2009). Dengan SIMD, misalnya, sebuah prosesor dapat melakukan

penjumlahan pada empat atau delapan pasangan elemen matriks

sekaligus dalam satu siklus instruksi, dibandingkan dengan memproses

satu elemen per siklus pada arsitektur tradisional.

Pemanfaatan instruksi SIMD memerlukan dukungan perangkat

keras serta compiler yang mampu menghasilkan kode mesin yang

menggunakan instruksi ini. Contoh arsitektur yang mendukung SIMD

antara lain Intel SSE (Streaming SIMD Extensions), AVX (Advanced

Vector Extensions), dan ARM NEON untuk prosesor mobile. Instruksi

SIMD umumnya bekerja dengan register khusus yang dapat menampung

data vektor berukuran 128-bit, 256-bit, atau lebih, memungkinkan

operasi simultan pada banyak elemen data (Fog, 2016).

Penggunaan SIMD sangat cocok untuk algoritma yang

berstruktur data paralel, seperti perkalian matriks, transformasi Fourier,

dan operasi filter dalam pemrosesan sinyal. Dengan SIMD, jumlah

instruksi yang harus dieksekusi berkurang drastis, sehingga

meningkatkan throughput dan mengurangi latensi. Namun, optimalisasi

dengan SIMD memerlukan penyesuaian pola akses data agar data

tersimpan secara kontigu di memori dan alignment yang tepat agar tidak

terjadi penalti performa (Hennessy & Patterson, 2017).

Meski SIMD meningkatkan performa secara signifikan, ada

beberapa keterbatasan seperti ukuran register terbatas dan kebutuhan

data yang terstruktur rapi. Oleh karena itu, pemrogram perlu

mempertimbangkan desain algoritma dan struktur data agar sesuai

dengan model SIMD. Banyak perpustakaan matematika dan multimedia

sudah memanfaatkan instruksi SIMD secara transparan sehingga

pengguna dapat merasakan peningkatan performa tanpa pengetahuan

detail tentang instruksi ini.

5. Pemilihan Format Penyimpanan Matriks

Pemilihan format penyimpanan matriks merupakan aspek

penting dalam optimasi komputasi numerik karena berpengaruh

langsung pada efisiensi penggunaan memori dan kecepatan akses data

selama operasi matriks. Format penyimpanan matriks yang tepat sangat

198 Pemrograman dan Komputasi Numerik

bergantung pada karakteristik matriks itu sendiri, terutama apakah

matriks tersebut padat (dense) atau jarang (sparse) (Saad, 2003). Untuk

matriks padat, format penyimpanan yang umum digunakan adalah

penyimpanan secara row-major atau column-major, di mana elemen-

elemen disimpan secara berurutan berdasarkan baris atau kolom. Format

ini memudahkan akses sekuensial yang efisien pada memori, sehingga

cocok untuk operasi matriks yang membutuhkan pembacaan elemen

secara linear, seperti perkalian matriks konvensional atau dekomposisi

LU (Golub & Van Loan, 2013).

Untuk matriks jarang yang sebagian besar elemennya bernilai

nol, penyimpanan dalam format padat akan sangat membuang-buang

ruang memori dan memperlambat komputasi. Oleh karena itu, format

penyimpanan khusus seperti Compressed Sparse Row (CSR),

Compressed Sparse Column (CSC), atau Coordinate (COO) digunakan.

Format-format ini hanya menyimpan elemen non-nol dan indeks

posisinya, sehingga secara signifikan mengurangi kebutuhan memori

dan mempercepat operasi yang hanya fokus pada elemen non-nol (Saad,

2003).

Pemilihan format juga mempertimbangkan jenis operasi yang

akan dilakukan. Misalnya, CSR lebih efisien untuk operasi perkalian

matriks dengan vektor karena akses baris yang cepat, sedangkan CSC

lebih optimal untuk operasi yang membutuhkan akses kolom. Selain itu,

format penyimpanan harus kompatibel dengan perpustakaan numerik

dan perangkat keras yang digunakan agar bisa memanfaatkan optimasi

paralelisasi dan instruksi SIMD (Kirk & Hwu, 2016).

 199 Buku Referensi

BAB X

STUDI KASUS DAN

PROYEK APLIKASI

Bab Studi Kasus dan Proyek Aplikasi hadir sebagai bagian

penting dalam buku ini untuk menjembatani teori dan praktik dalam

pemrograman serta komputasi numerik. Pada bab ini, pembaca diajak

untuk melihat secara langsung bagaimana konsep-konsep matematis dan

algoritma numerik yang telah dipelajari dapat diterapkan dalam

menyelesaikan masalah nyata dari berbagai bidang, seperti teknik, fisika,

biologi, ekonomi, dan lain-lain. Melalui serangkaian studi kasus yang

dipilih secara representatif, pembaca akan memahami proses

pengembangan solusi numerik mulai dari perumusan masalah, pemilihan

metode yang tepat, hingga implementasi menggunakan bahasa

pemrograman populer seperti Python dan MATLAB. Proyek-proyek

aplikasi yang disajikan juga bertujuan untuk mengasah keterampilan

analisis, pemrograman, serta kemampuan interpretasi hasil komputasi,

sehingga pembaca tidak hanya memahami teori, tetapi juga mampu

mengaplikasikannya secara efektif dalam konteks dunia nyata.

A. Simulasi Perpindahan Panas

Perpindahan panas adalah proses di mana energi panas berpindah

dari satu bagian ke bagian lain akibat perbedaan suhu. Dalam teknik dan

ilmu terapan, simulasi perpindahan panas sangat penting untuk

merancang sistem termal, seperti pendingin elektronik, sistem pemanas,

hingga proses manufaktur. Pada studi kasus ini, kita akan membahas

perpindahan panas dalam sebuah batang logam satu dimensi yang

mengalami perubahan suhu sepanjang batang seiring waktu. Model

200 Pemrograman dan Komputasi Numerik

matematis yang digunakan adalah Persamaan Difusi Panas 1D (Heat

Equation):

1. Kondisi Awal dan Batas

a. Panjang batang: L meter

b. Waktu simulasi: T detik

c. Kondisi awal suhu batang: misal suhu awal seragam, 𝑢(𝑥, 0) =

𝑢0

d. Kondisi batas: suhu pada kedua ujung batang tetap konstan,

misalnya 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 𝑇0

2. Metode Numerik: Metode Elemen Hingga atau Finite

Difference

Untuk menyelesaikan persamaan ini secara numerik, metode

finite difference sering digunakan. Misalnya, metode eksplisit Euler

maju:

 201 Buku Referensi

Implementasi dalam Python

202 Pemrograman dan Komputasi Numerik

Implementasi dalam MATLAB

Simulasi ini menggambarkan bagaimana suhu dalam batang

logam berubah dari kondisi awal dan batas yang ditetapkan sampai

mencapai distribusi suhu akhir yang stabil. Hasil visualisasi dari Python

dan MATLAB menunjukkan grafik suhu terhadap posisi sepanjang

batang setelah waktu simulasi tertentu. Pada kedua bahasa, pendekatan

numeriknya sama, yaitu metode beda hingga eksplisit dengan stabilitas

dipastikan lewat pemilihan Δt dan Δx sesuai aturan numerik. Perbedaan

utama terletak pada sintaks dan cara pengelolaan array atau vektor.

Studi kasus ini dapat diperluas ke dimensi lebih tinggi atau

dengan kondisi batas dan sumber panas yang lebih kompleks. Selain itu,

teknik numerik lain seperti metode implisit atau Crank-Nicolson dapat

digunakan untuk mendapatkan kestabilan yang lebih baik dengan

interval waktu yang lebih besar.

Simulasi perpindahan panas merupakan contoh klasik aplikasi

komputasi numerik yang penting dalam berbagai disiplin. Pemahaman

 203 Buku Referensi

teori dan keterampilan pemrograman dalam berbagai bahasa sangat

membantu untuk mengembangkan solusi sesuai kebutuhan praktis.

Melalui contoh implementasi di Python, MATLAB, dan C++, pembaca

dapat memahami cara menyusun model numerik, mengimplementasikan

algoritma, dan melakukan analisis hasil simulasi secara efektif.

Gunakan metode selisih hingga (Finite Difference) untuk mendekati

solusi dari persamaan diferensial orde dua berikut:

204 Pemrograman dan Komputasi Numerik

B. Pemodelan Populasi dan Epidemi

Pemodelan populasi dan epidemi merupakan alat penting dalam

ilmu kesehatan masyarakat untuk memahami dan memprediksi

penyebaran penyakit menular. Salah satu model dasar yang populer

adalah model SIR, yang membagi populasi ke dalam tiga kategori utama:

Susceptible (rentan terinfeksi), Infected (terinfeksi), dan Recovered

(sembuh dan kebal). Model ini membantu para ilmuwan dan pembuat

kebijakan mengantisipasi laju penyebaran penyakit dan merancang

strategi pengendalian.

Contoh nyata adalah pandemi COVID-19 yang melanda dunia

sejak akhir 2019. Model SIR digunakan untuk memprediksi puncak

kasus, durasi wabah, serta efek intervensi seperti pembatasan sosial dan

vaksinasi. Dalam studi kasus ini, kita akan memodelkan dinamika

penyebaran COVID-19 menggunakan model SIR dengan parameter

yang disesuaikan dari data epidemiologi awal. Persamaan diferensial

model SIR adalah:

 205 Buku Referensi

• 𝑆(𝑡) : Jumlah individu rentan pada waktu t

• 𝐼(𝑡) : Jumlah individu terinfeksi pada waktu t

• 𝑅(𝑡) : Jumlah individu sembuh/kebal pada waktu t

• 𝑁 = 𝑆 + 𝐼 + 𝑅 : Total populasi (diasumsikan konstan)

• 𝛽 : Laju penularan

• 𝛾 : Laju pemulihan

Parameter kunci yang digunakan untuk COVID-19 berdasarkan literatur

awal adalah:

• 𝛽 : 0.3 per hari (menunjukkan rata-rata tiap orang menularkan virus

ke 0.3 orang per hari)

• 𝛾 : 0.1 per hari (rata-rata durasi infeksi 10 hari)

1. Kondisi Awal

a. Total populasi N = 1.000.000

b. Awal infeksi I0 = 1 orang

c. Rentan S0 = N−I0 = 999.999

d. Sembuh R0 = 0

2. Metode Numerik

Untuk menyelesaikan sistem persamaan diferensial ini, kita

gunakan metode Euler maju dengan diskritisasi waktu Δt. Secara

numerik:

206 Pemrograman dan Komputasi Numerik

Implementasi Python

 207 Buku Referensi

Implementasi MATLAB

208 Pemrograman dan Komputasi Numerik

Implementasi C++

Simulasi model SIR ini menggambarkan bagaimana jumlah

populasi yang rentan, terinfeksi, dan sembuh berubah selama 160 hari.

Grafik yang dihasilkan umumnya menunjukkan:

1. Awal wabah, jumlah terinfeksi meningkat tajam, sementara populasi

rentan menurun.

2. Setelah mencapai puncak infeksi, jumlah pasien terinfeksi mulai

menurun karena bertambahnya populasi yang sembuh.

 209 Buku Referensi

3. Populasi sembuh meningkat secara konsisten, menandakan

akumulasi kekebalan.

Model ini sangat berguna untuk memperkirakan beban sistem

kesehatan, merencanakan intervensi, dan mengukur dampak kebijakan

pembatasan sosial atau vaksinasi. Namun, model SIR sederhana

memiliki keterbatasan karena mengasumsikan populasi homogen dan

konstan serta tidak memasukkan faktor-faktor seperti mobilitas, mutasi

virus, atau perilaku manusia. Model lebih kompleks seperti SEIR, agent-

based, atau metapopulasi dapat dipakai untuk analisis lebih rinci.

C. Optimasi Portofolio dan Pemodelan Finans

Optimasi portofolio adalah proses memilih kombinasi aset

investasi yang optimal untuk memaksimalkan return yang diharapkan

dengan risiko yang dapat diterima. Salah satu pendekatan klasik adalah

model Mean-Variance yang diperkenalkan oleh Harry Markowitz pada

tahun 1952. Model ini menjadi dasar teori portofolio modern (Modern

Portfolio Theory, MPT). Pada konteks nyata, investor di Bursa Efek

Indonesia (BEI) sering dihadapkan pada pilihan beragam saham dengan

return dan risiko yang berbeda. Studi ini mengaplikasikan model

Markowitz untuk menentukan bobot optimal pada portofolio terdiri dari

beberapa saham unggulan di BEI dengan tujuan meminimalkan risiko

untuk tingkat return yang diharapkan.

Misalkan kita menggunakan data return historis bulanan selama 3 tahun

terakhir dari 4 saham unggulan di BEI:

1. Saham A (contoh: PT Telekomunikasi Indonesia Tbk)

2. Saham B (contoh: PT Bank Central Asia Tbk)

3. Saham C (contoh: PT Unilever Indonesia Tbk)

4. Saham D (contoh: PT Astra International Tbk)

Data return bulanan (dalam persen) disederhanakan sebagai berikut

(dalam bentuk matriks):

210 Pemrograman dan Komputasi Numerik

1. Implementasi Python (menggunakan library cvxpy)

 211 Buku Referensi

2. Implementasi MATLAB

212 Pemrograman dan Komputasi Numerik

3. Implementasi C++ (menggunakan pustaka Eigen untuk matriks

dan optimasi sederhana)

Studi kasus ini menggambarkan aplikasi nyata optimasi

portofolio di pasar saham Indonesia. Dengan model Markowitz, investor

dapat menentukan distribusi investasi yang meminimalkan risiko untuk

tingkat return yang diinginkan. Python dan MATLAB memudahkan

implementasi melalui pustaka optimasi bawaan, sedangkan di C++

implementasi lengkap memerlukan pustaka tambahan untuk solusi QP.

Optimasi portofolio juga bisa dikembangkan dengan

menambahkan batasan realistik, seperti batas bobot maksimum per

saham, biaya transaksi, serta model risiko lain seperti CVaR

(Conditional Value at Risk). Penggunaan model ini mendukung

pengambilan keputusan investasi yang lebih rasional dan berbasis data

historis, meningkatkan peluang return optimal dengan risiko terkendali.

 213 Buku Referensi

DAFTAR PUSTAKA

Atkinson, K. (1989). An Introduction to Numerical Analysis (2nd ed.). John

Wiley & Sons.

Atkinson, K. E. (1989). An Introduction to Numerical Analysis (2nd ed.).

John Wiley & Sons.

Atkinson, K. E. (1989). An Introduction to Numerical Analysis. Wiley.

Burden, R. L., & Faires, J. D. (2010). Numerical Analysis (9th ed.).

Brooks/Cole Cengage Learning.

Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9th ed.).

Brooks/Cole, Cengage Learning.

Burden, R. L., & Faires, J. D. (2011). Numerical Analysis (9th ed.).

Brooks/Cole.

Chapra, S. C., & Canale, R. P. (2010). Numerical Methods for Engineers

(6th ed.). McGraw-Hill Education.

Chapra, S. C., & Canale, R. P. (2010). Numerical Methods for Engineers

(6th ed.). McGraw-Hill.

Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers

(7th ed.). McGraw-Hill Education.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT

Press.

Heath, M. T. (2002). Scientific Computing: An Introductory Survey (2nd

ed.). McGraw-Hill.

Higham, D., & Higham, N. (2016). MATLAB Guide (3rd Ed.). SIAM.

IEEE Spectrum. (2023). The Top Programming Languages 2023. Retrieved

from https://spectrum.ieee.org/top-programming-languages-2023

Jolliffe, I. T. (2002). Principal Component Analysis. Springer.

Kurniawan, D., Subekti, R., & Wardani, S. (2021). Pemilihan Bahasa

Pemrograman untuk Komputasi Numerik. Jurnal Teknologi dan

Sistem Komputer, 9(2), 111-120.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,

521(7553), 436–444.

Mallat, S. (2008). A Wavelet Tour of Signal Processing. Academic Press.

MathWorks. (2024). Why MATLAB?. Retrieved from

https://www.mathworks.com/discovery/matlab.html

Nocedal, J., & Wright, S. J. (2006). Numerical Optimization (2nd ed.).

Springer.

214 Pemrograman dan Komputasi Numerik

Oliphant, T. E. (2006). A Guide to NumPy. Trelgol Publishing.

Paszke, A., et al. (2019). PyTorch: An Imperative Style, High-Performance

Deep Learning Library. Advances in Neural Information Processing

Systems (NeurIPS).

Patricia, K., & Goldberg, D. (1991). What Every Computer Scientist Should

Know About Floating-Point Arithmetic. ACM Computing Surveys.

Quarteroni, A., Sacco, R., & Saleri, F. (2007). Numerical Mathematics (2nd

ed.). Springer.

Runge, C. (1901). Über empirische Funktionen und die Interpolation

zwischen äquidistanten Ordinaten. Bishop, C. M. (2006). Pattern

Recognition and Machine Learning. Springer.

Schwarz, S., Trefethen, L. N., & Higham, N. (2018). Numerical Computing

with IEEE Floating point Arithmetic. SIAM.

Stroustrup, B. (2013). The C++ Programming Language (4th Ed.). Addison-

Wesley.

Sundararajan, S. (2015). Fixed Point vs Floating point Representation.

Embedded Systems Journal.

Xu, R., & Wunsch, D. (2005). Clustering. Wiley-IEEE Press.

Zaharia, M., et al. (2016). Apache Spark: A Unified Engine for Big Data

Processing. Communications of the ACM, 59(11), 56–

65.Zeitschrift für Mathematik und Physik.

 215 Buku Referensi

GLOSARIUM

Bit Unit terkecil dalam representasi data digital,

bernilai 0 atau 1, yang menjadi dasar dalam

operasi logika komputer dan komunikasi biner.

Bug Kesalahan dalam penulisan kode program yang

menyebabkan gangguan fungsi atau hasil yang

tidak sesuai dengan yang diharapkan.

Loop Struktur kontrol dalam program yang

memungkinkan pengulangan perintah selama

kondisi tertentu masih terpenuhi.

Flag Variabel khusus yang digunakan untuk

menandai status tertentu dalam eksekusi

program, biasanya berupa nilai logika.

Code Kumpulan instruksi tertulis dalam bahasa

pemrograman yang dapat diterjemahkan oleh

mesin untuk menjalankan tugas tertentu.

Byte Unit data yang terdiri dari 8 bit, digunakan untuk

menyimpan satu karakter atau nilai kecil dalam

memori komputer.

Plot Representasi visual dari data numerik atau fungsi

matematis dalam bentuk grafik untuk tujuan

analisis dan interpretasi.

Hash Teknik konversi data menjadi nilai unik tetap

menggunakan fungsi matematika, sering

digunakan dalam pencarian cepat dan keamanan

data.

216 Pemrograman dan Komputasi Numerik

Bool Tipe data logika yang hanya memiliki dua nilai,

yaitu benar (true) dan salah (false), esensial

dalam pengambilan keputusan.

Char Tipe data primitif yang merepresentasikan satu

karakter, seperti huruf, angka, atau simbol dalam

sistem pengkodean.

Read Operasi untuk mengambil atau memperoleh data

dari sumber luar seperti file, sensor, atau

perangkat masukan.

Mean Nilai rata-rata dari sekumpulan angka, diperoleh

dengan menjumlahkan semua nilai dan

membaginya dengan jumlah data.

Scan Proses membaca setiap elemen data atau struktur

dengan urutan tertentu untuk tujuan evaluasi atau

pencarian.

Call Instruksi untuk memanggil fungsi atau prosedur

tertentu dalam program agar menjalankan

serangkaian perintah tertentu.

Heap Struktur data berbasis pohon biner yang

digunakan dalam pengelolaan memori dan

pengurutan prioritas.

 217 Buku Referensi

INDEKS

A

akademik, 8, 16, 17, 18, 19, 23,

49

B

big data, 137, 170, 176

C

cloud, 52

D

diferensiasi, 2, 11, 89, 103

diskonto, 128

distribusi, 35, 36, 38, 84, 87,

88, 92, 102, 109, 111, 112,

113, 116, 117, 134, 136, 137,

142, 164, 168, 169, 176, 187,

196

E

ekonomi, 1, 3, 5, 7, 53, 56, 69,

72, 79, 82, 97, 99, 118, 120,

126, 128, 139, 142, 143, 148,

150, 169, 183

ekspansi, 12

emisi, 134, 135, 136, 147

empiris, 9, 123, 128

F

fleksibilitas, 9, 16, 21, 22, 24,

29, 30, 42, 62, 66, 72, 73, 74,

76, 81, 150

fluktuasi, 76, 86, 87, 145, 147

fundamental, 2, 10, 22, 26, 55,

69, 71, 79, 92, 102, 129, 140,

161, 167, 170

G

geografis, 4

I

inflasi, 142

infrastruktur, 116, 157

inovatif, 16

integrasi, 2, 8, 11, 16, 17, 21,

22, 24, 38, 43, 89, 93, 95, 97,

98, 100, 101, 103, 105, 106,

114, 115, 137, 149, 153, 160

integritas, 18, 38

interaktif, 19, 22, 23, 37

internet of things, 115

investasi, 7, 193, 196

investor, 193, 196

K

kolaborasi, 32

komparatif, 36

218 Pemrograman dan Komputasi Numerik

komputasi, 1, 2, 3, 4, 5, 6, 7, 9,

10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 21, 22, 23, 24, 25, 35,

36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54, 56, 58, 59, 60, 61,

63, 64, 66, 69, 70, 71, 72, 77,

78, 79, 83, 84, 90, 91, 92, 93,

94, 95, 97, 98, 99, 101, 102,

103, 104, 106, 107, 108, 111,

112, 118, 120, 121, 123, 126,

129, 130, 132, 134, 136, 137,

139, 147, 148, 151, 152, 153,

155, 157, 160, 161, 164, 167,

168, 170, 171, 172, 173, 174,

178, 179, 180, 181, 182, 183,

188

konkret, 162

konsistensi, 19, 49, 131, 153

L

legacy, 17

M

manipulasi, 8, 9, 16, 17, 22, 23,

46, 51, 54, 55, 58, 76, 135,

153, 166

manufaktur, 114, 183

P

proyeksi, 146

R

rasional, 196

real-time, 17, 23, 37, 42, 115,

153, 156, 176

regulasi, 159

robotika, 6, 114, 115, 153, 156,

168, 177

S

stabilitas, 3, 11, 15, 19, 38, 42,

45, 59, 61, 94, 104, 108, 110,

119, 128, 129, 131, 132, 133,

134, 152, 153, 155, 167, 169,

173, 187

suku bunga, 120, 142, 143

T

teoretis, 101

transformasi, 8, 15, 22, 35, 44,

55, 58, 62, 79, 87, 114, 161,

162, 163, 164, 168, 175, 181

transparansi, 20

 219 Buku Referensi

BIOGRAFI PENULIS

Zunaida Sitorus, S.Si., M.Si.

Lahir di Kisaran, 9 Juni 1982, Lulus S2 di Program

Studi Matematika Fakultas Matematika dan Ilmu

Pengetahuan Alam Universitas Sumatera Utara Tahun

2010. Saat ini sebagai Dosen di Universitas Asahan

Program Studi Teknik Informatika.

220 Pemrograman dan Komputasi Numerik

