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 i  Buku Referensi 

KATA PENGANTAR 
 

 

Perkembangan teknologi informasi dan sains komputasi telah 

membawa transformasi besar dalam berbagai bidang ilmu pengetahuan. 

Dalam konteks ini, pemrograman dan komputasi numerik berperan vital 

sebagai jembatan antara model matematis dan penyelesaian praktis terhadap 

persoalan kompleks yang tidak selalu dapat diselesaikan secara analitik. 

Mulai dari simulasi teknik, pemodelan ekonomi, hingga analisis data 

berskala besar, kemampuan untuk menerapkan algoritma numerik dalam 

bentuk program komputer menjadi keterampilan yang semakin dibutuhkan. 

 

Buku referensi “Pemrograman dan Komputasi Numerik: Dari Teori 

ke Aplikasi” membahas berbagai konsep dasar dan lanjutan dalam 

komputasi numerik, mulai dari representasi bilangan dan analisis kesalahan, 

hingga penyelesaian persamaan aljabar linear, interpolasi, integrasi, dan 

diferensial numerik. Selain itu, buku referensi ini membahas bahasa 

pemrograman seperti Python dan MATLAB sebagai alat implementasi 

algoritma numerik. Buku referensi ini juga membahas seperti optimisasi, 

komputasi matriks, serta aplikasi dalam bidang teknik, sains, dan keuangan 

juga disertakan, dilengkapi studi kasus dan latihan untuk memperkuat 

pemahaman dan keterampilan praktis pembaca. 

 

Semoga buku referensi ini dapat menjadi sumber pengetahuan yang 

bermanfaat bagi para pembaca dalam memahami dan menguasai konsep 

serta aplikasi pemrograman dan komputasi numerik. 

 

 

Salam Hangat 

 

 

Penulis 

 

 

 

 



ii  Pemrograman dan Komputasi Numerik 

 

DAFTAR ISI 

 
 

KATA PENGANTAR ........................................................................... i 

DAFTAR ISI ......................................................................................... ii 

 

BAB I PENGANTAR PEMROGRAMAN DAN KOMPUTASI 

NUMERIK ......................................................................... 1 

A. Definisi dan Ruang Lingkup Komputasi Numerik .............. 1 

B. Perbedaan Metode Analitik vs. Numerik............................. 8 

C. Jenis Kesalahan: Trunkasi, Pembulatan, dan Presisi ......... 12 

D. Peran Pemrograman dalam Pemecahan Masalah Numerik 15 

 

BAB II BAHASA PEMROGRAMAN UNTUK KOMPUTASI ..... 21 

A. Pemilihan Bahasa: Python, MATLAB, atau C++ ............. 21 

B. Struktur Dasar Pemrograman: Variabel, Tipe Data, dan 

Struktur Kontrol ................................................................. 26 

C. Fungsi dan Modularisasi Program ..................................... 31 

D. Visualisasi Data Numerik (Plotting dan Grafik) ............... 35 

 

BAB III REPRESENTASI BILANGAN DAN ARITMETIKA 

KOMPUTASI ................................................................... 39 

A. Representasi Bilangan Floating point dan Biner ............... 39 

B. Stabilitas dan Propagasi Kesalahan ................................... 42 

C. Operasi Aritmetika dan Pembulatan dalam Mesin ............ 45 

D. Standard IEEE 754 ............................................................ 48 

 

BAB IV PENYELESAIAN PERSAMAAN ALJABAR LINEAR . 53 

A. Sistem Persamaan Linear dan Matriks Koefisien .............. 53 

B. Eliminasi Gauss dan Pivoting ............................................ 58 

C. Metode Iteratif: Jacobi dan Gauss-Seidel .......................... 61 

D. Implementasi dalam Python/MATLAB ............................ 65 

 



 iii  Buku Referensi 

BAB V INTERPOLASI DAN APROKSIMASI FUNGSI .............. 71 

A. Interpolasi Polinomial (Lagrange, Newton) ...................... 71 

B. Interpolasi Spline dan Kurva Halus ................................... 77 

C. Least Squares dan Regresi Polinomial .............................. 82 

D. Visualisasi dan Evaluasi Aproksimasi ............................... 89 

 

BAB VI DIFERENSIASI DAN INTEGRASI NUMERIK ............. 97 

A. Metode Selisih Hingga (Finite Difference) ....................... 97 

B. Metode Trapezoid, Simpson, dan Romberg .................... 104 

C. Evaluasi Akurasi dan Estimasi Kesalahan ....................... 114 

D. Aplikasi pada Persoalan Teknik ...................................... 119 

 

BAB VII PENYELESAIAN PERSAMAAN NONLINEAR ......... 129 

A. Metode Bagi Dua dan Regulafalsi ................................... 129 

B. Metode Newton-Raphson dan Secant .............................. 136 

C. Konvergensi dan Stabilitas Solusi ................................... 143 

 

BAB VIII PERSAMAAN DIFERENSIAL BIASA (PDB) ............ 153 

A. Pengenalan PDB dan Model Aplikatif ............................ 153 

B. Metode Euler dan Runge-Kutta Orde 4 ........................... 159 

C. Sistem PDB dan Solusi Numerik ..................................... 163 

D. Simulasi Dinamis dalam Sistem Teknik dan Biologi ...... 169 

 

BAB IX KOMPUTASI MATRIKS DAN ALJABAR LINIER 

LANJUT ......................................................................... 177 

A. Eigenvalue dan Eigenvector ............................................ 177 

B. Dekomposisi LU, QR, dan SVD ..................................... 186 

C. Aplikasi dalam Pemrosesan Data dan Machine Learning

 ......................................................................................... 190 

D. Optimasi Performa Komputasi Matriks ........................... 193 

 

BAB X STUDI KASUS DAN PROYEK APLIKASI .................... 199 

A. Simulasi Perpindahan Panas ............................................ 199 

B. Pemodelan Populasi dan Epidemi ................................... 204 

C. Optimasi Portofolio dan Pemodelan Finans .................... 209 

 



iv  Pemrograman dan Komputasi Numerik 

 

DAFTAR PUSTAKA ....................................................................... 213 

GLOSARIUM ................................................................................... 215 

INDEKS     ......................................................................................... 217 

BIOGRAFI PENULIS ...................................................................... 219 

 



 1  Buku Referensi 

BAB I 

PENGANTAR 

PEMROGRAMAN DAN 

KOMPUTASI NUMERIK 
 

 

 

 

Pemrograman bukan hanya tentang menulis baris-baris kode, 

tetapi tentang bagaimana menyusun logika dan algoritma yang efisien 

untuk menyelesaikan permasalahan nyata secara sistematis. Sementara 

itu, komputasi numerik hadir sebagai jawaban atas keterbatasan metode 

analitik dalam menyelesaikan persoalan matematika yang rumit dan 

tidak memiliki solusi eksak. Dalam bab ini, membahas konsep dasar 

komputasi numerik, sejarah perkembangannya, serta peran strategisnya 

dalam berbagai bidang seperti teknik, sains, ekonomi, hingga data 

science. Pendahuluan ini juga memberikan gambaran mengenai 

bagaimana komputer merepresentasikan angka dan bagaimana 

kesalahan dalam perhitungan numerik dapat muncul serta memengaruhi 

hasil akhir. Dengan pendekatan yang sederhana namun mendalam, bab 

ini bertujuan untuk membuka wawasan pembaca bahwa komputasi 

numerik bukan sekadar teori matematis, melainkan alat yang sangat 

berguna dalam menyelesaikan masalah-masalah nyata yang menuntut 

ketelitian, kecepatan, dan efisiensi dalam perhitungannya. 

 

A. Definisi dan Ruang Lingkup Komputasi Numerik 

 

Menurut Chapra dan Canale (2010) dalam Numerical Methods 

for Engineers, komputasi numerik didefinisikan sebagai bidang ilmu 

yang berkaitan dengan formulasi, pengembangan, dan implementasi 
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algoritma numerik untuk menyelesaikan permasalahan matematis 

melalui pendekatan komputasi. Komputasi numerik menggabungkan 

prinsip-prinsip matematika, ilmu komputer, dan teknik rekayasa dalam 

menyusun metode-metode yang memungkinkan pemecahan masalah 

matematika kompleks secara mendekati (aproksimasi), khususnya ketika 

solusi eksak secara analitik sulit diperoleh. Dalam dunia nyata, banyak 

permasalahan yang melibatkan data besar, model non-linear, atau bentuk 

fungsi yang tidak dapat diselesaikan dengan metode analitik 

konvensional. Di sinilah peran komputasi numerik menjadi sangat vital. 

Tujuan utama dari komputasi numerik adalah memperoleh solusi 

numerik yang mendekati kebenaran aktual dengan tingkat kesalahan 

yang dapat diterima, serta memastikan metode tersebut dapat diterapkan 

dalam waktu dan sumber daya komputasi yang efisien. Dengan kata lain, 

komputasi numerik tidak berusaha menggantikan metode eksak, tetapi 

melengkapi dan memperluas cakupan penyelesaian masalah matematis 

yang realistis dan kompleks. Seperti dijelaskan oleh Atkinson (1989) 

dalam An Introduction to Numerical Analysis, pendekatan numerik 

bertumpu pada keterbatasan sistem digital dalam merepresentasikan 

bilangan real dan fungsi kontinu. Oleh karena itu, seluruh proses numerik 

mencakup pengubahan bentuk matematis ke bentuk diskret dan 

operasional, yang selanjutnya dapat dihitung oleh komputer 

menggunakan algoritma tertentu. Komputasi numerik mencakup 

berbagai ruang lingkup yang luas dan beragam. Secara umum, ruang 

lingkup tersebut dapat dikelompokkan ke dalam beberapa kategori besar 

berikut: 

 

1. Representasi Bilangan dan Analisis Kesalahan 

Pada komputasi numerik, representasi bilangan dan analisis 

kesalahan merupakan aspek fundamental yang memengaruhi akurasi dan 

keandalan hasil perhitungan. Komputer tidak dapat merepresentasikan 

semua bilangan real secara presisi karena keterbatasan dalam sistem 

bilangan biner dan panjang bit. Sebagaimana dijelaskan oleh Chapra dan 

Canale (2010), komputer menggunakan sistem floating point untuk 

merepresentasikan bilangan real, yang terdiri dari mantissa dan 

eksponen. Representasi ini menyebabkan munculnya round-off error, 

yaitu kesalahan akibat pembulatan bilangan yang tidak dapat ditulis 

secara tepat dalam sistem biner. Sebagai contoh, bilangan desimal seperti 

0.1 tidak dapat direpresentasikan secara akurat dalam biner, sehingga 
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terjadi deviasi kecil yang bisa terakumulasi dalam operasi numerik 

berulang. 

Terdapat pula truncation error, yaitu kesalahan yang muncul 

karena pendekatan suatu metode numerik terhadap bentuk matematis 

yang sebenarnya. Menurut Burden dan Faires (2011), kesalahan ini 

sering muncul dalam metode diferensiasi dan integrasi numerik ketika 

fungsi kontinu diganti dengan aproksimasi diskrit. Pentingnya analisis 

kesalahan terletak pada kemampuannya untuk memprediksi dan 

mengendalikan dampak dari ketidakakuratan dalam algoritma numerik. 

Oleh karena itu, metode numerik yang baik harus memperhitungkan 

stabilitas numerik yakni kemampuan algoritma untuk membatasi 

propagasi kesalahan kecil agar tidak menjadi besar secara eksponensial 

selama proses komputasi. 

 

2. Penyelesaian Persamaan Aljabar 

Penyelesaian persamaan aljabar merupakan salah satu fokus 

utama dalam komputasi numerik karena banyak persoalan dalam sains 

dan teknik dapat dimodelkan dalam bentuk sistem persamaan, baik linier 

maupun non-linier. Sistem persamaan linier, seperti Ax=b, sering 

muncul dalam simulasi struktur, aliran fluida, maupun pemodelan 

ekonomi. Untuk menyelesaikan sistem ini secara numerik, digunakan 

berbagai metode seperti eliminasi Gauss, dekomposisi LU, dan metode 

iteratif seperti Jacobi dan Gauss-Seidel. Menurut Chapra dan Canale 

(2010), metode eliminasi Gauss merupakan pendekatan langsung (direct 

method) yang efisien untuk sistem ukuran kecil hingga menengah, 

namun kurang cocok untuk sistem sangat besar karena kompleksitas 

komputasi dan kebutuhan memori yang tinggi. 

Pada kasus sistem non-linier, penyelesaian persamaan semacam 

f(x)=0 memerlukan pendekatan iteratif, karena bentuk analitiknya sering 

kali tidak tersedia. Metode numerik yang umum digunakan meliputi 

metode bisection, secant, dan Newton-Raphson. Menurut Burden dan 

Faires (2011), metode Newton-Raphson sangat populer karena 

konvergensinya yang cepat, tetapi memerlukan turunan fungsi dan 

tebakan awal yang cukup dekat dengan akar sebenarnya agar hasilnya 

akurat. Di sisi lain, metode bisection lebih stabil tetapi konvergensinya 

lambat. 

Pentingnya penyelesaian persamaan aljabar dalam komputasi 

numerik terletak pada aplikasinya yang luas di berbagai bidang. 
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Misalnya, dalam simulasi mekanika struktur, gaya dan respons sistem 

dirumuskan dalam bentuk sistem persamaan linier. Dalam pemodelan 

non-linier, seperti perambatan panas atau reaksi kimia, persamaan non-

linier menjadi dasar dari model numeriknya. Oleh karena itu, 

pemahaman tentang metode-metode ini dan perilakunya sangat penting 

untuk memastikan hasil komputasi yang akurat, stabil, dan efisien. 

 

3. Interpolasi dan Aproksimasi Fungsi 

Interpolasi dan aproksimasi fungsi merupakan dua teknik penting 

dalam komputasi numerik yang digunakan untuk mendekati fungsi-

fungsi matematis berdasarkan sejumlah titik data terbatas. Interpolasi 

bertujuan untuk mencari fungsi yang melewati seluruh titik data yang 

diberikan secara tepat, sedangkan aproksimasi berusaha mencari fungsi 

yang "mendekati" data secara keseluruhan, meskipun tidak harus melalui 

semua titik tersebut. Teknik ini sangat bermanfaat ketika fungsi eksak 

tidak diketahui, namun tersedia data hasil pengukuran atau simulasi. 

Metode interpolasi yang umum digunakan antara lain interpolasi 

polinomial (seperti interpolasi Lagrange dan Newton) dan interpolasi 

spline. Interpolasi polinomial bekerja dengan membangun satu 

polinomial derajat tinggi yang melewati seluruh titik data, tetapi metode 

ini rentan terhadap fenomena Runge, yaitu osilasi ekstrem pada tepi 

interval ketika jumlah titik meningkat. Sebagai solusi, interpolasi spline 

kubik menawarkan alternatif dengan membagi interval menjadi segmen 

kecil dan menggunakan polinomial derajat rendah pada tiap segmen, 

sehingga hasilnya lebih halus dan stabil. 

Pada aproksimasi, metode least squares sering digunakan untuk 

mencari fungsi yang meminimalkan selisih kuadrat antara nilai fungsi 

dan data yang tersedia. Pendekatan ini sangat berguna dalam analisis 

regresi dan pemodelan data eksperimental. Interpolasi dan aproksimasi 

tidak hanya digunakan dalam matematika murni, tetapi juga dalam 

berbagai aplikasi praktis seperti rekonstruksi sinyal digital, pemetaan 

geografis, grafika komputer, dan pengolahan citra. Keduanya menjadi 

alat penting dalam menghubungkan data diskrit menjadi representasi 

fungsi kontinu yang dapat dianalisis lebih lanjut atau digunakan dalam 

simulasi numerik yang lebih kompleks. 
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4. Penyelesaian Persamaan Diferensial 

Penyelesaian persamaan diferensial secara numerik merupakan 

komponen penting dalam komputasi ilmiah, karena banyak fenomena 

alam dan teknik yang dimodelkan menggunakan persamaan diferensial. 

Persamaan diferensial menggambarkan hubungan antara suatu fungsi 

dengan turunannya, dan digunakan untuk merepresentasikan perubahan 

dinamis dalam sistem fisik seperti gerak, panas, pertumbuhan populasi, 

hingga sirkuit listrik. Dalam praktiknya, persamaan ini terbagi menjadi 

dua jenis utama: persamaan diferensial biasa (ODE) dan persamaan 

diferensial parsial (PDE). 

Untuk ODE, yaitu persamaan diferensial yang melibatkan satu 

variabel bebas, metode numerik seperti metode Euler, Runge-Kutta, dan 

metode Adams-Bashforth digunakan secara luas. Metode Euler, yang 

paling sederhana, menghitung nilai fungsi ke titik berikutnya 

menggunakan turunan lokal, namun memiliki tingkat akurasi yang 

rendah. Sebaliknya, metode Runge-Kutta orde keempat (RK4) 

menawarkan akurasi yang jauh lebih tinggi dengan tetap menjaga 

kestabilan komputasi, sehingga lebih banyak digunakan dalam simulasi 

sistem dinamis. 

PDE melibatkan lebih dari satu variabel bebas dan sering 

digunakan untuk memodelkan fenomena dua atau tiga dimensi, seperti 

perpindahan panas dalam ruang atau perambatan gelombang. 

Penyelesaiannya memerlukan pendekatan numerik yang lebih kompleks 

seperti metode beda hingga (finite difference method), elemen hingga 

(finite element method), dan volume hingga (finite volume method). 

Metode-metode ini mengubah persamaan diferensial menjadi sistem 

persamaan aljabar yang dapat diselesaikan secara iteratif oleh komputer. 

 

5. Optimisasi Numerik 

Optimisasi numerik merupakan cabang penting dalam komputasi 

numerik yang fokus pada pencarian nilai minimum atau maksimum dari 

suatu fungsi, baik dalam ruang satu variabel maupun multivariat. 

Optimisasi ini sangat relevan dalam berbagai bidang, seperti teknik, 

ekonomi, sains data, dan machine learning, di mana banyak 

permasalahan nyata yang memerlukan solusi optimal dari suatu model 

matematis. Misalnya, dalam perencanaan produksi, kita ingin 

meminimalkan biaya dengan tetap memenuhi permintaan; dalam 
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machine learning, algoritma pelatihan bertujuan meminimalkan loss 

function. 

 

Gambar 1. Machine Learning 

 
Sumber: Codepolitan 

 

Optimisasi numerik terbagi menjadi dua kelompok utama: 

unconstrained optimization (tanpa kendala) dan constrained 

optimization (dengan kendala). Untuk kasus tanpa kendala, metode 

seperti gradient descent, Newton-Raphson, dan conjugate gradient 

banyak digunakan. Metode gradient descent bekerja dengan mengikuti 

arah turunan (gradien) fungsi secara iteratif menuju titik minimum, dan 

sering digunakan dalam pelatihan model AI. Di sisi lain, metode Newton 

lebih cepat karena menggunakan informasi turunan kedua (Hessian), 

tetapi lebih mahal secara komputasi. 

Untuk optimisasi dengan kendala, seperti pembatasan sumber 

daya atau batas nilai variabel, metode seperti Lagrange multipliers dan 

metode pemrograman kuadrat digunakan. Dalam pendekatan numerik, 

solusi sering kali tidak diperoleh secara eksak melainkan secara iteratif, 

sehingga penting untuk memperhatikan aspek konvergensi dan 

kestabilan algoritma. Penerapan optimisasi numerik sangat luas dan 

berkembang seiring kemajuan teknologi. Dalam perencanaan kota, 

optimisasi digunakan untuk mengatur lalu lintas; dalam keuangan, untuk 

portofolio optimal; dan dalam robotika, untuk menentukan jalur 
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pergerakan paling efisien. Dengan kemampuan komputer modern, 

optimisasi numerik telah menjadi alat yang sangat kuat dalam 

pengambilan keputusan berbasis data dan perancangan sistem yang 

kompleks dan adaptif. 

6. Aplikasi Interdisipliner 

Aplikasi interdisipliner dalam komputasi numerik mencerminkan 

peran vital metode numerik dalam menjembatani berbagai bidang ilmu 

untuk menyelesaikan persoalan kompleks yang tidak dapat dipecahkan 

secara analitik. Karena banyak sistem dalam dunia nyata bersifat 

dinamis, non-linear, dan berbasis data, maka komputasi numerik menjadi 

kunci dalam membangun model, melakukan simulasi, serta 

mengevaluasi hasil dalam beragam konteks ilmiah dan praktis. 

Pada teknik sipil dan mesin, misalnya, metode numerik 

digunakan untuk menganalisis tegangan dan deformasi struktur 

bangunan dengan pendekatan elemen hingga (finite element method), 

serta simulasi aliran fluida dengan metode volume hingga (finite volume 

method). Di bidang fisika dan kimia, komputasi numerik digunakan 

untuk mensimulasikan dinamika partikel, reaksi kimia, atau perambatan 

gelombang elektromagnetik. Dalam biologi dan kedokteran, pendekatan 

numerik diterapkan pada pemodelan penyebaran penyakit, analisis 

jaringan biologis, hingga simulasi organ virtual untuk keperluan bedah 

presisi. 

Di ranah ekonomi dan keuangan, komputasi numerik sangat 

berperan dalam pemodelan harga opsi (seperti model Black-Scholes), 

optimisasi portofolio investasi, serta analisis sensitivitas terhadap 

perubahan pasar. Bahkan di bidang lingkungan dan geografi, metode 

numerik dimanfaatkan untuk mensimulasikan pola perubahan iklim, 

pergerakan tanah, atau aliran air dalam sistem hidrologi. Selain itu, 

dengan kemunculan bidang data science dan kecerdasan buatan, metode 

numerik menjadi tulang punggung dalam pelatihan model pembelajaran 

mesin melalui optimisasi, regresi, dan aproksimasi fungsi. Kolaborasi 

lintas disiplin inilah yang menjadikan komputasi numerik tidak hanya 

sebagai alat matematis, tetapi juga sebagai fondasi teknologi modern 

yang mengintegrasikan sains, teknik, dan kebijakan dalam pengambilan 

keputusan yang berbasis data dan simulasi. 
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B. Perbedaan Metode Analitik vs. Numerik 

 

Menurut Chapra dan Canale (2010) dalam Numerical Methods 

for Engineers, metode analitik dan metode numerik merupakan dua 

pendekatan utama dalam penyelesaian persoalan matematika dan 

rekayasa. Keduanya memiliki karakteristik, keunggulan, dan 

keterbatasan masing-masing. Pemahaman akan perbedaan mendasar 

antara keduanya sangat penting, terutama dalam memilih pendekatan 

yang paling sesuai untuk suatu jenis permasalahan dalam konteks 

akademik maupun praktis. 

Metode analitik (analytical methods) atau dikenal juga sebagai 

metode eksak, merupakan pendekatan penyelesaian yang menghasilkan 

solusi dalam bentuk tertutup (closed-form solution). Artinya, solusi 

diperoleh melalui manipulasi simbolik menggunakan kaidah-kaidah 

matematika yang telah terdefinisi secara formal. Misalnya, untuk 

menyelesaikan integral atau turunan, kita dapat menggunakan rumus 

kalkulus klasik, seperti  

∫ 𝑥2𝑑𝑥 =  
1

3
𝑥3 + 𝐶 

Pada konteks persamaan diferensial, metode analitik mencakup 

teknik seperti pemisahan variabel, transformasi Laplace, dan integrasi 

faktor. Solusi yang diperoleh biasanya dalam bentuk fungsi eksplisit 

yang dapat dievaluasi untuk nilai tertentu dengan presisi sempurna. 

Burden dan Faires (2011) dalam Numerical Analysis menyatakan bahwa 

metode analitik cocok untuk sistem yang relatif sederhana dan linier, di 

mana model matematis dapat dinyatakan dalam bentuk fungsi-fungsi 

dasar (eksponensial, trigonometri, logaritma, dll.). Sebaliknya, metode 

numerik (numerical methods) adalah pendekatan aproksimatif yang 

mencari solusi mendekati (approximate solution) dari suatu 

permasalahan matematika, dengan memanfaatkan algoritma dan 

perhitungan numerik berbasis komputer. Pendekatan ini digunakan 

ketika solusi analitik sulit atau bahkan mustahil untuk diperoleh. 

Contoh klasiknya adalah menyelesaikan persamaan non-linier 

seperti e−x = x, yang tidak memiliki solusi analitik dalam bentuk fungsi 

eksplisit. Dalam kasus seperti ini, digunakan metode numerik seperti 

Newton-Raphson atau bisection method untuk mencari nilai x yang 

mendekati solusi sejati. Menurut Atkinson (1989) dalam An Introduction 

to Numerical Analysis, metode numerik sangat berguna dalam konteks 
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perhitungan numerik yang kompleks, besar skala, atau tidak dapat 

dipecahkan secara simbolik. Komputasi numerik memanfaatkan 

algoritma rekursif, iterasi, dan teknik pendekatan diskrit untuk 

menggantikan analisis simbolik. 

 

1. Perbandingan Karakteristik Utama 

Perbandingan karakteristik utama antara metode analitik dan 

metode numerik mencerminkan dua pendekatan yang berbeda dalam 

menyelesaikan permasalahan matematika dan ilmiah, baik dari segi 

prinsip dasar, teknik eksekusi, hasil yang diperoleh, hingga tingkat 

fleksibilitasnya. Metode analitik dikenal sebagai pendekatan matematis 

yang menghasilkan solusi eksak melalui manipulasi simbolik terhadap 

persamaan yang ada. Misalnya, dalam menyelesaikan turunan suatu 

fungsi, metode analitik akan menghasilkan bentuk fungsi turunan secara 

langsung, seperti 
d

dx
(x2) = 2x. Sebaliknya, metode numerik 

menghasilkan solusi aproksimasi melalui pendekatan diskrit dan 

perhitungan iteratif yang dapat dijalankan menggunakan komputer, 

misalnya dengan memanfaatkan metode finite difference untuk 

menghampiri nilai turunan suatu fungsi berdasarkan data numerik yang 

terbatas. 

Salah satu karakteristik pembeda utama terletak pada jenis solusi 

yang dihasilkan. Solusi analitik berbentuk tertutup (closed-form) dan 

eksak, sementara solusi numerik bersifat pendekatan (approximate) dan 

bergantung pada nilai awal, parameter langkah, serta struktur algoritma. 

Oleh karena itu, dalam hal akurasi, metode analitik secara teori lebih 

unggul karena tidak mengandung kesalahan pembulatan maupun 

pemotongan, selama manipulasi simbolik dilakukan dengan benar. 

Namun demikian, metode numerik memungkinkan pengendalian tingkat 

kesalahan melalui pemilihan ukuran langkah (step size), jumlah iterasi, 

atau tingkat presisi floating point. 

Dari sisi fleksibilitas dan skalabilitas, metode numerik jauh lebih 

unggul. Metode analitik hanya dapat diterapkan pada sistem yang bentuk 

matematikanya relatif sederhana, linier, dan terdefinisi secara simbolik. 

Ketika berhadapan dengan sistem yang sangat besar, non-linier, atau 

mengandung data empiris yang tidak berbentuk fungsi eksplisit, metode 

analitik sering kali gagal. Di sisi lain, metode numerik dapat menangani 

sistem non-linier, multidimensi, bahkan yang berbasis data diskrit, 
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seperti yang sering dijumpai dalam pemodelan iklim, rekayasa struktur, 

atau sistem keuangan. 

Pada sumber daya yang dibutuhkan, metode analitik lebih ringan 

karena hanya membutuhkan keterampilan matematis dan alat tulis, 

sedangkan metode numerik membutuhkan dukungan komputasi, baik 

perangkat lunak seperti MATLAB, Python, atau C++, maupun perangkat 

keras dengan kapasitas pemrosesan tinggi. Hal ini menjadikan metode 

numerik lebih bergantung pada perkembangan teknologi dan algoritma 

komputasi. 

Kestabilan solusi juga menjadi faktor penting yang membedakan 

keduanya. Solusi numerik rentan terhadap instabilitas numerik, yaitu 

situasi di mana kesalahan kecil yang terjadi dalam perhitungan dapat 

berkembang secara signifikan, menyebabkan hasil yang menyimpang. 

Oleh karena itu, dalam metode numerik, analisis kestabilan dan 

konvergensi sangat penting, sedangkan dalam metode analitik, hal ini 

relatif tidak menjadi isu utama. 

Secara umum, metode analitik lebih cocok untuk persoalan 

sederhana dan sebagai dasar pemahaman matematis, sedangkan metode 

numerik unggul dalam menangani permasalahan kompleks yang 

melibatkan banyak variabel, bentuk non-linier, dan pengolahan data 

besar. Dalam praktik modern, keduanya tidak saling menggantikan tetapi 

justru saling melengkapi, di mana metode analitik digunakan untuk 

validasi atau pembuktian konsep, sementara metode numerik digunakan 

untuk eksplorasi dan simulasi dalam skala besar serta berorientasi pada 

hasil praktis. 

 

2. Analisis Kesalahan dan Akurasi 

Pada komputasi numerik, analisis kesalahan dan akurasi 

merupakan aspek fundamental yang menentukan seberapa dapat 

dipercaya hasil perhitungan numerik yang diperoleh. Tidak seperti 

metode analitik yang menghasilkan solusi eksak, metode numerik hanya 

memberikan solusi pendekatan yang rentan terhadap berbagai jenis 

kesalahan. Oleh karena itu, pemahaman mendalam terhadap sumber-

sumber kesalahan, cara mengukurnya, serta strategi untuk 

meminimalkan dampaknya sangat penting dalam praktik komputasi 

numerik. 

Secara umum, kesalahan dalam komputasi numerik dapat 

diklasifikasikan ke dalam dua jenis utama, yaitu kesalahan pembulatan 
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(round-off error) dan kesalahan pemotongan (truncation error). 

Kesalahan pembulatan terjadi karena komputer hanya mampu 

merepresentasikan bilangan dalam presisi terbatas, biasanya dalam 

format floating point. Misalnya, bilangan desimal seperti 0.1 tidak dapat 

direpresentasikan secara tepat dalam biner, sehingga setiap operasi 

aritmetika dapat menimbulkan deviasi kecil yang terakumulasi selama 

proses komputasi. Dalam kasus iterasi yang panjang, akumulasi 

kesalahan pembulatan ini dapat memengaruhi hasil akhir secara 

signifikan. Sebaliknya, kesalahan pemotongan terjadi ketika suatu proses 

matematis yang seharusnya berlanjut tanpa batas seperti deret tak hingga 

atau proses diferensiasi/integrasi, dihentikan pada titik tertentu demi 

kepraktisan perhitungan. Sebagai contoh, metode numerik seperti 

metode Euler untuk penyelesaian persamaan diferensial menghampiri 

solusi dengan interval diskrit, yang pasti berbeda dari solusi kontinu 

yang sebenarnya. 

Untuk mengevaluasi sejauh mana hasil numerik mendekati solusi 

yang benar, digunakan ukuran seperti galat absolut (absolute error) dan 

galat relatif (relative error). Galat absolut adalah selisih antara nilai 

eksak dan nilai numerik, sedangkan galat relatif menunjukkan proporsi 

kesalahan terhadap nilai eksaknya. Analisis ini membantu menentukan 

apakah suatu metode numerik menghasilkan solusi yang cukup akurat 

untuk tujuan tertentu. Selain itu, konsep kondisioning dan stabilitas 

numerik menjadi bagian penting dalam analisis kesalahan. Kondisioning 

mengacu pada sensitivitas masalah terhadap perubahan kecil pada data 

input, sedangkan stabilitas berkaitan dengan bagaimana kesalahan input 

atau pembulatan memengaruhi hasil dalam proses algoritma. Sebuah 

metode disebut stabil jika tidak memperbesar kesalahan kecil menjadi 

besar selama iterasi. 

Pada desain algoritma numerik, perhatian terhadap orde akurasi 

juga krusial. Metode dengan orde yang lebih tinggi umumnya 

memberikan hasil yang lebih akurat dengan langkah yang lebih kecil. 

Misalnya, metode Runge-Kutta orde keempat dalam penyelesaian ODE 

memberikan akurasi yang lebih tinggi daripada metode Euler dengan 

langkah yang sama. Namun, akurasi yang tinggi tidak selalu berarti 

efisien, karena sering kali memerlukan komputasi lebih banyak. Oleh 

karena itu, dalam praktik, analis numerik harus menyeimbangkan antara 

akurasi, efisiensi komputasi, dan stabilitas. 
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C. Jenis Kesalahan: Trunkasi, Pembulatan, dan Presisi 

 

Di dunia komputasi numerik, kesalahan (error) adalah hal yang 

tidak dapat dihindari. Komputer sebagai alat komputasi digital memiliki 

keterbatasan dalam merepresentasikan bilangan real dan melakukan 

operasi matematika yang kompleks secara presisi. Oleh karena itu, hasil 

dari metode numerik umumnya merupakan aproksimasi terhadap solusi 

eksak, dan mengandung berbagai jenis kesalahan. Menurut Chapra dan 

Canale (2010) dalam Numerical Methods for Engineers, kesalahan 

dalam komputasi numerik dapat dikelompokkan ke dalam tiga jenis 

utama, yaitu kesalahan trunkasi (truncation error), kesalahan 

pembulatan (round-off error), dan kesalahan presisi (precision error). 

Masing-masing jenis kesalahan ini memiliki sumber, sifat, dan dampak 

yang berbeda terhadap hasil akhir komputasi. 

 

1. Kesalahan Trunkasi (Truncation Error) 

Kesalahan trunkasi (truncation error) adalah jenis kesalahan 

numerik yang muncul akibat pemotongan atau penyederhanaan dari 

proses matematis yang seharusnya dilakukan secara lengkap atau tak 

hingga. Dalam konteks komputasi numerik, kesalahan ini terjadi ketika 

metode analitik yang kompleks, seperti deret tak hingga atau proses 

kalkulus kontinu, diubah menjadi bentuk diskrit atau dipangkas untuk 

membuatnya lebih mudah dihitung oleh komputer. Menurut Burden dan 

Faires (2011) dalam Numerical Analysis, kesalahan trunkasi bukan 

berasal dari representasi bilangan seperti pada kesalahan pembulatan, 

melainkan dari penggunaan aproksimasi terhadap ekspresi matematis, 

seperti menghentikan deret Taylor pada suku tertentu atau mengganti 

integral eksak dengan metode pendekatan numerik seperti trapezoid atau 

Simpson. 

Sebagai contoh, pendekatan turunan pertama dari suatu fungsi 

f(x) menggunakan metode beda hingga (finite difference): 

𝑓′(𝑥) ≈  
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

Mengandung kesalahan trunkasi karena hanya menggunakan 

sebagian informasi dari ekspansi Taylor, tanpa memperhitungkan suku-

suku berikutnya yang juga memengaruhi nilai turunan sebenarnya. 

Semakin besar nilai h (interval diskret), semakin besar kesalahan 

trunkasi yang terjadi. Oleh karena itu, salah satu cara untuk mengurangi 
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kesalahan ini adalah dengan memperkecil nilai h, atau menggunakan 

metode orde lebih tinggi yang mempertimbangkan lebih banyak suku 

dalam deret Taylor. 

Kesalahan trunkasi juga muncul dalam metode numerik 

penyelesaian persamaan diferensial, seperti metode Euler atau Runge-

Kutta. Misalnya, metode Euler hanya menggunakan gradien pada titik 

awal untuk memperkirakan nilai berikutnya, dan mengabaikan 

perubahan gradien yang terjadi sepanjang langkah tersebut. Ini 

menimbulkan perbedaan antara solusi eksak dan hasil numerik. Analisis 

terhadap kesalahan trunkasi penting dilakukan untuk menilai seberapa 

akurat suatu metode numerik dalam menghampiri solusi sebenarnya. 

Dalam praktiknya, terdapat kompromi antara akurasi dan efisiensi 

komputasi: semakin kecil kesalahan trunkasi yang diinginkan, semakin 

kompleks atau banyak komputasi yang dibutuhkan. Oleh karena itu, 

pemilihan metode dan parameter numerik yang tepat sangat penting 

untuk menjaga akurasi sambil tetap efisien secara komputasi. 

 

2. Kesalahan Pembulatan (Round-off Error) 

Kesalahan pembulatan (round-off error) adalah kesalahan 

numerik yang terjadi akibat keterbatasan komputer dalam 

merepresentasikan bilangan real secara presisi penuh. Komputer modern 

menggunakan sistem bilangan biner dan format floating point (misalnya, 

IEEE 754) untuk menyimpan dan memproses angka. Karena hanya 

tersedia sejumlah digit terbatas untuk menyimpan bilangan, maka nilai-

nilai desimal yang tidak dapat diwakili secara tepat dalam bentuk biner 

harus dibulatkan ke angka terdekat yang masih dapat ditampung. Hal ini 

menyebabkan terjadinya deviasi kecil dari nilai sebenarnya, yang dapat 

terakumulasi dan berdampak signifikan dalam proses komputasi 

berulang atau kompleks (Overton, 2001). 

Sebagai contoh klasik, bilangan desimal seperti 0.1 tidak dapat 

dinyatakan secara eksak dalam sistem biner, sehingga saat digunakan 

dalam perhitungan komputer, nilainya hanya mendekati 0.1 tetapi tidak 

persis sama. Kesalahan kecil ini mungkin terlihat sepele dalam satu 

operasi, namun dalam algoritma numerik yang melibatkan ribuan atau 

bahkan jutaan iterasi, seperti simulasi numerik atau pemrosesan citra 

digital, akumulasi dari kesalahan pembulatan ini bisa menghasilkan hasil 

yang keliru secara signifikan. Terutama dalam operasi aritmatika yang 

sensitif, seperti pengurangan antara dua bilangan yang hampir sama, 
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fenomena yang disebut loss of significance dapat terjadi, di mana 

sebagian besar digit penting menghilang akibat pembulatan. 

Kesalahan pembulatan juga dipengaruhi oleh jenis presisi yang 

digunakan: single precision (biasanya 32 bit) dan double precision (64 

bit). Double precision memungkinkan representasi angka dengan lebih 

banyak digit signifikan, sehingga mengurangi kesalahan pembulatan. 

Namun, penggunaan presisi lebih tinggi juga memerlukan lebih banyak 

sumber daya komputasi. Untuk memitigasi dampak kesalahan 

pembulatan, perancang algoritma numerik dapat melakukan berbagai 

strategi, seperti mengatur ulang urutan operasi (menghindari 

penjumlahan antara angka besar dan kecil secara langsung), 

menggunakan teknik compensated summation, atau memilih algoritma 

yang stabil secara numerik. Dengan memahami dan mengelola kesalahan 

pembulatan secara cermat, hasil komputasi numerik dapat dibuat lebih 

andal dan akurat dalam berbagai aplikasi ilmiah dan rekayasa. 

 

3. Kesalahan Presisi (Precision Error) 

Kesalahan presisi (precision error) adalah jenis kesalahan 

numerik yang berkaitan erat dengan batas kemampuan komputer dalam 

membedakan dua bilangan yang sangat dekat nilainya, terutama akibat 

keterbatasan representasi bilangan dalam sistem floating point. 

Komputer menyimpan angka dalam bentuk biner dengan jumlah bit 

tertentu, seperti single precision (32 bit) atau double precision (64 bit). 

Setiap format memiliki batas presisi yang disebut machine epsilon, yaitu 

nilai terkecil yang dapat ditambahkan ke 1 sehingga menghasilkan angka 

berbeda dari 1 dalam sistem floating point tersebut. Dalam sistem double 

precision IEEE 754, machine epsilon bernilai sekitar 22.2 × 10−16, 

yang menunjukkan bahwa setiap perbedaan nilai di bawah angka ini bisa 

diabaikan oleh komputer (Overton, 2001). 

Kesalahan presisi muncul secara nyata ketika kita berurusan 

dengan angka-angka yang sangat kecil atau sangat besar, atau ketika 

melakukan operasi antara bilangan yang memiliki magnitudo berbeda 

secara signifikan. Misalnya, jika dua bilangan seperti 

1.000000000000000 dan 1.000000000000001 dikurangkan dalam 

sistem dengan presisi terbatas, hasil pengurangannya bisa saja menjadi 

nol karena komputer tidak mampu membedakan keduanya. Fenomena 
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ini dikenal sebagai cancellation error, dan sering terjadi dalam algoritma 

yang tidak dirancang untuk mempertimbangkan batas presisi tersebut. 

Kesalahan presisi juga memengaruhi hasil dari iterasi numerik, 

di mana hasil dari satu langkah digunakan sebagai input untuk langkah 

berikutnya. Jika kesalahan presisi terjadi di awal proses, maka hasil yang 

terus digunakan dalam iterasi bisa menyebarkan atau bahkan 

memperbesar kesalahan tersebut. Hal ini menjadi sangat penting dalam 

metode numerik seperti solusi persamaan diferensial, sistem linier besar, 

dan optimisasi. Untuk mengurangi dampak kesalahan presisi, beberapa 

langkah yang dapat diambil antara lain: menggunakan format double 

precision untuk perhitungan sensitif, menghindari pengurangan antara 

bilangan yang hampir sama, dan memilih algoritma yang dirancang 

dengan stabilitas numerik tinggi. Dengan memahami sifat kesalahan 

presisi, pengguna komputasi numerik dapat merancang solusi yang lebih 

akurat dan tahan terhadap keterbatasan representasi bilangan digital. 

 

D. Peran Pemrograman dalam Pemecahan Masalah Numerik 

 

Menurut Chapra dan Canale (2010) dalam Numerical Methods 

for Engineers, pemecahan masalah numerik memerlukan serangkaian 

langkah sistematis yang sering kali tidak dapat dilakukan secara manual, 

terutama ketika masalah tersebut berskala besar, melibatkan ribuan 

variabel, atau membutuhkan iterasi kompleks. Dalam konteks ini, 

pemrograman menjadi perantara yang sangat krusial antara konsep 

matematika numerik dan implementasi praktisnya. Pemrograman 

memungkinkan transformasi algoritma matematis ke dalam bentuk yang 

dapat dijalankan oleh komputer, sehingga mempercepat, mempermudah, 

dan memperluas cakupan penyelesaian masalah numerik dalam berbagai 

bidang seperti sains, teknik, keuangan, hingga ilmu data. 

 

1. Pemrograman sebagai Sarana Implementasi Algoritma 

Numerik 

Pemrograman memiliki peran krusial sebagai sarana utama 

dalam implementasi algoritma numerik, yakni metode matematis yang 

digunakan untuk menyelesaikan masalah yang tidak dapat diselesaikan 

secara eksak atau analitik. Algoritma numerik seperti metode bisection, 

Newton-Raphson, Gauss-Seidel, atau Runge-Kutta memerlukan proses 

iteratif dan perhitungan yang kompleks, yang secara manual sangat sulit, 
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lambat, dan rawan kesalahan. Dengan adanya pemrograman, algoritma-

algoritma tersebut dapat diubah menjadi rangkaian instruksi logis yang 

dieksekusi oleh komputer dengan cepat, akurat, dan efisien. 

Pemrograman memungkinkan pengguna untuk membuat fungsi 

modular, mengatur struktur data, melakukan pengulangan (looping), dan 

mengatur logika percabangan, yang semuanya sangat penting dalam 

menjalankan algoritma numerik. Sebagai contoh, dalam metode 

Newton-Raphson untuk mencari akar suatu fungsi non-linier, 

pemrograman memungkinkan proses iteratif dilakukan otomatis dengan 

toleransi galat yang dapat disesuaikan. Hal ini membuat algoritma dapat 

digunakan secara luas dalam berbagai permasalahan, cukup dengan 

mengganti fungsi yang ingin diselesaikan. 

Bahasa pemrograman seperti Python, MATLAB, C++, atau R 

menyediakan berbagai fitur untuk mempermudah implementasi metode 

numerik. Python, misalnya, memiliki pustaka NumPy dan SciPy yang 

menyediakan fungsi bawaan untuk operasi numerik kompleks seperti 

penyelesaian sistem linier, interpolasi, integrasi numerik, hingga 

pemodelan diferensial. MATLAB dikenal dengan kemampuannya dalam 

manipulasi matriks dan visualisasi yang sangat mendukung eksperimen 

numerik. 

Pemrograman juga mendukung proses eksperimen dan validasi 

algoritma. Pengguna dapat dengan mudah menguji performa algoritma 

pada berbagai parameter, mengamati konvergensi, dan mengevaluasi 

kestabilan numerik. Ini memberikan ruang untuk eksplorasi yang luas 

dalam dunia akademik maupun profesional. Oleh karena itu, penguasaan 

pemrograman tidak hanya memperkuat kemampuan analisis numerik, 

tetapi juga membuka jalan untuk pengembangan solusi inovatif berbasis 

komputasi dalam berbagai bidang ilmu dan teknologi. 

 

2. Bahasa Pemrograman Populer untuk Komputasi Numerik 

Di dunia komputasi numerik, pemilihan bahasa pemrograman 

yang tepat sangat berpengaruh terhadap efisiensi, fleksibilitas, dan 

keakuratan implementasi algoritma. Beberapa bahasa pemrograman 

telah terbukti sangat efektif dalam menyelesaikan persoalan numerik 

karena menyediakan pustaka khusus, kemampuan pemrosesan numerik 

tinggi, serta kemudahan dalam manipulasi data dan visualisasi. Di antara 

bahasa yang paling populer digunakan adalah Python, MATLAB, 

C/C++, dan Fortran. 
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Python telah menjadi pilihan utama dalam berbagai komunitas 

ilmiah dan teknik karena sintaksisnya yang sederhana serta dukungan 

pustaka numerik yang sangat luas. Pustaka seperti NumPy dan SciPy 

menyediakan fungsi-fungsi penting untuk aljabar linier, kalkulus 

numerik, statistik, dan integrasi diferensial, yang membuat implementasi 

algoritma numerik menjadi lebih mudah dan efisien. Python juga 

mendukung visualisasi hasil perhitungan melalui Matplotlib atau 

Seaborn, serta terintegrasi dengan pustaka lain seperti Pandas untuk 

analisis data dan SymPy untuk komputasi simbolik. Kelebihan utama 

Python adalah kemampuannya untuk beradaptasi lintas disiplin, mulai 

dari teknik hingga sains data. 

MATLAB merupakan bahasa yang secara khusus dirancang 

untuk perhitungan matriks dan analisis numerik. Dengan lingkungan 

interaktifnya yang kuat, MATLAB memudahkan pengguna untuk 

menulis skrip, menguji algoritma numerik, dan memvisualisasikan hasil 

dalam bentuk grafik atau animasi. MATLAB sangat populer di 

lingkungan akademik dan industri teknik, khususnya dalam simulasi 

kontrol, sistem dinamis, dan pemrosesan sinyal. 

C dan C++ digunakan ketika performa dan kecepatan eksekusi 

menjadi prioritas utama, seperti dalam simulasi numerik berskala besar 

atau real-time. Bahasa ini memungkinkan akses langsung ke memori dan 

prosesor, serta kompatibel dengan pustaka numerik seperti BLAS dan 

LAPACK yang mendukung operasi numerik tingkat lanjut. Untuk 

aplikasi besar dan kompleks, C++ sering dikombinasikan dengan Python 

(melalui bindings) agar memperoleh keseimbangan antara performa dan 

kemudahan coding. 

Fortran, meskipun tergolong bahasa lama, masih banyak 

digunakan dalam komputasi ilmiah, khususnya dalam pemodelan fisik 

dan simulasi cuaca. Bahasa ini dirancang untuk efisiensi dalam 

pemrosesan numerik dan masih menjadi tulang punggung banyak sistem 

legacy yang digunakan di institusi riset dan badan antariksa. Setiap 

bahasa memiliki keunggulan dan kekhususannya, sehingga pemilihan 

bahasa pemrograman dalam komputasi numerik sangat tergantung pada 

kebutuhan aplikasi, skala data, serta tingkat kompleksitas algoritma yang 

akan digunakan. 
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3. Automasi dan Reproduksibilitas Proses Numerik 

Automasi dan reproduksibilitas merupakan dua aspek penting 

dalam komputasi numerik modern yang sangat dipengaruhi oleh 

kemampuan pemrograman. Automasi merujuk pada proses menjalankan 

algoritma numerik secara otomatis tanpa campur tangan manual yang 

terus-menerus, sedangkan reproduksibilitas mengacu pada kemampuan 

untuk mengulangi proses komputasi dengan hasil yang konsisten ketika 

menggunakan data dan parameter yang sama. Dalam konteks pemecahan 

masalah numerik yang kompleks, kedua aspek ini sangat krusial untuk 

menjamin efisiensi kerja, keakuratan hasil, dan integritas ilmiah. 

Dengan menggunakan bahasa pemrograman seperti Python, 

MATLAB, atau R, para peneliti dan praktisi dapat mengotomatisasi 

seluruh rangkaian proses numerik, mulai dari input data, eksekusi 

algoritma, hingga analisis dan visualisasi hasil. Contohnya, dalam proses 

simulasi numerik untuk penyelesaian persamaan diferensial parsial 

(PDE), pengguna bisa menulis skrip yang secara otomatis membaca 

parameter dari file konfigurasi, menjalankan iterasi hingga konvergensi 

tercapai, dan menyimpan hasil dalam bentuk grafik atau file data. Ini 

tidak hanya menghemat waktu, tetapi juga mengurangi risiko kesalahan 

manusia dalam penginputan data atau pengoperasian perangkat lunak 

secara manual. 

Automasi juga memungkinkan dilakukannya eksperimen 

numerik berskala besar, seperti studi sensitivitas parameter atau 

optimisasi multi-variasi, yang akan sangat memakan waktu jika 

dilakukan secara manual. Dengan pendekatan berbasis kode, ribuan 

simulasi dapat dijalankan dalam sekali waktu, baik secara berurutan 

maupun paralel, sehingga mempercepat proses pengambilan keputusan 

berbasis data. 

Reproduksibilitas merupakan fondasi penting dalam dunia 

akademik dan riset. Ketika proses numerik dituangkan dalam skrip yang 

terdokumentasi dan terdigitalisasi, siapa pun dapat mengeksekusi ulang 

perhitungan tersebut dengan hasil identik selama parameter dan 

lingkungan eksekusinya sama. Hal ini penting untuk validasi, peer 

review, dan pengembangan lebih lanjut dari penelitian yang sudah ada. 

Bahkan dalam industri, reproduksibilitas mendukung kontrol kualitas 

dan pemeliharaan sistem numerik jangka panjang. Dengan demikian, 

pemrograman tidak hanya menjadi alat bantu teknis, tetapi juga penjamin 

keberlanjutan, konsistensi, dan kredibilitas proses numerik, baik dalam 
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skala akademik, industri, maupun kebijakan publik yang berbasis model 

numerik. 

 

4. Pemrograman untuk Visualisasi dan Analisis Hasil 

Pada komputasi numerik, hasil perhitungan sering kali berupa 

deretan angka atau matriks yang sulit diinterpretasikan secara langsung 

tanpa bantuan visualisasi. Oleh karena itu, pemrograman berperan 

penting dalam mentransformasikan hasil numerik menjadi representasi 

visual yang lebih informatif dan mudah dianalisis. Visualisasi tidak 

hanya berfungsi sebagai alat bantu presentasi, tetapi juga menjadi sarana 

eksploratif untuk memahami perilaku sistem, mengidentifikasi pola, 

menganalisis tren, serta mendeteksi anomali atau kesalahan numerik 

sejak dini. 

Bahasa pemrograman seperti Python, MATLAB, dan R 

menyediakan pustaka dan fungsi khusus untuk visualisasi data numerik. 

Di Python, pustaka seperti Matplotlib, Seaborn, dan Plotly 

memungkinkan pengguna membuat grafik 2D dan 3D, peta kontur, 

diagram permukaan, hingga animasi dinamis. Misalnya, dalam 

penyelesaian numerik persamaan diferensial, pengguna dapat memplot 

solusi terhadap waktu untuk memantau stabilitas dan konvergensi 

algoritma. Jika solusi tampak mengalami osilasi atau divergensi, maka 

pengaturan ulang parameter numerik bisa dilakukan sebelum berlanjut 

ke langkah berikutnya. Dengan demikian, visualisasi berfungsi juga 

sebagai alat diagnosis numerik. 

Analisis hasil numerik juga dapat diotomatisasi melalui 

pemrograman. Ini mencakup perhitungan galat (error), evaluasi 

konvergensi, perbandingan metode numerik, serta estimasi performa 

algoritma berdasarkan waktu eksekusi atau jumlah iterasi. Sebagai 

contoh, dalam komputasi metode Runge-Kutta untuk ODE, kita bisa 

membuat skrip yang otomatis membandingkan hasil numerik dengan 

solusi analitik dan menghitung galat relatif di setiap titik. 

Visualisasi yang dihasilkan dari pemrograman juga berperan 

besar dalam komunikasi ilmiah. Grafik yang jelas dan interaktif 

membantu menyampaikan temuan kepada audiens teknis maupun non-

teknis, termasuk dalam laporan penelitian, presentasi, atau publikasi. 

Dengan mengintegrasikan hasil komputasi, analisis, dan visualisasi 

dalam satu alur kerja berbasis kode, pemrograman tidak hanya 

memperkuat pemahaman hasil, tetapi juga mendorong efisiensi, 
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transparansi, dan dokumentasi yang baik dalam proses ilmiah dan 

rekayasa berbasis numerik. 
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BAB II 

BAHASA PEMROGRAMAN 

UNTUK KOMPUTASI 
 

 

 

Di era digital yang serba cepat dan berbasis data, penguasaan 

bahasa pemrograman menjadi fondasi utama bagi siapa pun yang ingin 

mengembangkan solusi komputasional terhadap persoalan matematika 

dan ilmiah yang kompleks. Pemilihan bahasa pemrograman yang tepat 

tidak hanya berdampak pada efisiensi proses komputasi, tetapi juga pada 

akurasi, skalabilitas, dan kemudahan integrasi dengan berbagai sistem 

analitik. Oleh karena itu, bab ini membahas berbagai bahasa 

pemrograman populer seperti Python, MATLAB, Julia, Fortran, dan 

C++, serta membahas karakteristik, kelebihan, dan kelemahannya 

masing-masing dalam konteks numerik. Lebih lanjut, bab ini membahas 

bagaimana struktur sintaksis, paradigma pemrograman, serta pustaka 

atau modul yang tersedia dapat memengaruhi kinerja dan efektivitas 

solusi numerik yang dibangun.  

 

A. Pemilihan Bahasa: Python, MATLAB, atau C++ 

 

Pemrograman untuk komputasi numerik menuntut efisiensi, 

fleksibilitas, dan akurasi dalam menangani data serta proses perhitungan 

kompleks. Tiga bahasa yang umum digunakan dalam bidang ini adalah 

Python, MATLAB, dan C++. Setiap bahasa memiliki kekuatan dan 

kelemahan tersendiri, bergantung pada konteks penggunaannya. Oleh 

karena itu, pemilihan bahasa pemrograman yang tepat sangat penting 

dalam menentukan keberhasilan proyek numerik dan ilmiah. 
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1. Python 

Python adalah salah satu bahasa pemrograman paling populer 

dan serbaguna di era modern, terutama dalam bidang komputasi 

numerik, data science, kecerdasan buatan, dan pengembangan aplikasi 

ilmiah. Dikembangkan pertama kali oleh Guido van Rossum pada tahun 

1991, Python dirancang dengan filosofi kesederhanaan sintaks dan 

keterbacaan kode yang tinggi, menjadikannya sangat mudah diakses oleh 

pemula tanpa mengorbankan kekuatan dan fleksibilitas untuk pengguna 

tingkat lanjut. Python merupakan bahasa pemrograman tingkat tinggi 

yang bersifat open-source, lintas platform, dan berparadigma multipel 

mendukung pemrograman prosedural, berorientasi objek, maupun 

fungsional. 

Pada konteks komputasi numerik, Python menonjol karena 

ketersediaan pustaka (library) yang sangat kaya dan kuat. Salah satu 

pustaka paling fundamental adalah NumPy (Numerical Python), yang 

memungkinkan manipulasi array multidimensi, operasi vektor-matriks, 

transformasi linier, dan berbagai fungsi matematika tingkat lanjut. 

NumPy menjadi dasar bagi banyak pustaka numerik lainnya dan 

memberikan efisiensi komputasi tinggi karena ditulis sebagian besar 

dalam C, yang membuat Python tetap kompetitif dari sisi performa. 

Selain itu, SciPy memperluas kemampuan ini dengan menyediakan 

fungsi-fungsi ilmiah seperti integrasi numerik, optimasi, aljabar linear 

lanjutan, statistik, dan pemrosesan sinyal. 

Python juga sangat unggul dalam bidang visualisasi data. Pustaka 

seperti Matplotlib memungkinkan pembuatan grafik dua dan tiga 

dimensi, sedangkan Seaborn dan Plotly menawarkan kemampuan 

visualisasi statistik dan interaktif yang lebih modern dan estetik. Hal ini 

sangat penting dalam komputasi numerik karena memungkinkan 

pengguna tidak hanya menghitung data, tetapi juga 

memvisualisasikannya untuk pemahaman yang lebih baik dan penyajian 

hasil yang informatif. 

Kelebihan Python tidak berhenti di sana. Dalam praktik 

pengembangan sistem komputasi yang lebih kompleks, Python dapat 

diintegrasikan dengan bahasa lain seperti C/C++ menggunakan Cython 

atau ctypes, serta dengan Fortran melalui f2py, sehingga memungkinkan 

penggabungan antara kemudahan pemrograman Python dan kecepatan 

eksekusi dari bahasa compiled. Python juga memiliki kerangka kerja 

Jupyter Notebook, yang sangat populer di kalangan ilmuwan data dan 
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akademisi karena memungkinkan kombinasi antara kode, grafik, dan 

dokumentasi dalam satu antarmuka interaktif. 

Ketersediaan komunitas global yang sangat besar, dokumentasi 

luas, dan pembaruan yang aktif menjadikan Python sangat adaptif 

terhadap kebutuhan zaman. Tidak heran jika Python kini menjadi bahasa 

utama dalam banyak bidang dari pengolahan citra, pemodelan keuangan, 

bioinformatika, hingga komputasi kuantum. Bahkan, banyak lembaga 

pendidikan dan universitas menggantikan MATLAB atau Java dengan 

Python dalam pengajaran pemrograman dan matematika komputasi. 

Namun Python, sebagai bahasa interpreted, memiliki kelemahan dalam 

hal kecepatan eksekusi murni dibandingkan bahasa compiled seperti 

C++. Untuk komputasi skala besar atau real-time, optimalisasi kode dan 

penggunaan pustaka eksternal sering kali dibutuhkan agar performa tetap 

optimal. Meski demikian, karena kemudahan penggunaan dan 

skalabilitasnya, Python tetap menjadi pilihan utama bagi banyak praktisi 

komputasi numerik masa kini. 

 

2. MATLAB 

MATLAB, singkatan dari Matrix Laboratory, adalah lingkungan 

komputasi numerik dan bahasa pemrograman tingkat tinggi yang 

dikembangkan oleh MathWorks. Sejak diperkenalkan pada awal 1980-

an oleh Cleve Moler, MATLAB telah menjadi standar industri dan 

akademik dalam bidang teknik, matematika terapan, dan sains komputer. 

Fokus utama MATLAB adalah manipulasi matriks, pengembangan 

algoritma, pemodelan sistem, serta visualisasi dan analisis data. Dengan 

basis desain yang sangat berorientasi pada komputasi matriks, MATLAB 

sangat efisien dalam menangani perhitungan numerik, aljabar linear, dan 

simulasi sistem kompleks yang menjadi tulang punggung di banyak 

bidang teknik. 

Salah satu keunggulan utama MATLAB adalah lingkungan 

pengembangan terintegrasi (IDE) yang sangat ramah pengguna. 

Pengguna dapat menulis kode, menjalankan perintah secara interaktif, 

memvisualisasikan hasil, serta membuat grafik 2D dan 3D dengan sangat 

mudah. Sintaks MATLAB sangat mirip dengan notasi matematika 

konvensional, sehingga memudahkan pengguna dari latar belakang non-

informatika untuk mengimplementasikan rumus dan algoritma secara 

langsung tanpa perlu memahami konsep pemrograman tingkat rendah 

seperti manajemen memori atau pointer. Misalnya, penjumlahan dua 
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matriks, solusi sistem persamaan linear, atau plotting fungsi bisa 

dilakukan hanya dengan beberapa baris kode. 

MATLAB juga dikenal karena kekayaan toolbox, modul 

tambahan khusus yang menyediakan fungsi-fungsi siap pakai untuk 

berbagai disiplin ilmu. Beberapa toolbox populer antara lain Signal 

Processing Toolbox, Image Processing Toolbox, Control System 

Toolbox, dan Optimization Toolbox. Kemampuan ini menjadikan 

MATLAB sangat disukai dalam lingkungan penelitian dan pengajaran 

karena memungkinkan eksplorasi dan eksperimen cepat tanpa harus 

membangun algoritma dari nol. Selain itu, Simulink, sebagai bagian dari 

MATLAB, merupakan platform pemodelan dan simulasi sistem dinamis 

berbasis blok diagram yang banyak digunakan di industri otomotif, 

dirgantara, dan elektronik untuk desain sistem kendali dan sistem 

embedded. 

Pada konteks komputasi numerik tingkat lanjut, MATLAB 

menyediakan fungsi-fungsi numerik yang sangat stabil dan telah teruji 

secara luas, seperti metode numerik untuk penyelesaian persamaan 

diferensial, integrasi numerik, interpolasi, optimasi, dan dekomposisi 

matriks. Fungsi-fungsi ini dirancang dengan mempertimbangkan 

kestabilan numerik, efisiensi komputasi, dan kemudahan penggunaan. 

Selain itu, MATLAB mendukung paralelisasi komputasi dan komputasi 

GPU melalui Parallel Computing Toolbox, memungkinkan eksekusi 

program besar atau intensif data secara efisien pada kluster komputer 

atau perangkat keras modern. 

Kelemahan utama MATLAB terletak pada model lisensinya 

yang komersial dan mahal, baik untuk lisensi individu, institusi, maupun 

toolbox tambahan. Ini menjadi kendala serius bagi pelajar, institusi kecil, 

atau proyek open-source yang mengandalkan akses bebas. Selain itu, 

MATLAB bukanlah bahasa open-source, sehingga pengembangan atau 

integrasi lintas sistem sering kali tidak sefleksibel bahasa lain seperti 

Python. Meskipun demikian, untuk proyek-proyek teknik formal dan 

kebutuhan industri yang menuntut presisi tinggi, dokumentasi kuat, serta 

dukungan teknis resmi, MATLAB tetap menjadi pilihan unggulan. 

 

3. C++ 

C++ adalah bahasa pemrograman yang dirancang untuk 

memberikan kekuatan performa, fleksibilitas, dan kontrol rendah 

terhadap perangkat keras, menjadikannya sangat ideal untuk 
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pengembangan aplikasi komputasi numerik berskala besar dan sistem 

yang memerlukan efisiensi tinggi. Diperkenalkan oleh Bjarne Stroustrup 

pada awal 1980-an sebagai ekstensi dari bahasa C, C++ menggabungkan 

paradigma pemrograman prosedural dengan kemampuan berorientasi 

objek, sekaligus mendukung paradigma generik dan fungsional. 

Kombinasi ini memberikan kemampuan luar biasa dalam mendesain 

struktur data kompleks, mengelola memori secara eksplisit, serta 

menyusun sistem modular dan skalabel, semua sangat penting dalam 

aplikasi komputasi ilmiah dan teknik. 

Pada konteks komputasi numerik, C++ unggul dalam hal 

kecepatan eksekusi karena merupakan bahasa compiled, kode 

sumbernya dikompilasi langsung menjadi kode mesin sebelum 

dijalankan. Hal ini memberikan keunggulan signifikan dibanding bahasa 

interpreted seperti Python atau MATLAB, terutama dalam tugas-tugas 

intensif seperti simulasi numerik skala besar, pemodelan dinamika 

fluida, perhitungan finite element, atau pemrosesan data waktu nyata. 

Selain itu, C++ mendukung pengelolaan memori manual, yang 

memungkinkan pengguna mengoptimalkan penggunaan RAM dan 

menghindari overhead dari garbage collection, meskipun hal ini juga 

menuntut kehati-hatian tinggi agar tidak menyebabkan kebocoran 

memori (memory leak) atau crash. 

C++ memiliki ekosistem pustaka numerik yang luas dan kuat. Di 

antaranya adalah Eigen, sebuah pustaka template untuk aljabar linear, 

dekomposisi matriks, dan analisis eigenvalue yang sangat efisien dan 

banyak digunakan dalam pemrosesan citra serta machine learning. Ada 

juga Armadillo, yang menyederhanakan sintaks komputasi numerik 

dengan performa mendekati Fortran. Boost, salah satu pustaka 

terlengkap dalam komunitas C++, menyediakan algoritma numerik, 

struktur data kompleks, dan utilitas lain yang berguna dalam 

pengembangan aplikasi ilmiah. Pustaka-pustaka ini menjadikan C++ 

sangat kompetitif dalam membangun sistem komputasi modern yang 

membutuhkan kombinasi kecepatan dan akurasi. 

C++ juga digunakan secara luas dalam pengembangan software 

sistem dan perangkat keras tertanam (embedded systems), seperti 

firmware, sistem kendali robotik, simulasi fisika, dan grafika komputer. 

Banyak aplikasi ilmiah dan industri skala besar, seperti OpenFOAM 

(simulasi fluida), ANSYS (analisis teknik), atau Blender (grafik 3D), 

menggunakan C++ sebagai bahasa inti karena keunggulannya dalam 
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menangani perhitungan besar secara efisien dan andal. Namun, 

kompleksitas sintaks dan kurva pembelajaran yang relatif tinggi menjadi 

tantangan utama bagi pengguna baru. Penulisan kode yang optimal 

memerlukan pemahaman mendalam tentang manajemen memori, 

struktur data, dan prinsip-prinsip pemrograman yang baik. Kesalahan 

kecil seperti dereferensi pointer yang salah atau buffer overflow bisa 

berakibat fatal pada program. Oleh karena itu, C++ lebih cocok 

digunakan oleh pengembang yang memiliki pengalaman cukup atau 

untuk proyek-proyek yang benar-benar membutuhkan efisiensi 

maksimal. 

 

B. Struktur Dasar Pemrograman: Variabel, Tipe Data, dan 

Struktur Kontrol 

 

Di dunia pemrograman, memahami struktur dasar adalah fondasi 

yang sangat penting sebelum seseorang dapat mengembangkan 

algoritma atau membangun aplikasi yang kompleks. Struktur dasar 

pemrograman mencakup tiga komponen utama: variabel, tipe data, dan 

struktur kontrol. Ketiganya membentuk kerangka logika dan operasional 

dari sebuah program komputer. Tanpa pemahaman yang baik tentang 

konsep ini, akan sangat sulit untuk membuat program yang efektif, 

efisien, dan bebas dari kesalahan. 

 

1. Variabel 

Variabel merupakan salah satu konsep paling fundamental dalam 

pemrograman yang berfungsi sebagai penampung data sementara di 

dalam memori komputer. Dalam istilah sederhana, variabel dapat 

dianalogikan sebagai "wadah" yang diberi nama tertentu, di mana kita 

dapat menyimpan nilai, mengubah nilainya, dan menggunakannya 

kembali dalam berbagai operasi. Variabel memungkinkan suatu program 

menyimpan informasi secara dinamis selama proses eksekusi 

berlangsung. Tanpa variabel, program tidak akan mampu menyimpan 

hasil perhitungan, menampung input pengguna, atau mengatur alur 

logika berdasarkan data yang berubah-ubah. 

Setiap variabel memiliki nama, tipe data, dan nilai. Nama 

variabel adalah identitas unik yang digunakan untuk merujuk ke nilai 

yang disimpan. Penamaan variabel biasanya mengikuti aturan sintaks 

tertentu tergantung bahasa pemrograman yang digunakan, misalnya 
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harus diawali dengan huruf atau garis bawah (_), tidak mengandung 

spasi, dan tidak menggunakan kata kunci bawaan bahasa. Pemilihan 

nama variabel yang baik dan deskriptif, seperti total nilai, nama 

pengguna, atau kecepatan mobil, sangat dianjurkan untuk meningkatkan 

keterbacaan dan pemeliharaan kode. 

Tipe data yang terkait dengan variabel menentukan jenis nilai 

yang dapat disimpan di dalamnya, seperti bilangan bulat (integer), 

bilangan desimal (float atau double), karakter tunggal (char), atau 

kumpulan karakter (string). Dalam bahasa pemrograman seperti C++, 

tipe data variabel harus dideklarasikan secara eksplisit. Contoh: 

 
Sementara dalam bahasa seperti Python, penetapan tipe data 

dilakukan secara implisit oleh interpreter berdasarkan nilai yang 

diberikan, karena Python merupakan bahasa bertipe dinamis. Contoh: 

 

 
Variabel dalam pemrograman juga memiliki ruang lingkup 

(scope) dan masa hidup (lifetime). Ruang lingkup menunjukkan di 

bagian mana dari kode program variabel tersebut dapat diakses. Variabel 

lokal hanya dapat diakses dalam fungsi atau blok tempat ia 

dideklarasikan, sedangkan variabel global dapat diakses dari seluruh 

bagian program. Masa hidup variabel berkaitan dengan berapa lama 

variabel akan "hidup" di dalam memori, biasanya tergantung pada 

tempat deklarasinya, variabel lokal akan hilang setelah blok program 

selesai dijalankan, sedangkan variabel global tetap ada sepanjang 

eksekusi program. 

Fungsi utama variabel dalam program adalah untuk menyimpan 

input, menyimpan hasil perhitungan, mengontrol struktur alur program, 

dan menyederhanakan penulisan kode. Misalnya, hasil penjumlahan dua 

angka dapat disimpan dalam variabel hasil, lalu digunakan kembali 
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dalam operasi atau kondisi berikutnya. Tanpa variabel, setiap nilai harus 

dihitung dan dituliskan ulang secara manual, yang tidak efisien dan 

rawan kesalahan. 

 

2. Tipe Data 

Tipe data (data type) adalah salah satu konsep paling penting 

dalam pemrograman yang menentukan jenis nilai apa yang dapat 

disimpan dalam sebuah variabel, serta operasi apa yang sah untuk 

dilakukan terhadap nilai tersebut. Tipe data mendefinisikan bagaimana 

data direpresentasikan di dalam memori komputer dan bagaimana 

bahasa pemrograman memperlakukannya dalam berbagai ekspresi dan 

fungsi. Tanpa sistem tipe data yang jelas, pengolahan data dalam 

pemrograman akan menjadi tidak terstruktur dan rentan terhadap 

kesalahan logika atau sintaks. 

Secara umum, tipe data dibedakan menjadi dua kategori besar: 

tipe data primitif dan tipe data non-primitif (kompleks). Tipe data primitif 

mencakup jenis-jenis data paling dasar seperti bilangan bulat (integer), 

bilangan desimal (float atau double), karakter (char), dan nilai logika 

(boolean). Misalnya, int digunakan untuk menyimpan angka bulat 

seperti 100, sedangkan float digunakan untuk menyimpan angka pecahan 

seperti 3.14. Tipe char menyimpan satu karakter tunggal, seperti 'A', dan 

boolean menyimpan nilai logika true atau false, yang sangat berguna 

dalam struktur kontrol seperti pernyataan if dan while. 

Tipe data non-primitif, di sisi lain, mencakup struktur yang lebih 

kompleks dan terdiri dari beberapa nilai, seperti string, array, list, tuple, 

set, dictionary, dan objek. Misalnya, string adalah kumpulan karakter 

yang membentuk teks seperti "Halo Dunia", sedangkan array 

menyimpan kumpulan elemen yang sejenis dalam urutan tertentu. Dalam 

Python, list digunakan untuk menyimpan sekumpulan nilai yang dapat 

terdiri dari berbagai tipe data, dan dictionary digunakan untuk 

menyimpan pasangan kunci-nilai. Sementara dalam bahasa C++, 

struktur seperti struct dan class memungkinkan programmer untuk 

mendefinisikan tipe data kustom yang sesuai dengan kebutuhan logika 

bisnis atau representasi objek dalam dunia nyata. 

Setiap bahasa pemrograman memiliki cara tersendiri dalam 

menangani tipe data. Bahasa seperti C dan C++ bersifat statically typed, 

artinya tipe data harus ditentukan secara eksplisit saat mendeklarasikan 

variabel. Ini membantu program mendeteksi kesalahan tipe data sejak 
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proses kompilasi. Sebaliknya, bahasa seperti Python dan JavaScript 

bersifat dynamically typed, yang berarti tipe data ditentukan secara 

otomatis saat program dijalankan, memberikan fleksibilitas lebih tetapi 

berisiko menimbulkan kesalahan runtime jika tidak ditangani dengan 

hati-hati. 

Banyak bahasa pemrograman modern mendukung konversi tipe 

data (type casting), yang memungkinkan perubahan tipe data dari satu 

bentuk ke bentuk lain, seperti dari int ke float, atau dari string ke int. 

Namun, konversi ini harus dilakukan dengan hati-hati karena berpotensi 

menyebabkan kehilangan data atau kesalahan logika jika tidak sesuai. 

Pemilihan tipe data yang tepat sangat penting dalam pengembangan 

perangkat lunak. Misalnya, menggunakan float untuk perhitungan 

keuangan dapat menyebabkan ketidakakuratan karena representasi biner 

angka desimal, sehingga disarankan menggunakan tipe data khusus 

seperti Decimal dalam Python atau BigDecimal dalam Java. Di sisi lain, 

penggunaan boolean memungkinkan logika kontrol program menjadi 

lebih eksplisit dan mudah dimengerti. 

 

3. Struktur Kontrol 

Struktur kontrol adalah komponen penting dalam pemrograman 

yang memungkinkan program untuk mengatur alur eksekusi instruksi 

berdasarkan kondisi tertentu atau pengulangan perintah. Tanpa struktur 

kontrol, program hanya akan mengeksekusi perintah secara linear dari 

atas ke bawah, tanpa kemampuan untuk membuat keputusan atau 

melakukan iterasi. Struktur kontrol memberikan kemampuan kepada 

program untuk menjadi dinamis, fleksibel, dan cerdas dalam merespons 

data atau input yang berubah-ubah. Secara umum, struktur kontrol 

terbagi menjadi tiga kategori utama: percabangan 

(conditional/selection), perulangan (looping/iteration), dan transfer 

kontrol. Masing-masing kategori memiliki peran yang berbeda namun 

saling melengkapi dalam menyusun logika program. 

Pertama, struktur percabangan memungkinkan program untuk 

memilih satu dari beberapa jalur eksekusi berdasarkan kondisi tertentu. 

Dalam banyak bahasa pemrograman seperti Python, C++, dan Java, 

bentuk umum dari struktur ini adalah if, else if (elif di Python), dan else. 

Misalnya, jika sebuah nilai memenuhi syarat tertentu (seperti nilai ujian 

≥ 75), maka program akan menampilkan "Lulus"; jika tidak, maka akan 

menampilkan "Tidak Lulus". Selain if-else, ada juga switch-case dalam 
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bahasa seperti C++ dan Java yang digunakan untuk menangani banyak 

kondisi secara lebih terstruktur. Percabangan sangat penting dalam 

pengambilan keputusan logis, misalnya dalam sistem login, verifikasi 

data, atau pengkategorian nilai. 

Kedua, struktur perulangan (looping) digunakan untuk 

mengeksekusi blok kode secara berulang selama kondisi tertentu masih 

terpenuhi. Dua bentuk perulangan yang paling umum adalah for dan 

while. For biasanya digunakan ketika jumlah iterasi sudah diketahui 

sebelumnya, sedangkan while digunakan untuk perulangan yang 

bergantung pada kondisi yang bersifat dinamis. Contohnya, for i in range 

(10) di Python akan mencetak angka dari 0 hingga 9, sedangkan while 

saldo > 0 bisa digunakan untuk terus mengurangi saldo hingga mencapai 

nol. Looping sangat berguna dalam pemrosesan data, penghitungan 

matematis berulang, atau pengolahan array dan daftar panjang. 

Ketiga, ada transfer kontrol, yaitu perintah khusus yang 

mengalihkan alur eksekusi program di luar jalur normal. Instruksi seperti 

break, continue, dan return termasuk dalam kategori ini. Break 

digunakan untuk keluar dari loop sebelum kondisi selesai, continue 

untuk melewati satu iterasi dan langsung lanjut ke iterasi berikutnya, 

sedangkan return digunakan dalam fungsi untuk mengembalikan nilai 

sekaligus mengakhiri eksekusi fungsi tersebut. Struktur transfer ini 

memperkaya fleksibilitas program dalam mengatur alur logikanya secara 

lebih presisi. 

Gambar 2. Kecerdasan Buatan 

 
Sumber: Codepolitan 
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Struktur kontrol juga erat kaitannya dengan pengendalian alur 

logika algoritmik. Dalam pemrograman tingkat lanjut seperti rekursi, 

struktur kontrol menjadi instrumen utama dalam mengatur pemanggilan 

fungsi berulang. Begitu pula dalam pengembangan antarmuka grafis, 

kecerdasan buatan, dan simulasi fisika komputasional, struktur kontrol 

berperan sentral dalam membangun perilaku sistem yang adaptif. 

C. Fungsi dan Modularisasi Program 

 

Di dunia pemrograman modern, membangun program yang baik 

bukan hanya soal menghasilkan keluaran yang benar, tetapi juga tentang 

bagaimana program tersebut disusun secara terstruktur, mudah dibaca, 

efisien, dan mudah dikelola dalam jangka panjang. Fungsi (function) dan 

modularisasi program merupakan dua konsep penting yang menjadi 

landasan dalam pencapaian tujuan tersebut. Fungsi memungkinkan 

programmer memecah program menjadi bagian-bagian kecil yang dapat 

digunakan kembali, sementara modularisasi menciptakan arsitektur 

sistem yang lebih tertata dan fleksibel. Keduanya merupakan prinsip 

utama dalam rekayasa perangkat lunak berbasis praktik terbaik dan 

sangat penting dalam pengembangan perangkat lunak skala besar. 

Menurut Kernighan dan Ritchie (1988) dalam The C 

Programming Language, fungsi adalah blok kode mandiri yang 

dirancang untuk melakukan tugas tertentu dan dapat dipanggil berulang 

kali dari bagian lain dalam program (Kernighan & Ritchie, 1988). 

Dengan kata lain, fungsi bertindak seperti "mesin kecil" yang menerima 

input (parameter), memprosesnya, dan mengembalikan hasil (return 

value) tanpa harus menulis ulang kode yang sama di berbagai tempat. 

Contoh sederhana fungsi dalam Python dan C++: 
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Kedua contoh di atas menunjukkan bagaimana logika 

perhitungan dapat dibungkus ke dalam satu fungsi yang bisa digunakan 

berulang kali, cukup dengan memanggil nama fungsinya dan 

memberikan parameter yang sesuai. 

 

1. Manfaat Fungsi 

Fungsi merupakan salah satu komponen kunci dalam 

pemrograman modern yang memberikan berbagai manfaat penting 

dalam menyusun kode yang efisien, terstruktur, dan mudah dikelola. 

Fungsi adalah blok kode mandiri yang dirancang untuk melakukan tugas 

tertentu. Dengan memisahkan logika program ke dalam fungsi-fungsi 

kecil, seorang programmer dapat menciptakan sistem yang lebih 

modular, mudah dipahami, dan dapat digunakan kembali. Salah satu 

manfaat utama dari penggunaan fungsi adalah reusabilitas, yakni 

kemampuan untuk menggunakan ulang potongan kode yang sama 

berkali-kali tanpa harus menuliskannya dari awal. Ini tidak hanya 

menghemat waktu, tetapi juga mengurangi kemungkinan terjadinya 

kesalahan penulisan (human error) akibat duplikasi kode. 

Fungsi juga meningkatkan keterbacaan (readability) dan 

kejelasan struktur program. Ketika program dibagi ke dalam fungsi-

fungsi yang memiliki nama deskriptif, seperti hitung gaji, cek login, atau 

tampilkan menu, pembaca kode akan lebih mudah memahami alur 

program secara keseluruhan tanpa harus menelusuri seluruh detail 

implementasi di setiap bagian. Ini sangat membantu dalam tim 

pengembangan perangkat lunak, di mana kolaborasi antarprogrammer 

menjadi lebih efektif karena pembagian tugas dapat dilakukan 

berdasarkan fungsi. 

Fungsi memungkinkan isolasi logika, yang berarti setiap bagian 

program dapat diuji, diperbaiki, atau dimodifikasi tanpa memengaruhi 

bagian lain. Pendekatan ini mendukung prinsip separation of concerns 

dalam rekayasa perangkat lunak, yaitu memisahkan tanggung jawab 

logika program ke dalam unit-unit kecil yang fokus pada satu tugas. 

Dengan cara ini, pemeliharaan program (maintenance) menjadi lebih 

mudah karena bug dapat dilokalisasi di dalam fungsi tertentu tanpa 

menelusuri keseluruhan sistem. Lebih jauh, fungsi juga mendukung 

pengembangan bertahap dan uji unit (unit testing). Karena setiap fungsi 

dapat dieksekusi secara independen, pengembang dapat menguji satu per 

satu fungsi secara terpisah sebelum mengintegrasikannya ke dalam 
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sistem utama. Ini mempercepat proses debugging dan meningkatkan 

keandalan program. 

 

2. Parameter, Return, dan Scope 

Pada pemrograman, ketika kita menggunakan fungsi, tiga konsep 

penting yang perlu dipahami dengan baik adalah parameter, return, dan 

scope. Ketiganya berkaitan erat dengan bagaimana fungsi 

berkomunikasi dengan bagian lain dari program serta bagaimana data 

dikirim, diproses, dan dikembalikan dalam alur eksekusi. Parameter 

adalah nilai yang dikirimkan ke dalam fungsi saat fungsi dipanggil. 

Parameter memungkinkan fungsi bekerja secara fleksibel terhadap 

berbagai input tanpa harus menulis ulang logika kode. Misalnya, fungsi 

hitung luas (sisi) menerima satu parameter sisi yang dapat bernilai apa 

saja, sehingga fungsinya bisa digunakan untuk menghitung luas dari 

berbagai ukuran persegi. Ada dua jenis parameter utama: parameter 

formal, yaitu yang dideklarasikan dalam definisi fungsi, dan parameter 

aktual (argumen), yaitu nilai yang diberikan saat fungsi dipanggil. 

Return adalah nilai yang dikembalikan oleh fungsi kepada 

pemanggilnya setelah fungsi selesai diproses. Return memungkinkan 

hasil dari suatu perhitungan atau proses dalam fungsi digunakan kembali 

di bagian lain program. Misalnya, return sisi-sisi akan mengembalikan 

nilai luas ke pemanggilnya, yang bisa disimpan dalam variabel lain atau 

langsung ditampilkan. Sementara itu, scope atau ruang lingkup, 

mengatur di mana variabel dapat diakses dalam program. Variabel yang 

dideklarasikan di dalam fungsi hanya berlaku di dalam fungsi itu saja 

dan disebut variabel lokal. Sebaliknya, variabel global dideklarasikan di 

luar fungsi dan bisa diakses dari manapun dalam program. Memahami 

scope penting untuk mencegah konflik antarvariabel dan menjaga agar 

data dalam fungsi tidak "bocor" ke luar, yang dapat menyebabkan 

kesalahan logika. 

 

3. Modularisasi Program 

Modularisasi program adalah pendekatan dalam pemrograman 

yang bertujuan untuk memecah sistem atau program besar menjadi 

bagian-bagian kecil yang disebut modul, di mana masing-masing modul 

memiliki tanggung jawab khusus dan independen. Pendekatan ini sangat 

penting dalam pengembangan perangkat lunak karena mempermudah 

manajemen kompleksitas, meningkatkan keterbacaan kode, serta 
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memfasilitasi pemeliharaan dan pengembangan berkelanjutan. 

Modularisasi mendukung prinsip desain perangkat lunak seperti 

separation of concerns dan single responsibility, yang menekankan 

bahwa setiap bagian dari program sebaiknya hanya melakukan satu tugas 

tertentu. 

Setiap modul dalam program bisa berupa fungsi, kelas, atau 

bahkan file terpisah yang memiliki logika tertentu, dan biasanya dapat 

dipanggil dari bagian program lain melalui antarmuka (interface) yang 

jelas. Misalnya, dalam sebuah aplikasi sistem kasir, modul-modul yang 

umum digunakan meliputi modul input transaksi, modul hitung diskon, 

modul cetak struk, dan modul laporan harian. Setiap modul ini bisa 

dikembangkan, diuji, dan dimodifikasi secara terpisah tanpa 

mengganggu modul lain. Hal ini memberikan keuntungan besar dalam 

pengembangan tim, karena beberapa programmer bisa bekerja secara 

paralel pada modul berbeda. 

Salah satu manfaat utama dari modularisasi adalah reusabilitas 

kode. Modul yang dirancang dengan baik dapat digunakan kembali di 

berbagai proyek atau bagian lain dari sistem tanpa perlu menyalin ulang 

kode. Selain itu, modularisasi meningkatkan kemudahan pengujian 

(testability), karena setiap modul bisa diuji secara terpisah melalui teknik 

unit testing, sehingga memudahkan deteksi dan perbaikan bug secara 

lebih cepat dan akurat. 

Modularisasi juga berkontribusi pada efisiensi pengembangan 

dan perawatan sistem jangka panjang. Dalam sistem besar yang terus 

berkembang, kebutuhan akan pembaruan, penggantian logika bisnis, 

atau penambahan fitur baru sangat tinggi. Dengan struktur modular, 

pengembang dapat fokus pada bagian tertentu tanpa harus memahami 

seluruh program secara keseluruhan. Ini sangat krusial untuk 

memastikan keberlanjutan sistem dalam jangka waktu yang lama, 

terutama ketika terjadi pergantian tim pengembang. 

Di sisi teknis, modularisasi juga mendukung penggunaan 

kembali pustaka eksternal (library) dan pemanfaatan framework modern 

yang berbasis arsitektur modular, seperti penggunaan modul dalam 

Python (dengan import), file header dan source terpisah di C++, atau 

modul service dalam arsitektur berbasis microservices. Dengan 

demikian, modularisasi bukan sekadar praktik struktural, tetapi 

merupakan strategi penting dalam menyusun program yang fleksibel, 

scalable, dan maintainable. Kemampuan untuk memecah permasalahan 
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besar menjadi bagian-bagian kecil yang bisa dikelola secara terpisah 

adalah ciri utama dari pengembang perangkat lunak yang profesional. 

Oleh karena itu, modularisasi program menjadi prinsip mendasar yang 

wajib dikuasai dalam dunia pemrograman modern. 

 

D. Visualisasi Data Numerik (Plotting dan Grafik) 

 

Di era informasi yang didominasi oleh data, visualisasi data 

numerik menjadi salah satu alat paling penting untuk membantu 

pengguna memahami pola, tren, dan anomali dalam kumpulan data yang 

kompleks. Visualisasi data, khususnya dalam bentuk plotting dan grafik, 

merupakan proses transformasi angka-angka mentah menjadi 

representasi visual yang lebih mudah dipahami dan dianalisis. Terutama 

dalam bidang komputasi numerik, sains data, dan teknik, visualisasi 

bukan hanya alat bantu tambahan, melainkan bagian esensial dari proses 

eksplorasi, analisis, dan komunikasi hasil. 

Menurut Ware (2012) dalam Information Visualization: 

Perception for Design, representasi visual membantu otak manusia 

memproses informasi secara lebih efisien dibandingkan dengan teks atau 

angka mentah, karena visualisasi mampu memanfaatkan kekuatan 

persepsi spasial dan pengenalan pola visual secara alami (Ware, C., 

2012). Dalam konteks data numerik, ini sangat relevan karena sebagian 

besar data yang diolah berupa angka dalam jumlah besar, yang sulit 

ditafsirkan secara langsung tanpa representasi visual. 

 

1. Jenis-Jenis Grafik dalam Visualisasi Numerik 

Pada visualisasi data numerik, pemilihan jenis grafik yang tepat 

sangat penting untuk menyampaikan informasi dengan jelas dan akurat. 

Berbagai jenis grafik dirancang untuk membahas aspek yang berbeda 

dari data, seperti distribusi, hubungan antar variabel, komparasi antar 

kategori, maupun tren terhadap waktu. Setiap jenis grafik memiliki 

kekuatan tersendiri dalam mengungkapkan pola-pola tersembunyi dalam 

angka-angka mentah. Grafik garis (line chart) adalah salah satu jenis 

grafik paling umum dalam visualisasi numerik. Grafik ini digunakan 

untuk menampilkan perubahan nilai dari waktu ke waktu, seperti 

pertumbuhan populasi, harga saham, atau suhu harian. Karena 

kemampuannya menunjukkan arah tren secara halus, grafik garis sangat 

efektif dalam mengilustrasikan dinamika temporal dari data kontinu. 
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Grafik batang (bar chart) digunakan untuk membandingkan nilai 

antar kategori diskrit. Misalnya, perbandingan hasil penjualan antar 

produk, jumlah siswa per jurusan, atau pengeluaran tahunan berdasarkan 

sektor. Bar chart memudahkan pengguna melihat kategori mana yang 

paling dominan atau paling rendah, terutama dalam kasus data 

terklasifikasi. Histogram, meskipun tampak mirip dengan bar chart, 

berfungsi untuk menunjukkan distribusi frekuensi dari data numerik 

yang dibagi dalam rentang interval. Histogram sangat berguna untuk 

mengetahui sebaran nilai, seperti dalam pengukuran statistik tinggi 

badan, waktu proses, atau nilai ujian. 

Scatter plot (diagram sebar) memvisualisasikan hubungan antara 

dua variabel numerik. Ini sangat penting dalam analisis korelasi dan 

regresi, di mana kita ingin tahu apakah perubahan satu variabel berkaitan 

dengan perubahan variabel lain. Scatter plot juga berguna untuk 

mendeteksi outlier. Box plot menampilkan ringkasan statistik dari data, 

termasuk median, kuartil, dan pencilan (outlier). Grafik ini sangat 

berguna dalam analisis komparatif antar kelompok, misalnya 

membandingkan nilai ujian antar kelas atau distribusi pendapatan antar 

wilayah. Jenis lainnya termasuk pie chart untuk proporsi, heatmap untuk 

korelasi, serta surface plot dan contour plot dalam visualisasi tiga 

dimensi atau data spasial. Pemilihan jenis grafik harus 

mempertimbangkan jenis data, tujuan analisis, dan target audiens agar 

informasi yang ditampilkan benar-benar membantu pemahaman dan 

pengambilan keputusan. 

 

2. Tools dan Library untuk Plotting Data 

Di dunia komputasi numerik dan analisis data, keberadaan tools 

dan library untuk plotting data sangat penting dalam mendukung 

visualisasi yang efektif. Alat-alat ini memungkinkan pengguna untuk 

mengubah data numerik menjadi representasi grafis yang intuitif, seperti 

grafik garis, batang, scatter, dan histogram. Berbagai bahasa 

pemrograman populer seperti Python, MATLAB, R, dan platform 

visualisasi modern menyediakan beragam pustaka dan antarmuka visual 

yang memudahkan proses ini, mulai dari eksplorasi data awal hingga 

presentasi akhir. 

Python merupakan salah satu bahasa pemrograman yang paling 

banyak digunakan dalam sains data dan visualisasi, karena memiliki 

ekosistem pustaka yang kuat dan fleksibel. Matplotlib, pustaka plotting 
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dasar di Python, memungkinkan pembuatan grafik 2D dengan kontrol 

penuh terhadap setiap elemen visual, seperti judul, label sumbu, warna, 

dan gaya garis. Untuk visualisasi statistik yang lebih estetis dan cepat, 

Seaborn menjadi pilihan favorit, karena dibangun di atas Matplotlib dan 

mampu membuat grafik seperti boxplot, heatmap, dan violin plot dengan 

sintaks yang ringkas. Selain itu, Plotly dan Bokeh digunakan untuk 

membuat grafik interaktif berbasis web yang sangat cocok untuk 

dashboard dan aplikasi visualisasi data real-time. 

MATLAB adalah tool proprietary yang sangat populer di bidang 

teknik dan komputasi ilmiah. MATLAB menyediakan fungsi plotting 

seperti plot, bar, surf, dan contour, yang sangat ideal untuk menampilkan 

hasil komputasi numerik, simulasi, atau visualisasi fungsi matematis 

dalam bentuk 2D maupun 3D. MATLAB dikenal karena kemudahan 

penggunaannya serta kualitas grafik yang tinggi dan dapat dikustomisasi. 

Untuk kebutuhan visualisasi tanpa kode, tersedia alat seperti Microsoft 

Excel, Google Sheets, dan Tableau. Excel dan Google Sheets cocok 

untuk visualisasi sederhana berbasis spreadsheet, seperti grafik batang 

dan pie chart. Sedangkan Tableau menawarkan antarmuka drag-and-

drop untuk membuat visualisasi interaktif kompleks yang terhubung ke 

berbagai sumber data. 

 

3. Visualisasi dalam Proses Analisis dan Komputasi 

Di dunia analisis data dan komputasi numerik, visualisasi bukan 

hanya alat presentasi akhir, tetapi bagian penting dari keseluruhan proses 

analisis yang membantu pengguna memahami, memverifikasi, dan 

mengkomunikasikan hasil dengan lebih baik. Visualisasi berperan sejak 

tahap eksplorasi awal data (exploratory data analysis/EDA), hingga 

validasi model dan pelaporan hasil. Dengan mengubah angka-angka 

menjadi bentuk grafis yang dapat dilihat secara intuitif, visualisasi 

memungkinkan deteksi pola, anomali, atau kesalahan yang mungkin 

tidak terlihat hanya melalui tabel data. 

Pada tahap eksplorasi data, visualisasi membantu pengguna 

mengenali distribusi, tren waktu, atau hubungan antar variabel. 

Misalnya, dalam pemodelan statistik atau machine learning, scatter plot 

dapat digunakan untuk melihat korelasi antara dua variabel numerik 

sebelum diterapkan regresi. Demikian juga, histogram atau box plot 

berguna untuk mengevaluasi persebaran dan outlier, yang sangat penting 

untuk menjaga integritas model komputasi. Pada konteks komputasi 
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numerik, visualisasi berperan penting dalam memantau proses iteratif 

atau solutif, seperti penyelesaian persamaan diferensial numerik, 

simulasi fluida (CFD), atau optimasi non-linear. Sebagai contoh, dalam 

metode Euler atau Runge-Kutta, grafik solusi terhadap waktu membantu 

mengevaluasi stabilitas dan akurasi pendekatan numerik yang 

digunakan. Tanpa visualisasi, peneliti hanya akan melihat deretan angka 

yang sulit dievaluasi secara intuitif. 

Visualisasi berperan dalam verifikasi dan validasi model 

komputasi. Hasil simulasi atau prediksi dapat dibandingkan dengan data 

aktual melalui grafik overlay, sehingga memudahkan penilaian terhadap 

tingkat kesesuaian model. Bahkan dalam pengembangan sistem berbasis 

kecerdasan buatan, seperti neural network, visualisasi dari loss function 

atau akurasi terhadap epoch sangat penting dalam menentukan 

keberhasilan proses pelatihan. Akhirnya, dalam pelaporan dan 

komunikasi hasil analisis, visualisasi mempermudah penyampaian 

informasi kepada pihak yang tidak teknis. Grafik yang tepat dapat 

menjembatani pemahaman antara analis dan pengambil keputusan. Oleh 

karena itu, integrasi visualisasi dalam setiap tahap analisis dan komputasi 

adalah praktik terbaik yang wajib diterapkan dalam pengolahan data 

modern. 
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BAB III 

REPRESENTASI 

BILANGAN DAN 

ARITMETIKA KOMPUTASI 
 

 

Representasi bilangan dan aritmetika komputasi merupakan 

fondasi utama dalam memahami cara kerja sistem komputasi modern. 

Dalam dunia digital, bilangan tidak disimpan sebagaimana manusia 

memahaminya dalam bentuk desimal, melainkan dalam representasi 

biner, oktal, atau heksadesimal yang lebih sesuai dengan arsitektur 

perangkat keras. Pemahaman mengenai bagaimana bilangan bulat, 

bilangan pecahan, maupun bilangan floating-point direpresentasikan 

dalam komputer sangat penting untuk menghindari kesalahan komputasi 

yang tampak sepele namun berdampak besar, seperti pembulatan atau 

underflow dan overflow. Aritmetika komputasi juga menyangkut 

operasi-operasi dasar seperti penjumlahan, pengurangan, perkalian, dan 

pembagian yang dilakukan dalam format terbatas dan presisi tertentu. 

Dalam bab ini, membahas bagaimana komputer menangani bilangan 

secara internal, termasuk struktur IEEE 754 untuk floating-point, serta 

bagaimana kesalahan numerik dapat muncul dan dikendalikan.  

 

A. Representasi Bilangan Floating point dan Biner 

 

Di dunia komputasi modern, representasi data numerik berperan 

yang sangat penting. Komputer tidak bekerja dengan angka sebagaimana 

manusia melakukannya; melainkan, semua bentuk data, termasuk angka, 

dikodekan dalam format biner. Salah satu format paling umum untuk 

merepresentasikan angka pecahan dalam komputer adalah floating point. 

Representasi ini memungkinkan komputer menangani berbagai angka 
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dengan rentang yang luas, baik sangat besar maupun sangat kecil, dengan 

tingkat presisi yang terkontrol. 

 

1. Representasi Biner 

Representasi biner adalah sistem bilangan yang hanya 

menggunakan dua simbol, yaitu 0 dan 1, untuk menyatakan semua jenis 

data dalam komputer. Sistem ini menjadi dasar dalam dunia komputasi 

karena perangkat keras komputer seperti transistor dan sirkuit digital 

hanya mengenali dua keadaan logika: on (1) dan off (0). Dengan 

menggunakan kombinasi bit-bit ini, komputer dapat merepresentasikan 

angka, karakter, instruksi, hingga gambar dalam bentuk yang dapat 

diolah secara elektronik. 

Pada konteks bilangan bulat, representasi biner bekerja 

berdasarkan posisi bit yang merepresentasikan pangkat dua. Sebagai 

contoh, bilangan desimal 13 ditulis sebagai 1101 dalam biner, yang 

berarti: 

 
Untuk bilangan negatif, digunakan metode komplemen dua 

(two’s complement) agar perhitungan aritmetika tetap efisien dalam 

operasi logika. Misalnya, -5 dalam 8-bit two’s complement ditulis 

sebagai 11111011. 

Bilangan pecahan atau angka desimal dalam biner 

direpresentasikan dengan memperluas sistem posisi ke bagian kanan titik 

biner (binary point), menggunakan nilai-nilai seperti 2−12−2, dan 

seterusnya. Contohnya, bilangan 0.625 dalam biner adalah 0.101, 

karena: 

 
Meskipun efisien, sistem biner memiliki keterbatasan dalam 

merepresentasikan beberapa bilangan desimal secara eksak. Sebagai 

contoh, bilangan 0.1 tidak dapat direpresentasikan secara tepat dalam 

bentuk biner terbatas, menyebabkan kesalahan pembulatan dalam 

komputasi. Oleh karena itu, pemahaman tentang representasi biner 

menjadi krusial bagi siapa pun yang bekerja di bidang komputasi, teknik, 

maupun sains data untuk memastikan hasil perhitungan yang akurat dan 

dapat dipertanggungjawabkan. 
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2. Floating Point 

Floating point adalah format representasi bilangan dalam 

komputer yang dirancang untuk menyatakan angka-angka real, baik 

sangat besar maupun sangat kecil, dengan efisien dan presisi terbatas. 

Berbeda dengan bilangan bulat (integer) yang memiliki nilai tetap dalam 

rentang tertentu, bilangan floating point memungkinkan adanya 

eksponen untuk memperluas cakupan nilai yang bisa direpresentasikan. 

Konsep floating point dapat dianalogikan seperti notasi ilmiah dalam 

matematika. Format floating point yang paling umum digunakan di 

seluruh sistem komputasi modern adalah standar IEEE 754, yang 

menetapkan aturan representasi 32-bit (single precision) dan 64-bit 

(double precision). 

Pada struktur IEEE 754, satu angka floating point terdiri atas tiga 

bagian utama: bit tanda (sign bit), eksponen, dan mantissa. Misalnya, 

dalam format 32-bit: 1 bit digunakan untuk tanda (positif atau negatif), 

8 bit untuk eksponen (dengan bias 127), dan 23 bit untuk mantissa. Nilai 

aktual bilangan dihitung dengan rumus: 

 

 
Keunggulan utama floating point adalah kemampuannya 

merepresentasikan nilai sangat besar seperti 1038 dan nilai sangat kecil 

seperti 10-38, yang penting dalam aplikasi ilmiah seperti simulasi fisika, 

pemodelan keuangan, dan machine learning. Namun, karena hanya 

sejumlah bit yang tersedia untuk menyimpan mantissa dan eksponen, 

representasi ini rawan terhadap kesalahan pembulatan, overflow, dan 

underflow. Akibatnya, programmer harus waspada terhadap 

keterbatasan presisi dan efek numerik yang mungkin terjadi dalam 

perhitungan. Oleh karena itu, floating point bukan hanya solusi teknis, 

melainkan juga tantangan logika dan presisi dalam komputasi numerik. 

 

3. Perbandingan 

Di dunia komputasi numerik, representasi bilangan dapat 

dibedakan menjadi dua kategori utama: floating point dan fixed point 

(representasi tetap). Keduanya memiliki fungsi yang sama, yaitu 

menyimpan dan memproses angka pecahan atau bilangan real, namun 

dengan pendekatan dan karakteristik teknis yang sangat berbeda. 

Floating point, seperti yang diatur oleh standar IEEE 754, 
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memungkinkan representasi angka dalam rentang yang sangat luas 

melalui penggunaan eksponen berbasis dua. Format ini sangat ideal 

untuk aplikasi yang memerlukan skala angka yang besar atau kecil 

seperti simulasi ilmiah, grafik komputer, dan analisis statistik karena 

dapat secara fleksibel menyesuaikan posisi titik desimal (floating) 

tergantung besar kecilnya angka. 

Representasi tetap (fixed point) menetapkan posisi titik desimal 

pada tempat yang konstan. Hal ini menjadikannya lebih sederhana secara 

implementasi dan efisien dalam hal penggunaan memori serta kecepatan 

eksekusi, terutama pada sistem tertanam (embedded systems) seperti 

mikrokontroler dan perangkat IoT. Namun, fixed point memiliki 

keterbatasan rentang nilai dan presisi karena tidak mendukung eksponen. 

Akibatnya, angka yang terlalu besar atau kecil dapat dengan mudah 

mengalami overflow atau truncation. 

Perbandingan keduanya menunjukkan adanya trade-off antara 

fleksibilitas dan efisiensi. Floating point unggul dalam hal presisi 

dinamis dan cakupan nilai, tetapi membutuhkan perangkat keras yang 

lebih kompleks dan mahal. Fixed point lebih hemat sumber daya dan 

cocok untuk aplikasi real-time dengan batas presisi yang dapat dikontrol. 

Dalam praktiknya, pemilihan antara keduanya sangat tergantung pada 

kebutuhan aplikasi: floating point untuk komputasi ilmiah berskala 

besar, dan fixed point untuk sistem dengan keterbatasan sumber daya 

namun memerlukan performa tinggi dan prediktabilitas. 

 

B. Stabilitas dan Propagasi Kesalahan 

 

Pada komputasi numerik, setiap perhitungan yang dilakukan oleh 

komputer tidak lepas dari kemungkinan kesalahan. Hal ini disebabkan 

oleh keterbatasan representasi bilangan dalam format biner dan floating 

point, serta akumulasi kesalahan selama proses komputasi berlangsung. 

Dua konsep kunci yang sangat penting dalam menganalisis dan 

mengendalikan akurasi perhitungan numerik adalah stabilitas algoritma 

dan propagasi kesalahan (error propagation). Memahami keduanya 

sangat penting untuk menghindari hasil perhitungan yang tidak akurat 

atau bahkan menyesatkan dalam aplikasi sains, teknik, maupun 

keuangan. 
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1. Jenis-Jenis Kesalahan dalam Komputasi 

Pada komputasi numerik, setiap proses perhitungan tidak terlepas 

dari berbagai bentuk kesalahan (error) yang dapat memengaruhi akurasi 

hasil. Pemahaman terhadap jenis-jenis kesalahan ini sangat penting agar 

pengembang algoritma dan praktisi komputasi dapat mengambil 

langkah-langkah korektif untuk meminimalkan dampaknya. Secara 

umum, kesalahan dalam komputasi terbagi menjadi tiga kategori utama: 

kesalahan pembulatan (round-off error), kesalahan pemotongan 

(truncation error), dan kesalahan input atau data (input error). 

Kesalahan pembulatan terjadi karena keterbatasan representasi 

angka dalam komputer. Komputer menggunakan sistem floating point 

dengan jumlah bit terbatas, sehingga tidak semua bilangan desimal dapat 

direpresentasikan secara eksak. Misalnya, angka 0.1 dalam sistem 

desimal tidak dapat ditulis secara tepat dalam biner, sehingga terjadi 

pembulatan ke angka terdekat. Ketika perhitungan dilakukan berulang-

ulang, kesalahan kecil ini bisa terakumulasi dan memengaruhi hasil 

akhir, terutama pada algoritma yang sensitif secara numerik. 

Kesalahan pemotongan muncul ketika pendekatan matematis 

digunakan untuk menyelesaikan permasalahan yang tidak bisa dihitung 

secara eksak. Contohnya adalah penggunaan metode numerik seperti 

deret Taylor, metode Euler, atau integrasi numerik. Dalam metode ini, 

hanya sebagian dari istilah yang dihitung, sementara sisanya dipotong 

(truncated), sehingga menghasilkan deviasi dari nilai sebenarnya. 

Sementara itu, kesalahan input atau kesalahan data timbul dari 

ketidaktepatan data awal yang dimasukkan ke dalam sistem, misalnya 

hasil pengukuran yang tidak akurat atau data yang sudah mengalami 

proses konversi. Kesalahan jenis ini sangat bergantung pada konteks 

aplikasi, tetapi tetap dapat merambat melalui algoritma dan 

menyebabkan hasil akhir yang menyesatkan jika tidak dikendalikan. 

 

2. Propagasi Kesalahan 

Propagasi kesalahan adalah fenomena penting dalam komputasi 

numerik yang menggambarkan bagaimana kesalahan kecil pada data 

awal atau hasil perhitungan dapat menyebar dan membesar seiring 

berjalannya proses komputasi. Dalam praktiknya, hampir semua 

perhitungan dalam komputer melibatkan kesalahan pembulatan (round-

off) akibat representasi floating point yang terbatas, serta kesalahan 

pemotongan (truncation) dalam penggunaan metode numerik. Propagasi 
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kesalahan menjadi krusial karena akumulasi dari kesalahan-kesalahan 

kecil ini dapat menyebabkan hasil akhir yang jauh menyimpang dari nilai 

yang seharusnya, terutama pada algoritma yang bersifat numerik tidak 

stabil. 

Fenomena ini sering terjadi dalam operasi matematika yang 

melibatkan angka-angka dengan nilai yang sangat berdekatan, seperti 

dalam kasus pengurangan dua bilangan hampir sama. Salah satu contoh 

klasik adalah perhitungan √x2 + 1 − 1 untuk nilai x yang sangat kecil. 

Proses pengurangan ini dapat menghilangkan informasi penting dari 

angka yang tersimpan, fenomena ini dikenal sebagai catastrophic 

cancellation. 

Propagasi kesalahan juga terjadi dalam metode iteratif seperti 

pada penyelesaian sistem persamaan linear, persamaan diferensial, atau 

perhitungan akar fungsi. Jika algoritma yang digunakan tidak stabil, 

maka kesalahan pada satu iterasi dapat diperkuat pada iterasi berikutnya, 

sehingga kesalahan total menjadi tidak terkendali. Hal ini diperparah jika 

masalah yang diselesaikan bersifat ill-conditioned, yaitu masalah di 

mana sedikit perubahan pada input menghasilkan perubahan besar pada 

output. Untuk mengatasi propagasi kesalahan, strategi numerik seperti 

normalisasi data, penggunaan metode numerik stabil, transformasi 

aljabar untuk menghindari pengurangan kritis, serta penggunaan kendali 

kesalahan (error control) dalam metode iteratif sering digunakan. 

Pemahaman tentang bagaimana dan kapan kesalahan tersebar adalah 

kunci dalam merancang algoritma yang handal dan memastikan akurasi 

hasil dalam aplikasi sains, teknik, maupun keuangan. 

 

3. Stabilitas Algoritma 

Stabilitas algoritma adalah konsep penting dalam komputasi 

numerik yang mengacu pada sejauh mana suatu algoritma dapat 

mengendalikan atau membatasi dampak kesalahan kecil selama proses 

perhitungan. Dalam konteks ini, kesalahan yang dimaksud bisa berasal 

dari pembulatan angka akibat keterbatasan representasi floating point, 

kesalahan pemotongan dalam metode numerik, maupun kesalahan input 

dari data yang tidak presisi. Algoritma yang stabil adalah algoritma yang 

mampu menghasilkan hasil akhir yang mendekati solusi sebenarnya 

meskipun terdapat gangguan kecil atau kesalahan pada data atau selama 

perhitungan berlangsung. Sebaliknya, algoritma yang tidak stabil akan 
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memperbesar kesalahan ini sehingga hasil akhirnya menjadi tidak dapat 

dipercaya. 

Stabilitas sangat berkaitan dengan bagaimana kesalahan 

terpropagasi atau menyebar selama serangkaian langkah perhitungan. 

Sebagai contoh, dalam metode eliminasi Gauss untuk menyelesaikan 

sistem persamaan linear, pembagian oleh angka yang sangat kecil dapat 

menyebabkan hasil yang sangat melenceng karena pembulatan yang 

ekstrem. Tanpa teknik stabilisasi seperti pivoting (penukaran baris untuk 

memaksimalkan elemen pivot), metode ini menjadi tidak stabil secara 

numerik. Inilah sebabnya metode partial pivoting atau scaled partial 

pivoting banyak digunakan dalam praktik untuk menjaga kestabilan 

hasil. 

Stabilitas juga menjadi isu kritis dalam metode numerik yang 

digunakan untuk menyelesaikan persamaan diferensial, seperti metode 

Euler atau Runge-Kutta. Sebagai contoh, metode Euler eksplisit 

cenderung tidak stabil jika digunakan pada sistem dengan dinamika 

cepat atau dengan langkah waktu (step size) yang besar. Ketidakstabilan 

ini menyebabkan nilai solusi menyimpang jauh dari solusi eksak, bahkan 

bisa menjadi tak hingga. Oleh karena itu, penting dilakukan analisis 

stabilitas terhadap metode numerik, termasuk dengan mengevaluasi 

region of stability atau batas nilai langkah yang masih menghasilkan 

solusi stabil. 

 

C. Operasi Aritmetika dan Pembulatan dalam Mesin 

 

Pada sistem komputasi modern, semua operasi numerik yang 

dilakukan komputer seperti penjumlahan, pengurangan, perkalian, dan 

pembagian dijalankan oleh unit pemroses (CPU) dalam bentuk operasi 

aritmetika biner. Namun, keterbatasan dalam representasi angka, 

khususnya angka real (pecahan), membuat hasil dari operasi ini sering 

kali tidak presisi sempurna. Oleh karena itu, penting untuk memahami 

operasi aritmetika dalam mesin dan bagaimana pembulatan (rounding) 

diterapkan sebagai bagian dari proses ini. 

 

1. Representasi Bilangan Floating point 

Representasi bilangan floating point merupakan cara standar 

yang digunakan komputer untuk menyimpan dan memanipulasi bilangan 

real (pecahan), terutama bilangan yang sangat besar atau sangat kecil. 
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Sistem ini mengadopsi prinsip notasi ilmiah, di mana sebuah bilangan 

dinyatakan dalam bentuk ±m×be, dengan mmm sebagai mantissa 

(significand), bbb sebagai basis (biasanya 2 dalam sistem komputer), dan 

eee sebagai eksponen. Untuk menjamin keseragaman dan 

interoperabilitas antar sistem komputasi, representasi ini dikendalikan 

oleh standar IEEE 754, yang paling umum digunakan di hampir semua 

perangkat keras dan bahasa pemrograman saat ini. 

Pada standar IEEE 754, terdapat dua format utama: single 

precision (32-bit) dan double precision (64-bit). Untuk single precision, 

satu bilangan floating point terdiri dari 1 bit tanda (sign bit), 8 bit 

eksponen dengan bias 127, dan 23 bit mantissa. Sedangkan dalam double 

precision, digunakan 1 bit tanda, 11 bit eksponen dengan bias 1023, dan 

52 bit mantissa. Nilai eksponen yang disimpan sebenarnya adalah hasil 

penjumlahan eksponen aktual dengan nilai bias, yang memungkinkan 

penyimpanan bilangan positif dan negatif secara efisien. 

Salah satu fitur penting dari sistem ini adalah normalisasi, di 

mana angka disimpan dalam bentuk sedemikian rupa sehingga digit 

paling signifikan dari mantissa adalah bukan nol (kecuali untuk nol atau 

bilangan denormal). Proses normalisasi ini memastikan bahwa presisi 

maksimum dimanfaatkan dalam keterbatasan bit yang tersedia. Namun 

demikian, karena panjang mantissa terbatas, banyak bilangan desimal 

yang tidak bisa direpresentasikan secara eksak (misalnya 0.1), sehingga 

muncul kesalahan pembulatan (round-off error) dalam perhitungan. 

Representasi floating point memungkinkan komputer untuk 

menangani perhitungan ilmiah dengan skala luas, namun pengguna harus 

berhati-hati terhadap akumulasi kesalahan, underflow, overflow, dan 

fenomena seperti cancellation yang bisa muncul akibat keterbatasan 

presisi. Oleh karena itu, pemahaman menyeluruh tentang representasi ini 

menjadi fondasi penting dalam desain algoritma numerik yang akurat 

dan stabil. 

 

2. Operasi Aritmetika dalam Mesin 

Operasi aritmetika dalam mesin merupakan proses dasar yang 

dilakukan oleh unit pemroses (CPU atau FPU) untuk menyelesaikan 

perhitungan matematis seperti penjumlahan, pengurangan, perkalian, 

dan pembagian. Berbeda dengan operasi manual pada manusia, 

komputer melakukan semua operasi tersebut dalam bentuk biner 

menggunakan sistem representasi floating point, sebagaimana diatur 
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dalam standar IEEE 754. Proses ini sangat kompleks karena melibatkan 

normalisasi, penyelarasan eksponen, manipulasi bit-bit mantissa, serta 

pembulatan akhir agar hasil sesuai dengan kapasitas penyimpanan bit 

yang tersedia. 

Pada penjumlahan dan pengurangan floating point, langkah awal 

yang dilakukan adalah penyamaan eksponen. Operand dengan eksponen 

lebih kecil akan disesuaikan dengan menggeser mantissanya ke kanan, 

sehingga eksponennya cocok dengan operand lain. Setelah eksponen 

disamakan, barulah operasi mantissa dilakukan. Hasilnya kemudian 

dinormalisasi jika hasil memiliki digit paling signifikan yang bukan di 

posisi standar, maka mantissa digeser dan eksponen disesuaikan. 

Terakhir, dilakukan pembulatan (rounding) ke dalam format bit mantissa 

yang ditentukan (misalnya 23 bit untuk single precision), karena hasil 

sebenarnya sering kali tidak bisa disimpan secara eksak. 

Perkalian dan pembagian floating point memiliki mekanisme 

berbeda. Eksponen operand dijumlahkan (untuk perkalian) atau 

dikurangkan (untuk pembagian), sementara mantissa dikalikan atau 

dibagi. Proses ini pun diakhiri dengan normalisasi dan pembulatan. 

Seluruh langkah ini membuat operasi floating point lebih mahal secara 

komputasi dibanding operasi integer, dan lebih rentan terhadap 

kesalahan pembulatan (round-off error). Masalah juga bisa muncul jika 

terjadi overflow (nilai melebihi batas maksimum eksponen) atau 

underflow (nilai terlalu kecil untuk direpresentasikan). Karena sifat 

aritmetika floating point yang tidak sepenuhnya asosiatif atau distributif, 

hasil operasi bisa berbeda tergantung urutan kalkulasi. Oleh karena itu, 

dalam pemrograman numerik, sangat penting untuk menyusun operasi 

secara hati-hati dan memilih algoritma yang stabil secara numerik guna 

meminimalkan akumulasi kesalahan dan menjamin keandalan hasil 

perhitungan. 

 

3. Pembulatan (Rounding) 

Pembulatan (rounding) adalah proses penting dalam komputasi 

numerik yang terjadi ketika suatu bilangan real tidak dapat 

direpresentasikan secara eksak dalam format biner floating point, 

sehingga harus disesuaikan ke nilai terdekat yang bisa diwakili oleh 

komputer. Hal ini disebabkan oleh keterbatasan jumlah bit yang tersedia 

untuk menyimpan angka, khususnya pada bagian mantissa. Sebagai 

contoh, dalam format IEEE 754 single precision, hanya tersedia 23 bit 
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untuk mantissa, sehingga banyak bilangan desimal seperti 0.1 atau 1/3, 

tidak dapat disimpan secara tepat. Akibatnya, proses pembulatan tidak 

hanya tak terhindarkan, tetapi juga sangat berpengaruh terhadap akurasi 

hasil perhitungan. 

Menurut (Higham, 2002), pembulatan merupakan sumber utama 

dari kesalahan pembulatan (round-off error), yaitu perbedaan antara nilai 

aktual dan nilai yang disimpan atau dihitung oleh komputer. Dalam 

standar IEEE 754, terdapat beberapa mode pembulatan yang 

diimplementasikan untuk mengatur cara komputer menentukan nilai 

terdekat, yaitu: round to nearest (default), round toward zero, round 

toward +infinity, dan round toward –infinity. Mode round to nearest, ties 

to even adalah yang paling umum, karena secara statistik dapat 

meminimalkan akumulasi kesalahan dalam perhitungan berulang. 

Proses pembulatan terjadi setiap kali hasil operasi aritmetika 

tidak muat dalam mantissa yang tersedia. Misalnya, saat dua bilangan 

dikalikan dan menghasilkan mantissa yang lebih panjang dari kapasitas, 

komputer akan memotong digit-digit tak signifikan dan menyimpan hasil 

yang dibulatkan. Jika proses ini terjadi secara berulang dalam algoritma 

yang panjang atau iteratif, kesalahan pembulatan dapat terakumulasi dan 

berdampak signifikan terhadap hasil akhir, terutama dalam algoritma 

yang tidak stabil secara numerik. Untuk mengurangi efek negatif 

pembulatan, praktisi komputasi numerik harus memahami sifat 

pembulatan dalam mesin dan memilih strategi yang sesuai. Hal ini 

termasuk menyusun ulang ekspresi matematis, menggunakan presisi 

lebih tinggi jika diperlukan, serta menghindari operasi seperti 

pengurangan dua angka yang hampir sama yang rentan terhadap 

hilangnya digit signifikan akibat pembulatan. 

 

D. Standard IEEE 754 

 

Di dunia komputasi, angka real (pecahan) berperan an penting, 

baik dalam aplikasi ilmiah, teknik, statistik, maupun grafika. Namun, 

representasi angka-angka ini dalam komputer tidaklah sesederhana 

penulisan desimal. Karena komputer hanya mengenal angka dalam 

bentuk biner dan memiliki keterbatasan memori, dibutuhkan sistem 

representasi numerik yang efisien, konsisten, dan mampu menangani 

angka sangat besar maupun sangat kecil. Untuk menjawab kebutuhan 
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tersebut, diperkenalkanlah standar IEEE 754 yang hingga kini menjadi 

patokan global dalam representasi dan perhitungan floating point. 

Menurut (IEEE Standards Association, 2008), IEEE 754 adalah 

standar yang dikembangkan oleh Institute of Electrical and Electronics 

Engineers (IEEE) dan pertama kali diperkenalkan pada tahun 1985. 

Standar ini mendefinisikan format penyimpanan, aturan pembulatan, 

penanganan nilai khusus (seperti NaN dan Infinity), serta metode operasi 

aritmetika floating point yang konsisten di seluruh arsitektur komputer 

dan bahasa pemrograman. Sebelum adanya IEEE 754, produsen 

perangkat keras memiliki implementasi floating point masing-masing 

yang berbeda-beda, sehingga menyebabkan inkonsistensi hasil 

perhitungan numerik antar sistem. IEEE 754 hadir untuk menyatukan 

standar ini dan memastikan interoperabilitas serta akurasi komputasi di 

berbagai platform dan aplikasi. 

 

1. Struktur Representasi Floating point 

Struktur representasi floating point dalam komputer adalah cara 

menyimpan bilangan real menggunakan format biner dengan tiga 

komponen utama: bit tanda (sign bit), eksponen (exponent), dan fraksi 

atau mantissa (fraction/mantissa). Standar representasi yang digunakan 

secara luas dalam industri dan akademik adalah IEEE 754, yang 

menjamin konsistensi, efisiensi, dan interoperabilitas dalam perhitungan 

numerik di berbagai sistem perangkat keras dan perangkat lunak. 

Floating point digunakan karena mampu mewakili rentang angka yang 

sangat luas, baik yang sangat kecil mendekati nol maupun yang sangat 

besar, tanpa memerlukan format data yang terlalu besar secara fisik. 

Pada format single precision (32 bit), bilangan floating point 

terdiri dari 1 bit tanda, 8 bit eksponen, dan 23 bit mantissa. Bit tanda 

menunjukkan apakah bilangan positif (0) atau negatif (1). Eksponen 

digunakan untuk mengalikan basis dua sehingga bilangan bisa 

dinormalisasi, dan disimpan dalam format “biased exponent” dengan 

bias sebesar 127. Artinya, nilai eksponen aktual diperoleh dengan 

mengurangkan nilai yang disimpan dengan 127. Sedangkan bagian 

mantissa menyimpan angka-angka setelah titik desimal, dan dalam 

representasi normalisasi selalu diasumsikan memiliki bit tersembunyi 

(implicit bit) yaitu angka 1 di depan, sehingga bagian mantissa 

sebenarnya adalah 1.x… dalam basis biner. Pada double precision (64 

bit), strukturnya terdiri dari 1 bit tanda, 11 bit eksponen, dan 52 bit 
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mantissa, dengan bias eksponen sebesar 1023. Dengan kapasitas 

mantissa yang lebih besar, double precision memungkinkan representasi 

bilangan yang jauh lebih presisi dan mengurangi kemungkinan 

kesalahan pembulatan (round-off error) dalam operasi aritmetika. 

Salah satu keunggulan struktur floating point ini adalah 

kemampuannya untuk menangani bilangan desimal sangat besar atau 

sangat kecil secara efisien, yang tidak dapat dilakukan oleh representasi 

integer biasa. Namun, struktur ini juga memperkenalkan tantangan, 

seperti ketidakakuratan representasi bilangan desimal tertentu (misalnya 

0.1) dan efek propagasi kesalahan dalam operasi berulang. Oleh karena 

itu, pemahaman terhadap struktur ini sangat penting dalam merancang 

algoritma numerik yang stabil dan efisien di berbagai aplikasi sains, 

teknik, dan keuangan. 

 

2. Nilai Khusus dalam IEEE 754 

Pada standar IEEE 754 untuk representasi bilangan floating 

point, tidak semua pola bit digunakan untuk menyatakan bilangan real 

biasa. Sebagian pola disediakan untuk merepresentasikan nilai-nilai 

khusus yang memiliki makna penting dalam komputasi numerik, 

terutama dalam penanganan kondisi ekstrem seperti pembagian nol, 

overflow, underflow, atau operasi tak terdefinisi. Nilai-nilai khusus ini 

mencakup: Nol positif/negatif (±0), Tak hingga (±∞), NaN (Not a 

Number), dan bilangan denormal atau subnormal. 

Pertama, ±0 menunjukkan bahwa angka nol dapat disimpan 

dengan tanda positif atau negatif. Meskipun secara matematis tidak 

berbeda, dalam komputasi ±0 digunakan untuk mempertahankan arah 

pendekatan limit atau derivatif, yang penting dalam analisis numerik dan 

kalkulus. Contohnya, hasil dari -1/∞ dapat berupa -0, menunjukkan 

bahwa pendekatan berasal dari arah negatif. 

Kedua, tak hingga (positive/negative infinity) muncul saat hasil 

perhitungan melebihi batas representasi eksponen tertinggi (overflow), 

seperti ketika membagi angka besar dengan angka sangat kecil atau 

pembagian angka bukan nol dengan nol. Dalam IEEE 754, ini diwakili 

dengan eksponen maksimum (semua bit eksponen = 1) dan mantissa = 

0. Hasil operasi terhadap tak hingga mengikuti aturan aljabar, misalnya 

a+∞=∞, tetapi operasi seperti ∞−∞ menghasilkan NaN. 
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Ketiga, NaN (Not a Number) digunakan untuk menunjukkan 

hasil dari operasi yang tidak valid secara matematis, seperti √−1, 0/0, 

atau ∞−∞. NaN memiliki eksponen semua bit 1, seperti tak hingga, tetapi 

mantissanya tidak nol. Terdapat dua jenis NaN: quiet NaN (qNaN) yang 

terus propagasi dalam perhitungan, dan signaling NaN (sNaN) yang 

dimaksudkan untuk menghasilkan error jika digunakan tanpa 

penanganan. 

Keempat, bilangan denormal (subnormal) digunakan saat hasil 

bilangan sangat kecil sehingga tidak lagi bisa dinormalisasi dalam format 

standar. Dalam kasus ini, angka disimpan dengan eksponen nol (bukan 

eksponen bias), dan tanpa bit 1 tersembunyi pada mantissa. Nilai ini 

memperluas rentang representasi menuju nol dan memungkinkan 

graceful underflow, yakni hasil perhitungan tidak langsung menjadi nol, 

melainkan bertahap mendekati nol. 

 

3. Evolusi dan Versi Terbaru 

Standar IEEE 754 telah mengalami beberapa kali evolusi sejak 

pertama kali diperkenalkan pada tahun 1985, seiring dengan 

berkembangnya kebutuhan komputasi numerik di berbagai bidang 

seperti sains, teknik, keuangan, hingga kecerdasan buatan. Versi awal 

IEEE 754-1985 berfokus pada definisi representasi floating point untuk 

dua format utama: single precision (32-bit) dan double precision (64-

bit). Standar ini memperkenalkan konsep penting seperti pembulatan 

standar (rounding modes), nilai khusus (NaN dan Infinity), serta 

pengaturan overflow dan underflow, yang hingga kini menjadi dasar 

utama komputasi numerik. 

Seiring meningkatnya kompleksitas dan skala komputasi 

modern, IEEE kemudian memperbarui standar ini melalui versi IEEE 

754-2008. Versi ini membawa beberapa pembaruan signifikan, seperti 

penambahan format baru, termasuk quadruple precision (128-bit) dan 

decimal floating point, yang dirancang untuk aplikasi yang memerlukan 

akurasi sangat tinggi atau manipulasi data desimal secara presisi, seperti 

dalam sistem keuangan. Versi ini juga menetapkan operasi baru seperti 

fused multiply-add (FMA) yang menggabungkan operasi perkalian dan 

penjumlahan dalam satu langkah untuk mengurangi kesalahan 

pembulatan, serta memperluas aturan konversi antar format dan 

representasi bilangan kompleks. 
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Gambar 3. Cloud Computing 

 
Sumber: Btech 

 

Terbaru, versi IEEE 754-2019 memperbaiki dan 

menyempurnakan standar sebelumnya, dengan tujuan meningkatkan 

kejelasan implementasi dan interoperabilitas. Beberapa perbaikan yang 

dibawa termasuk definisi lebih eksplisit tentang perilaku nilai NaN, 

pelabelan tipe minimal (minimal floating-point types) untuk perangkat 

keras dengan sumber daya terbatas, serta penyempurnaan dokumentasi 

operasi pembulatan, konversi, dan penanganan pengecualian. IEEE 754-

2019 juga menegaskan kembali pentingnya akurasi, determinisme, dan 

portabilitas dalam lingkungan komputasi yang terus berubah, seperti 

cloud computing dan komputasi paralel. 

Evolusi standar IEEE 754 menunjukkan bagaimana komunitas 

ilmiah dan teknis merespons tantangan komputasi numerik secara 

progresif. Dengan menetapkan aturan yang konsisten untuk semua jenis 

sistem dan platform, standar ini memungkinkan pengembang dan 

peneliti untuk membangun algoritma yang stabil, dapat direproduksi, 

dan andal, serta mampu menangani kompleksitas perhitungan skala 

besar dengan keakuratan tinggi. 
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BAB IV 

PENYELESAIAN 

PERSAMAAN ALJABAR 

LINEAR 
 

 

 

Persamaan aljabar linear merupakan salah satu fondasi utama 

dalam bidang matematika terapan dan komputasi numerik. 

Penyelesaiannya tidak hanya penting dalam ranah teori, tetapi juga 

memiliki aplikasi luas dalam berbagai disiplin ilmu, seperti fisika, 

teknik, ekonomi, dan ilmu komputer. Dalam praktiknya, sistem 

persamaan linear sering kali muncul dalam bentuk matriks dan vektor, 

serta membutuhkan pendekatan numerik yang efisien untuk 

mendapatkan solusi yang akurat, terutama ketika berhadapan dengan 

sistem berskala besar atau yang tidak dapat diselesaikan secara analitik. 

Buku atau materi ini disusun untuk memberikan pemahaman 

menyeluruh tentang teknik penyelesaian sistem persamaan linear, mulai 

dari metode eliminasi Gauss, dekomposisi matriks seperti LU 

decomposition, hingga pendekatan iteratif seperti metode Jacobi dan 

Gauss-Seidel. Di samping penjelasan teoritis, pembahasan juga 

dilengkapi dengan implementasi algoritma menggunakan bahasa 

pemrograman modern, sehingga pembaca dapat secara langsung 

menerapkan konsep yang dipelajari dalam pemecahan masalah nyata.  

 

A. Sistem Persamaan Linear dan Matriks Koefisien 

 

Menurut Anton & Rorres (2010) dalam Elementary Linear 

Algebra, sistem persamaan linear adalah sekumpulan persamaan linear 
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yang memiliki satu atau lebih variabel yang saling berkaitan. Dalam 

bentuk umum, sistem ini dapat dituliskan sebagai berikut: 

 

 
 

Sistem seperti ini disebut sistem persamaan linear dengan m persamaan 

dan n variabel. Koefisien aij menyatakan konstanta pengali variabel ke-j 

dalam persamaan ke-i, sedangkan bi merupakan konstanta pada ruas 

kanan. 

 

1. Representasi Matriks Koefisien 

Representasi matriks koefisien merupakan pendekatan sistematis 

untuk menuliskan sistem persamaan linear dalam bentuk yang lebih 

ringkas dan terstruktur. Dalam sistem persamaan linear, setiap 

persamaan melibatkan sejumlah variabel dengan koefisien tertentu. Jika 

sistem tersebut memiliki mmm persamaan dan nnn variabel, maka semua 

koefisien dapat disusun dalam sebuah matriks berukuran m×n, yang 

dikenal sebagai matriks koefisien. Misalnya, sistem tiga persamaan 

dengan tiga variabel: 

 
 

dapat direpresentasikan menjadi: 

 
Sehingga, sistem tersebut ditulis sebagai Ax=b. Representasi ini 

memiliki keunggulan dalam efisiensi notasi, kemudahan manipulasi 

matematis, dan sangat sesuai untuk diimplementasikan secara 
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komputasi. Dalam konteks algoritma numerik, operasi terhadap sistem 

linear seperti eliminasi Gauss, dekomposisi matriks, atau metode iteratif 

dapat dilakukan dengan jauh lebih mudah menggunakan bentuk matriks 

ini. Selain itu, dengan menambahkan vektor konstanta b sebagai kolom 

terakhir dari matriks koefisien, diperoleh matriks augmented [𝐴|𝑏], yang 

sangat bermanfaat dalam menyelesaikan sistem dengan metode operasi 

baris elementer. Oleh karena itu, representasi matriks koefisien bukan 

hanya alat bantu notasi, tetapi merupakan dasar penting dalam teori dan 

aplikasi sistem persamaan linear. 

2. Matriks Augmented dan Transformasi Baris 

Matriks augmented adalah representasi matriks gabungan yang 

menyatukan matriks koefisien dari sistem persamaan linear dengan 

vektor konstanta di sisi kanan persamaan. Bentuk ini ditulis sebagai 

[𝐴|𝑏], di mana A adalah matriks koefisien berukuran m×n dan b adalah 

vektor kolom dari konstanta ruas kanan berukuran m×1. Tujuan dari 

matriks augmented adalah untuk memfasilitasi penyelesaian sistem 

linear melalui manipulasi baris secara langsung, tanpa perlu menuliskan 

ulang seluruh sistem persamaan dalam bentuk aljabar konvensional. 

Representasi ini sangat efektif dalam metode numerik seperti eliminasi 

Gauss dan Gauss-Jordan. 

Proses penyederhanaan matriks augmented dilakukan melalui 

transformasi baris elementer, yang terdiri dari tiga jenis: (1) menukar dua 

baris, (2) mengalikan suatu baris dengan skalar tak nol, dan (3) 

menambahkan kelipatan suatu baris ke baris lainnya. Transformasi ini 

bertujuan mengubah bentuk matriks augmented menjadi eselon baris 

atau bahkan eselon baris tereduksi, sehingga solusi sistem dapat 

diperoleh dengan mudah melalui substitusi mundur atau langsung 

terbaca dari hasil akhir. 

Sebagai contoh, sistem dua persamaan linear yang 

direpresentasikan sebagai matriks augmented: 

 
dapat disederhanakan menggunakan operasi baris hingga mencapai 

bentuk: 
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yang secara langsung menyatakan solusi dari sistem. Menurut 

Lay (2012), transformasi baris tidak mengubah solusi dari sistem, 

sehingga semua bentuk yang ekuivalen baris tetap merepresentasikan 

sistem persamaan yang sama. Oleh karena itu, penggunaan matriks 

augmented dan transformasi baris menjadi pendekatan yang sangat kuat 

dan fundamental dalam penyelesaian sistem linear secara manual 

maupun komputasional. 

 

3. Solusi Sistem Persamaan Linear 

Solusi sistem persamaan linear merujuk pada himpunan nilai 

variabel yang memenuhi semua persamaan dalam sistem secara 

simultan. Menurut Strang (2016) dalam Introduction to Linear Algebra, 

sistem linear dapat memiliki tiga kemungkinan solusi: (1) satu solusi 

unik, (2) tak hingga banyak solusi, atau (3) tidak memiliki solusi sama 

sekali. Jenis solusi yang mungkin sangat bergantung pada hubungan 

antara jumlah persamaan, jumlah variabel, dan sifat dari matriks 

koefisien. 

Solusi unik terjadi apabila sistem terdiri dari nnn persamaan 

independen dengan nnn variabel dan determinan matriks koefisien tidak 

nol (dalam kasus matriks persegi). Solusi tak hingga muncul jika terdapat 

redundansi atau ketergantungan linier antar persamaan, sehingga sistem 

memiliki lebih sedikit persamaan efektif dibanding variabel umumnya 

terjadi dalam sistem underdetermined. Sementara itu, sistem dikatakan 

tidak konsisten atau tidak memiliki solusi jika terdapat kontradiksi antar 

persamaan. 

Untuk menentukan jenis solusi, konsep rank sangat penting. 

Rank adalah jumlah maksimum baris atau kolom linear independen 

dalam matriks. Berdasarkan Teorema Rouché–Capelli, solusi sistem 

ditentukan dengan membandingkan rank matriks koefisien A dan rank 

matriks augmented [𝐴|𝑏]. Jika rank-nya sama dan setara dengan jumlah 

variabel, sistem memiliki solusi unik. Jika rank sama tetapi kurang dari 

jumlah variabel, terdapat tak hingga solusi. Jika rank berbeda, sistem 

tidak memiliki solusi. 
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Pemahaman tentang jenis solusi sangat penting dalam penerapan 

praktis, seperti dalam analisis struktur teknik sipil, pemodelan ekonomi, 

atau sistem pengendalian dalam teknik elektro. Tanpa mengetahui sifat 

solusi, penggunaan algoritma komputasi bisa menghasilkan hasil yang 

salah atau tidak bermakna. 

 

4. Interpretasi Geometris 

Interpretasi geometris dari sistem persamaan linear memberikan 

pemahaman visual mengenai bagaimana solusi dari sistem tersebut 

terbentuk. Menurut Anton & Rorres (2010) dalam Elementary Linear 

Algebra, setiap persamaan linear dalam dua variabel dapat 

direpresentasikan sebagai sebuah garis lurus di bidang dua dimensi (2D), 

sementara dalam tiga variabel akan direpresentasikan sebagai bidang 

dalam ruang tiga dimensi (3D). Titik perpotongan dari garis atau bidang 

ini menjadi representasi dari solusi sistem. 

Pada ruang dua dimensi, misalnya, sistem dua persamaan linear 

dapat divisualisasikan sebagai dua garis. Jika garis-garis tersebut 

berpotongan di satu titik, maka sistem memiliki satu solusi unik, yaitu 

koordinat titik perpotongan tersebut. Jika kedua garis saling berimpit, 

artinya merepresentasikan persamaan yang sama dan sistem memiliki 

tak hingga banyak solusi. Namun, jika garis-garis tersebut sejajar namun 

tidak berpotongan, maka sistem tidak memiliki solusi, yang menandakan 

bahwa sistem tersebut inkonsisten. 

Pada ruang tiga dimensi, setiap persamaan linear tiga variabel 

mewakili sebuah bidang. Tiga bidang dapat berpotongan di satu titik 

(solusi unik), sepanjang garis (tak hingga solusi), atau tidak berpotongan 

sama sekali (tidak ada solusi). Misalnya, dua bidang yang sejajar atau 

tiga bidang yang membentuk prisma tanpa titik temu merupakan sistem 

yang tidak konsisten. Interpretasi ini juga berlaku di ruang berdimensi 

lebih tinggi secara abstrak, meskipun tidak mudah divisualisasikan. 

Konsep vektor, ruang vektor, dan subruang membantu memahami posisi 

relatif antar persamaan dalam konteks geometris. Dengan demikian, 

interpretasi geometris bukan hanya berguna untuk visualisasi, tetapi juga 

memberikan intuisi mendalam tentang kondisi eksistensi dan keunikan 

solusi, serta hubungan linier antar persamaan dalam sistem. 
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B. Eliminasi Gauss dan Pivoting 

 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, 

metode eliminasi Gauss (Gaussian Elimination) adalah salah satu 

algoritma dasar dalam penyelesaian sistem persamaan linear. Metode ini 

bekerja dengan mengubah sistem persamaan menjadi bentuk segitiga 

atas (upper triangular matrix) melalui operasi baris elementer. Dengan 

bentuk ini, solusi sistem linear dapat diperoleh secara efisien melalui 

teknik substitusi mundur (back substitution). 

 

 
 

dapat direpresentasikan dalam bentuk matriks augmented [𝐴|𝑏]. 

Tujuan eliminasi Gauss adalah untuk menghilangkan elemen-elemen di 

bawah diagonal utama agar sistem menjadi bentuk upper triangular, yaitu 

hanya elemen diagonal dan elemen di atasnya yang bukan nol. 

 

1. Operasi Baris Elementer 

Operasi baris elementer adalah tiga jenis transformasi dasar yang 

digunakan untuk memodifikasi baris-baris dalam sebuah matriks tanpa 

mengubah solusi dari sistem persamaan linear yang 

direpresentasikannya. Menurut Lay (2012) dalam Linear Algebra and Its 

Applications, operasi baris elementer sangat penting dalam metode 

penyelesaian sistem linear seperti eliminasi Gauss, Gauss-Jordan, dan 

proses reduksi matriks ke bentuk eselon. Operasi ini memungkinkan kita 

untuk menyederhanakan sistem persamaan linear menjadi bentuk yang 

lebih mudah diselesaikan tanpa kehilangan karakteristik solusinya. 

Tiga jenis operasi baris elementer adalah: (1) Pertukaran dua 

baris (interchange), (2) Perkalian baris dengan skalar tak nol (scaling), 

dan (3) Penjumlahan kelipatan suatu baris ke baris lain (replacement). 

Setiap operasi ini memiliki peran unik dalam proses manipulasi matriks. 

Pertama, pertukaran dua baris digunakan ketika elemen pivot 

(elemen diagonal yang akan digunakan untuk mengeliminasi elemen di 
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bawahnya) adalah nol atau mendekati nol. Dalam kasus seperti itu, untuk 

menghindari pembagian dengan nol atau angka sangat kecil yang dapat 

menyebabkan ketidakstabilan numerik, baris tersebut ditukar dengan 

baris lain yang memiliki elemen pivot lebih besar secara nilai mutlak. 

Operasi ini sering digunakan dalam strategi partial pivoting, yang sangat 

penting dalam komputasi numerik. 

Kedua, perkalian baris dengan skalar tak nol berguna untuk 

menyederhanakan elemen pivot menjadi satu (1), sehingga memudahkan 

eliminasi elemen lainnya. Misalnya, jika elemen pivot adalah 4, maka 

seluruh baris dapat dikalikan dengan 
1

4
 agar pivot menjadi 1. Ini juga 

digunakan dalam metode Gauss-Jordan, di mana tujuan akhirnya adalah 

mencapai bentuk eselon baris tereduksi (reduced row echelon form), di 

mana semua elemen pivot bernilai 1 dan elemen-elemen di atas dan di 

bawah pivot bernilai nol. Ketiga, penjumlahan kelipatan suatu baris ke 

baris lain adalah operasi paling umum dalam proses eliminasi. 

Tujuannya adalah menghilangkan elemen tertentu di bawah atau di atas 

pivot agar tercapai struktur segitiga atas atau bentuk eselon. Proses ini 

dilakukan berulang hingga semua elemen di bawah (atau di atas) pivot 

menjadi nol. 

Menurut Strang (2016) dalam Introduction to Linear Algebra, 

ketiga operasi baris ini secara matematis bersifat reversible, artinya 

setiap operasi memiliki operasi kebalikannya yang dapat 

mengembalikan matriks ke bentuk semula. Hal ini memastikan bahwa 

struktur sistem tetap terjaga dan solusi tetap valid. Karena itu, operasi 

baris elementer digunakan tidak hanya dalam penyelesaian sistem 

persamaan linear, tetapi juga dalam proses mencari invers matriks, 

menghitung determinan (secara tidak langsung), dan menemukan rank 

sebuah matriks. 

Pada implementasi komputasi, operasi baris elementer 

diaplikasikan secara sistematis dan efisien. Misalnya, dalam algoritma 

eliminasi Gauss, baris pertama digunakan untuk menghilangkan elemen 

di kolom pertama pada baris-baris di bawahnya, kemudian baris kedua 

digunakan untuk mengeliminasi elemen di kolom kedua, dan seterusnya. 

Operasi-operasi ini juga menjadi dasar dalam algoritma pustaka numerik 

populer seperti LAPACK dan NumPy. 
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2. Pivoting 

Pivoting adalah teknik penting dalam penyelesaian sistem 

persamaan linear yang digunakan untuk meningkatkan stabilitas numerik 

dan keakuratan hasil dalam metode eliminasi Gauss. Menurut Trefethen 

dan Bau (1997) dalam Numerical Linear Algebra, pivoting dilakukan 

dengan memilih elemen terbesar (secara nilai absolut) di kolom atau 

seluruh submatriks sebagai elemen pivot, lalu menukar baris (dan kadang 

kolom) untuk menempatkan elemen tersebut pada posisi utama diagonal. 

Tujuannya adalah untuk menghindari pembagian dengan angka yang 

sangat kecil atau nol, yang dapat menyebabkan kesalahan pembulatan 

yang besar dalam perhitungan numerik. 

Pada konteks metode eliminasi Gauss, setiap langkah 

mengharuskan kita membagi elemen-elemen di bawah pivot dengan nilai 

pivot itu sendiri. Jika nilai pivot sangat kecil, pembagian tersebut akan 

menghasilkan bilangan besar yang rentan terhadap kesalahan 

pembulatan. Di sinilah pivoting menjadi penting. Dengan memilih 

elemen terbesar sebagai pivot, kita meminimalkan potensi kesalahan 

akibat keterbatasan presisi dalam komputasi floating-point. 

Ada tiga jenis pivoting yang umum digunakan: partial pivoting, 

complete pivoting, dan scaled pivoting. Partial pivoting, yang paling 

umum dan efisien, melibatkan pencarian elemen terbesar di kolom pivot 

dan menukar baris yang bersangkutan ke posisi baris aktif saat ini. 

Complete pivoting lebih ekstrem, di mana pencarian dilakukan di seluruh 

submatriks dan baik baris maupun kolom dapat dipertukarkan. 

Sementara itu, scaled pivoting mempertimbangkan rasio antara elemen 

pivot dan elemen maksimum pada barisnya untuk mencegah kesalahan 

akibat perbedaan skala antar baris. Sebagai contoh, perhatikan sistem: 

 
Jika kita menggunakan baris pertama sebagai pivot tanpa 

melakukan pivoting, maka kita akan membagi dengan angka 0.0003, 

yang sangat kecil. Ini berpotensi menghasilkan kesalahan pembulatan 

besar. Namun, jika kita menerapkan partial pivoting dan menukar baris 

pertama dengan baris kedua, kita akan menggunakan 1.0000 sebagai 

pivot, sehingga perhitungan menjadi jauh lebih stabil dan akurat. 

Menurut Golub dan Van Loan (2013) dalam Matrix 

Computations, penggunaan pivoting khususnya partial pivoting telah 
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menjadi standar dalam hampir semua implementasi algoritma 

penyelesaian sistem linear pada perangkat lunak numerik modern seperti 

MATLAB, LAPACK, dan NumPy. Hal ini karena partial pivoting 

menyediakan keseimbangan antara kestabilan numerik dan efisiensi 

komputasi. Dalam dunia nyata, stabilitas hasil perhitungan sangat 

penting, terutama dalam aplikasi teknik, simulasi ilmiah, dan 

pemrosesan data berskala besar. Tanpa pivoting, metode eliminasi Gauss 

dapat menghasilkan hasil yang sangat tidak akurat atau bahkan gagal 

menyelesaikan sistem. Oleh karena itu, pemahaman dan penerapan 

pivoting adalah aspek krusial dalam komputasi numerik modern. 

 

C. Metode Iteratif: Jacobi dan Gauss-Seidel 

 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, 

metode iteratif merupakan pendekatan yang digunakan untuk 

menyelesaikan sistem persamaan linear, khususnya ketika sistem 

tersebut sangat besar atau memiliki struktur matriks koefisien yang 

jarang (sparse). Berbeda dengan metode langsung seperti eliminasi 

Gauss yang mencari solusi dalam jumlah langkah terbatas, metode 

iteratif menghasilkan serangkaian pendekatan yang mendekati solusi 

sejati secara bertahap. Dua metode iteratif klasik yang paling dikenal 

adalah metode Jacobi dan metode Gauss-Seidel, yang keduanya 

memiliki prinsip kerja yang relatif sederhana namun efektif. 

Saad (2003) dalam Iterative Methods for Sparse Linear Systems 

menjelaskan bahwa dalam sistem berdimensi besar, metode langsung 

sering kali tidak praktis karena kompleksitas komputasi dan kebutuhan 

memori yang tinggi. Hal ini terutama berlaku pada sistem dengan 

matriks berukuran ribuan hingga jutaan baris dan kolom, seperti dalam 

simulasi numerik fluida atau analisis struktur teknik. Dalam konteks 

inilah metode iteratif menjadi solusi ideal karena hemat memori, mampu 

menangani matriks sparse, dan dapat dihentikan pada tingkat akurasi 

yang diinginkan. 

 

1. Prinsip Dasar Metode Iteratif 

Prinsip dasar metode iteratif dalam penyelesaian sistem 

persamaan linear adalah membentuk serangkaian pendekatan yang 

secara bertahap mendekati solusi yang benar dari sistem tersebut. 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, metode 



62  Pemrograman dan Komputasi Numerik 

 

iteratif memulai prosesnya dengan sebuah tebakan awal terhadap nilai-

nilai variabel, lalu melalui rumus perbaikan tertentu, menghasilkan 

solusi baru yang diharapkan semakin mendekati nilai sebenarnya. Proses 

ini diulang terus-menerus sampai kriteria konvergensi terpenuhi 

biasanya ditentukan oleh toleransi kesalahan yang sangat kecil atau 

jumlah iterasi maksimum. 

Secara matematis, sistem linear Ax = b akan diubah menjadi 

bentuk rekursif X(k:1) =  Gx(k) + c, dimana X(k) adalah pendekatan 

solusi pada iterasi ke-k, G adalah matriks transformasi iteratif, dan c 

adalah vektor tetap hasil transformasi dari A dan b. Tujuan dari iterasi 

ini adalah agar X(k) konvergen terhadap solusi sebenarnya x, yaitu saat 

limk → ∞ x(k) – x. 

Keunggulan utama metode iteratif terletak pada efisiensinya 

dalam menangani sistem besar dan sparse, karena tidak memerlukan 

penyimpanan semua elemen matriks. Selain itu, pengguna memiliki 

fleksibilitas dalam mengatur presisi solusi sesuai kebutuhan aplikasi. 

Namun, konvergensi tidak selalu dijamin. Faktor seperti struktur 

matriks, kondisi awal, dan nilai eigen dari matriks iterasi sangat 

menentukan keberhasilan metode ini. Karena itu, analisis konvergensi 

seperti dominansi diagonal atau sifat positif-definit dari matriks sangat 

penting sebelum menerapkan metode iteratif secara praktis. 

 

2. Metode Jacobi 

Metode Jacobi adalah salah satu teknik iteratif paling dasar yang 

digunakan untuk menyelesaikan sistem persamaan linear, khususnya 

ketika sistem tersebut besar dan memiliki struktur matriks sparse. 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, metode 

Jacobi bekerja dengan prinsip bahwa setiap variabel dalam sistem 

diselesaikan secara terpisah menggunakan nilai-nilai dari iterasi 

sebelumnya, tanpa segera memanfaatkan nilai yang baru dihitung dalam 

iterasi yang sama. Ini membuat metode Jacobi bersifat paralel secara 

alami, karena semua elemen solusi diperbarui secara bersamaan pada 

akhir setiap iterasi. 
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Pada setiap iterasi ke-k+1, nilai variabel xi dihitung berdasarkan 

nilai-nilai variabel lain pada iterasi sebelumnya ke-k. Syarat penting agar 

metode Jacobi konvergen adalah matriks A harus dominan diagonal, 

yaitu nilai absolut dari elemen diagonal setiap baris lebih besar daripada 

jumlah absolut elemen-elemen lainnya dalam baris tersebut. Tanpa sifat 

ini, iterasi dapat gagal mencapai solusi atau bahkan divergen. 

Metode Jacobi sangat cocok untuk implementasi dalam sistem 

komputasi paralel karena pembaruan setiap variabel tidak saling 

tergantung selama iterasi berjalan. Namun, dibandingkan dengan metode 

iteratif lainnya seperti Gauss-Seidel, metode Jacobi umumnya lebih 

lambat konvergen karena tidak segera memanfaatkan hasil perhitungan 

terbaru. Meski demikian, metode ini tetap penting secara konseptual dan 

praktis dalam pengantar komputasi numerik. 

Contoh Soal: Penyelesaian Sistem Linear Menggunakan Metode 

Jacobi 
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3. Metode Gauss-Seidel 

Metode Gauss-Seidel merupakan salah satu teknik iteratif yang 

digunakan untuk menyelesaikan sistem persamaan linear, dan 

merupakan pengembangan dari metode Jacobi. Menurut Strang (2016) 

dalam Introduction to Linear Algebra, perbedaan utama antara metode 

Gauss-Seidel dan Jacobi terletak pada pemanfaatan nilai-nilai variabel 

yang baru dihitung. Jika metode Jacobi menggunakan nilai dari iterasi 

sebelumnya untuk seluruh variabel, maka metode Gauss-Seidel langsung 

menggunakan nilai terbaru dari iterasi saat ini segera setelah diperoleh. 

Pendekatan ini umumnya mempercepat laju konvergensi, menjadikan 

Gauss-Seidel lebih efisien dibanding Jacobi dalam banyak kasus. 

 

 
 

Rumus ini menunjukkan bahwa untuk menghitung xi pada iterasi 

ke-k+, metode ini menggunakan nilai-nilai terbaru dari variabel-variabel 

sebelumnya (𝑥1
(𝑘+1)

, 𝑥2
(𝑘+1)

,…., 𝑥𝑖−1
(𝑘+1)

) dan nilai-nilai lama dari 

variabel yang belum diperbarui ( 𝑥1
(𝑘+1)

,..., 𝑥𝑛
(𝑘)

). Pendekatan ini 

menghasilkan proses konvergensi yang lebih efisien, terutama jika 

matriks koefisien A bersifat symmetric positive definite atau dominan 

diagonal.  

Agar metode Gauss-Seidel konvergen, matriks A umumnya 

harus memiliki sifat dominansi diagonal atau positif definit. Metode ini 

sangat efisien untuk sistem sparse berdimensi besar yang muncul dalam 

rekayasa struktur, simulasi fluida, dan pemodelan fisik lainnya. Meski 

tidak sebaik Jacobi untuk paralelisasi, Gauss-Seidel lebih unggul dalam 
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kecepatan konvergensi. Oleh karena itu, metode ini menjadi salah satu 

pendekatan iteratif yang paling banyak digunakan dalam praktik 

komputasi numerik. 

 

 
Selanjutnya, kita gunakan tebakan awal x(0) = 0, y(0) = 0, z(0) = 0. Dalam 

metode Gauss-Seidel, setiap nilai variabel baru langsung digunakan 

dalam perhitungan selanjutnya. Pada iterasi pertama, kita hitung: 

 
Untuk iterasi kedua, nilai-nilai baru dari iterasi pertama digunakan: 

 
 

D. Implementasi dalam Python/MATLAB 

 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, 

metode numerik untuk menyelesaikan sistem persamaan linear terutama 

metode iteratif seperti Jacobi dan Gauss-Seidel sangat berguna ketika 

diterapkan menggunakan perangkat lunak komputasi modern. Di antara 
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banyak platform yang tersedia, Python dan MATLAB merupakan dua 

lingkungan paling populer dan kuat untuk pemrograman ilmiah dan 

teknik. Kedua bahasa ini menyediakan pustaka numerik dan struktur data 

yang efisien untuk menangani sistem linier berskala besar dan kompleks. 

 

1. Python 

Python merupakan bahasa pemrograman tingkat tinggi yang 

sangat populer di bidang komputasi ilmiah dan teknik karena sintaksnya 

yang sederhana, fleksibel, dan didukung oleh berbagai pustaka numerik 

yang kuat. Menurut Oliphant (2007) dalam Guide to NumPy, pustaka 

NumPy menyediakan array multidimensi yang efisien dan mendukung 

berbagai operasi aljabar linear, sedangkan SciPy memperluas 

fungsionalitas ini dengan menyediakan alat numerik tingkat lanjut 

termasuk solver untuk sistem persamaan linear, baik dengan metode 

langsung maupun iteratif. 

Pada konteks penyelesaian sistem persamaan linear, Python 

menawarkan beberapa pendekatan. Untuk sistem berukuran kecil hingga 

sedang, metode langsung seperti numpy.linalg.solve () sangat efisien. 

Sebagai contoh, untuk menyelesaikan sistem Ax=b, pengguna cukup 

menulis: 

 
Untuk sistem berdimensi besar atau matriks yang bersifat sparse 

(jarang), metode langsung menjadi tidak efisien baik dari segi memori 

maupun waktu. Dalam kasus ini, metode iteratif seperti Jacobi dan 

Gauss-Seidel lebih disarankan karena hemat memori dan dapat 

dihentikan setelah mencapai toleransi kesalahan tertentu. Implementasi 

metode Jacobi secara manual di Python melibatkan iterasi pembaruan 
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nilai setiap variabel menggunakan nilai dari iterasi sebelumnya. Berikut 

contoh kode sederhana: 

 
Untuk Gauss-Seidel, struktur kode hampir serupa, namun dengan 

penggunaan nilai-nilai terbaru yang diperoleh selama iterasi: 

 
Pustaka SciPy juga menyediakan metode iteratif seperti 

Conjugate Gradient (CG) dan BiCGSTAB untuk sistem yang sangat 

besar. Fungsi seperti scipy.sparse.linalg.cg() sangat efisien jika 

digunakan bersama objek matriks sparse (csr_matrix). 

Python juga unggul dalam visualisasi dan dokumentasi hasil, 

menggunakan pustaka seperti Matplotlib untuk plotting grafik 

konvergensi atau residual. Secara keseluruhan, Python memberikan 

kombinasi optimal antara kemudahan pemrograman, fleksibilitas, dan 
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efisiensi, menjadikannya platform ideal untuk menerapkan dan 

membahas metode numerik seperti Jacobi dan Gauss-Seidel dalam 

penyelesaian sistem linear. 

 

2. MATLAB 

MATLAB adalah lingkungan komputasi numerik yang 

dirancang khusus untuk menangani operasi matematika teknik dan 

ilmiah. Menurut Chapman (2017) dalam MATLAB for Engineers, 

MATLAB menyediakan sintaks yang ringkas dan efisien untuk 

melakukan berbagai operasi aljabar linear, termasuk penyelesaian sistem 

persamaan linear dengan metode langsung maupun metode iteratif. 

Karena fokus utamanya pada pemrosesan matriks dan vektor, MATLAB 

menjadi pilihan utama dalam banyak aplikasi teknik, sains komputer, 

dan analisis data numerik. 

Untuk sistem berukuran kecil hingga sedang, MATLAB 

memiliki operator backslash (\)yang sangat efisien dalam menyelesaikan 

sistem Ax=b secara langsung. Contohnya: 

 
Untuk sistem yang besar atau memiliki struktur sparse (matriks 

dengan banyak nol), metode langsung menjadi kurang efisien baik dari 

segi waktu maupun konsumsi memori. Dalam kasus ini, metode iteratif 

seperti Jacobi dan Gauss-Seidel lebih sesuai karena mampu menangani 

sistem skala besar dengan lebih ringan. MATLAB mendukung 

penerapan metode iteratif melalui pemrograman prosedural, serta 

menyediakan alat bantu visualisasi untuk memantau konvergensi solusi. 

Implementasi metode Jacobi dalam MATLAB dapat ditulis 

secara eksplisit menggunakan loop for: 
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Untuk sistem berdimensi besar atau matriks yang bersifat sparse 

(jarang), metode langsung menjadi tidak efisien baik dari segi memori 

maupun waktu. Dalam kasus ini, metode iteratif seperti Jacobi dan 

Gauss-Seidel lebih disarankan karena hemat memori dan dapat 

dihentikan setelah mencapai toleransi kesalahan tertentu. 

Implementasi metode Jacobi secara manual di Python melibatkan 

iterasi pembaruan nilai setiap variabel menggunakan nilai dari iterasi 

sebelumnya. Berikut contoh kode sederhana: 
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Kedua fungsi tersebut menggunakan norma maksimum (infinity 

norm) untuk mengevaluasi apakah solusi telah konvergen pada tingkat 

toleransi tertentu. 

MATLAB juga memiliki fungsi internal seperti pcg 

(Preconditioned Conjugate Gradient) dan lsqr untuk menyelesaikan 

sistem sparse atau overdetermined. Fungsi-fungsi ini dapat digunakan 

bersama objek matriks sparse (sparse(A)) untuk meningkatkan efisiensi 

memori. Fitur command window dan plotting tools di MATLAB sangat 

membantu untuk memvisualisasikan error atau kecepatan konvergensi 

iterasi. Dengan antarmuka grafis yang intuitif, dokumentasi bawaan, dan 

kapabilitas debugging yang kuat, MATLAB memberikan platform yang 

sangat sesuai bagi mahasiswa, peneliti, maupun profesional teknik untuk 

menerapkan dan menguji algoritma numerik dalam penyelesaian sistem 

linear. 
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BAB V 

INTERPOLASI DAN 

APROKSIMASI FUNGSI 
 

 

Interpolasi dan aproksimasi fungsi merupakan salah satu cabang 

penting dalam komputasi numerik yang berperan besar dalam 

menyederhanakan persoalan kompleks menjadi bentuk yang dapat 

dianalisis dan dihitung secara efisien. Dalam banyak kasus praktis, data 

yang tersedia tidak selalu dalam bentuk fungsi eksak, melainkan berupa 

himpunan titik diskrit yang dihasilkan dari pengukuran atau eksperimen. 

Di sinilah interpolasi berfungsi untuk membangun fungsi baru yang 

melewati seluruh titik data, sementara aproksimasi bertujuan mencari 

fungsi yang mendekati pola umum data dengan kesalahan seminimal 

mungkin. Kedua metode ini tidak hanya menjadi fondasi dalam 

pengolahan sinyal, pemodelan fisik, hingga analisis ekonomi, tetapi juga 

membentuk dasar bagi pengembangan algoritma dalam machine 

learning dan simulasi numerik. Buku ini menyajikan pembahasan 

mendalam tentang berbagai teknik interpolasi seperti metode Lagrange, 

Newton, dan spline, serta pendekatan aproksimasi menggunakan metode 

Least Squares. Setiap konsep dijelaskan dengan teori yang kuat dan 

dilengkapi contoh implementasi dalam Python dan MATLAB agar 

mudah dipahami dan langsung dapat diaplikasikan.  

 

A. Interpolasi Polinomial (Lagrange, Newton) 

 

Interpolasi polinomial merupakan salah satu metode paling 

fundamental dalam komputasi numerik, digunakan untuk mendekati 

fungsi atau data diskrit dengan fungsi polinomial. Dua pendekatan yang 

paling banyak digunakan untuk interpolasi polinomial adalah metode 

Lagrange dan Newton. Keduanya memiliki perbedaan dalam struktur 
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penyusunan polinomial, namun sama-sama bertujuan mencari 

polinomial orde-n yang melewati semua titik data yang diberikan. 

Menurut Burden dan Faires (2010), interpolasi adalah proses 

mencari suatu fungsi yang melewati serangkaian titik data 

(x0,y0),(x1,y1),...,(xn,yn), di mana tidak ada dua nilai xix  yang sama. 

Dalam interpolasi polinomial, fungsi interpolasi dicari dalam bentuk 

polinomial derajat paling tinggi n yang cocok dengan n+1 titik data 

tersebut. Secara umum, bentuk polinomial interpolasi adalah: 

 

 
Daripada menyusun sistem persamaan linear untuk 

menyelesaikan koefisien 𝑎𝑖, pendekatan Lagrange dan Newton 

menawarkan cara yang lebih sistematis dan efisien. 

 

1. Interpolasi Polinomial Lagrange 

Interpolasi polinomial Lagrange merupakan salah satu metode 

klasik dalam komputasi numerik yang digunakan untuk membangun 

fungsi polinomial yang melewati sekumpulan titik data diskret. 

Pendekatan ini diperkenalkan oleh Joseph-Louis Lagrange pada abad ke-

18 sebagai solusi untuk masalah interpolasi, yaitu mencari suatu fungsi 

polinomial Pn(x) yang memuat tepat n+1 titik data 

(x0,y0),(x1,y1),...,(xn,yn), di mana tidak ada dua nilai xix yang sama. Ide 

utama dari interpolasi Lagrange adalah menyusun polinomial sebagai 

kombinasi linier dari basis polinomial Li(x), yang masing-masing 

bernilai satu di titik data tertentu dan nol di titik lainnya, sehingga setiap 

kontribusi yi hanya aktif pada posisi xi saja. Secara matematis, 

polinomial interpolasi Lagrange dinyatakan dalam bentuk: 

 
Rumus ini menunjukkan bahwa setiap basis polinomial Li(x) 

dikonstruksi dengan mengalikan fraksi-fraksi yang memastikan bahwa 
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nilai Li(xj)=0 untuk semua j≠ij dan Li(xi)=1. Dengan demikian, Pn(x)  

merupakan penjumlahan dari hasil perkalian antara nilai yi dan fungsi 

basis Li(x), yang menjamin bahwa hasil interpolasi akan melewati semua 

titik data yang diberikan. 

Keunggulan metode Lagrange terletak pada kesederhanaan 

bentuk matematisnya. Tanpa perlu menyelesaikan sistem persamaan 

linear atau melakukan operasi matriks, interpolasi dapat dilakukan 

langsung dari data yang tersedia. Hal ini sangat berguna dalam 

pengajaran dasar komputasi numerik dan dalam situasi di mana efisiensi 

bukanlah kendala utama. Namun, metode ini memiliki kekurangan 

signifikan. Salah satunya adalah kesulitan dalam menambahkan titik data 

baru; penambahan satu titik baru mengharuskan rekalkulasi seluruh basis 

polinomial, sehingga metode ini tidak efisien untuk data dinamis atau 

jumlah data yang besar. Selain itu, metode ini cenderung menghasilkan 

osilasi besar di bagian tepi domain ketika digunakan pada titik-titik yang 

tersebar luas (fenomena yang dikenal sebagai osilasi Runge). 

Pada penerapan praktis, interpolasi Lagrange banyak digunakan 

untuk estimasi nilai fungsi di antara data eksperimen, rekonstruksi kurva 

dalam pemodelan numerik, serta dalam bidang rekayasa dan fisika yang 

membutuhkan aproksimasi fungsi kompleks dari data terbatas. 

Implementasinya dalam bahasa pemrograman seperti Python pun cukup 

sederhana, dan sering digunakan untuk tujuan pendidikan atau aplikasi 

ringan. Secara keseluruhan, interpolasi polinomial Lagrange 

memberikan pemahaman fundamental yang penting tentang bagaimana 

fungsi dapat dibangun dari sekumpulan titik, meskipun dalam kasus 

aplikasi berskala besar atau data tak beraturan, metode interpolasi lain 

seperti spline atau Newton mungkin lebih disukai. 

 

Diketahui tiga titik data sebagai berikut: 

 
Gunakan metode interpolasi polinomial Lagrange untuk membentuk 

polinomial L(x), dan hitung nilai pendekatan fungsi di x=3. 

 

Bentuk umum polinomial Lagrange orde dua (untuk tiga titik) adalah: 
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Dengan: 

 

 
Hitung nilai L(3): 

 
 

2. Interpolasi Polinomial Newton 

Interpolasi polinomial Newton adalah salah satu metode 

interpolasi numerik yang dirancang untuk menyusun polinomial yang 

melewati sekumpulan titik data (x0,y0),(x1,y1),…,(xn,yn) dengan cara 

yang efisien dan fleksibel. Berbeda dengan metode Lagrange yang 

menghitung seluruh bentuk polinomial sekaligus, metode Newton 
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menggunakan pendekatan rekursif berdasarkan konsep selisih terbagi 

(divided differences). Metode ini memungkinkan pembangunan 

polinomial secara bertahap, sehingga sangat efisien jika diperlukan 

penambahan titik baru tanpa harus menghitung ulang seluruh polinomial 

yang telah dibentuk sebelumnya. 

Polinomial Newton ditulis dalam bentuk: 

 

 
 

Koefisien aia_iai di sini diperoleh dari tabel selisih terbagi, yang 

dihitung secara rekursif dari nilai-nilai yi. Proses ini dimulai dari nilai 

f[xi]=yi, kemudian menghitung selisih dua nilai berturut-turut dibagi 

dengan selisih titik x-nya: 

 
Keunggulan utama interpolasi Newton adalah kemampuannya 

dalam menyusun polinomial secara bertahap, menjadikannya lebih 

efisien dibanding Lagrange, terutama ketika data baru ditambahkan. 

Dengan hanya menghitung satu suku tambahan dan satu koefisien baru, 

polinomial yang telah dibentuk dapat diperluas tanpa perhitungan ulang 

seluruhnya. Ini membuat metode Newton sangat cocok untuk aplikasi 

dengan jumlah data bertambah secara dinamis. Selain itu, bentuk 

rekursifnya juga mempermudah proses komputasi numerik, baik secara 

manual maupun dalam program komputer. 

Metode Newton memiliki kekurangan dalam kompleksitas awal 

pembuatan tabel selisih terbagi, terutama bila tidak dilakukan secara 

otomatis. Kesalahan dalam perhitungan selisih terbagi dapat menjalar ke 

hasil akhir, karena setiap koefisien bergantung pada hasil sebelumnya. 

Selain itu, jika titik xi sangat berdekatan atau data mengandung noise 

tinggi, perhitungan dapat menjadi tidak stabil. 

Pada praktiknya, interpolasi Newton banyak digunakan dalam 

rekayasa, fisika komputasi, ekonomi, dan bidang-bidang yang 
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memerlukan estimasi nilai fungsi di antara titik-titik data. Kelebihannya 

dalam fleksibilitas dan efisiensi menjadikannya metode yang disukai 

dalam implementasi algoritmik. Di berbagai bahasa pemrograman 

seperti Python dan MATLAB, algoritma Newton sangat mudah 

diimplementasikan menggunakan array dan operasi rekursif, 

menjadikannya alat penting dalam toolkit numerik modern. Dengan 

dasar teori yang kuat dan struktur perhitungan yang sistematis, 

interpolasi Newton merupakan pendekatan yang sangat relevan dalam 

pengolahan dan pemodelan data numerik. 

 

Diberikan tiga titik data berikut: 

 
Gunakan metode interpolasi Newton untuk membentuk polinomial 

interpolasi dan hitung nilai pendekatan fungsi di x=2.5. 
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Hasil pendekatan dengan interpolasi Newton menunjukkan bahwa 

f(2.5)≈6.25, yang mendekati nilai eksak dari fungsi f(x)=x2 pada x=2.5. 

 

B. Interpolasi Spline dan Kurva Halus 

 

Interpolasi spline merupakan salah satu metode numerik yang 

dirancang untuk menghasilkan kurva halus yang melewati sekumpulan 

titik data, dengan menghindari osilasi ekstrem yang sering muncul pada 

interpolasi polinomial derajat tinggi. Metode ini menjadi penting dalam 

berbagai bidang seperti grafik komputer, pemodelan geometri, simulasi 

ilmiah, dan teknik rekayasa karena mampu menghasilkan kurva yang 

tidak hanya akurat tetapi juga estetis dan stabil secara numerik. 

Menurut Chapra dan Canale (2015) dalam bukunya Numerical 

Methods for Engineers, interpolasi spline adalah proses menyusun 

potongan-potongan fungsi polinomial berorde rendah yang 

disambungkan secara kontinu pada titik-titik data. Fungsi spline 

dirancang sedemikian rupa sehingga setiap potongan kurva (disebut 

segmen spline) hanya berlaku pada interval tertentu di antara dua titik 

data, dan memiliki kontinuitas hingga turunan kedua atau lebih pada titik 

sambungan (disebut knots). Hal ini membuat spline menjadi solusi ideal 

dalam interpolasi yang menuntut kurva halus dan stabil. 

Jenis spline yang paling umum digunakan adalah Spline Kubik 

(Cubic Spline), di mana masing-masing segmen kurva adalah polinomial 

derajat tiga. Bentuk umum spline kubik pada setiap interval [xi,xi+1] 

adalah: 
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Koefisien ai,bi,ci, di ditentukan berdasarkan kondisi interpolasi 

(kurva harus melewati titik data), dan syarat kekontinuan turunan 

pertama dan kedua di titik sambung antar segmen. 

 

1. Kelebihan Spline Dibandingkan Polinomial Global 

Interpolasi spline memiliki sejumlah keunggulan penting 

dibandingkan interpolasi polinomial global, terutama dalam hal 

kestabilan numerik, fleksibilitas, dan keakuratan lokal. Polinomial 

global, seperti interpolasi Lagrange atau Newton, menyusun satu fungsi 

polinomial berderajat tinggi yang mencakup seluruh domain data, 

artinya satu fungsi harus melewati semua titik data. Meskipun 

pendekatan ini secara teoritis valid, dalam praktiknya sering kali 

menimbulkan masalah, terutama jika jumlah titik data cukup banyak atau 

jika titik-titik tersebut tersebar secara tidak merata. Salah satu masalah 

paling terkenal adalah osilasi Runge, yaitu fenomena di mana polinomial 

derajat tinggi berosilasi secara ekstrem di dekat ujung-ujung domain, 

menyebabkan interpolasi yang tidak akurat dan tidak realistis. Hal ini 

terutama terjadi jika titik data tersebar secara ekuidistan. Dalam konteks 

ini, interpolasi spline memberikan solusi yang jauh lebih stabil dan dapat 

diandalkan. 

Spline, khususnya spline kubik, menyusun interpolasi dalam 

bentuk segmen-segmen polinomial rendah (biasanya derajat tiga) yang 

diterapkan pada setiap interval antar dua titik data. Setiap segmen ini 

memiliki koefisiennya sendiri, namun disatukan melalui syarat 

kekontinuan nilai fungsi, turunan pertama, dan bahkan turunan kedua di 

titik sambung. Karena setiap polinomial hanya berlaku pada satu interval 

lokal, spline menghindari masalah osilasi yang terjadi pada pendekatan 

global. Sebagaimana dijelaskan oleh Burden dan Faires (2010), 

penggunaan polinomial derajat rendah secara lokal jauh lebih stabil 

secara numerik, karena galat interpolasi terkendali dan tidak berkembang 

secara ekstrem seiring bertambahnya jumlah titik data. 

Keunggulan lain spline adalah fleksibilitas dalam menangani 

jumlah data yang besar. Dalam interpolasi polinomial global, 

penambahan titik data mengubah struktur seluruh polinomial, sehingga 

memerlukan penghitungan ulang keseluruhan fungsi interpolasi. 
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Sebaliknya, dalam spline, penambahan titik data hanya memengaruhi 

segmen di sekitar titik baru, sehingga perhitungan dapat dilakukan secara 

lebih modular dan efisien. Ini sangat berguna dalam aplikasi dinamis, 

seperti dalam grafik komputer atau pemrosesan sinyal waktu nyata, di 

mana data terus berkembang. 

Spline juga mendukung pengaturan kondisi batas yang lebih 

fleksibel, seperti dalam natural spline (dengan turunan kedua nol di 

ujung), clamped spline (dengan kemiringan ujung yang ditentukan), dan 

smoothing spline (yang memungkinkan penyimpangan dari titik data 

untuk menghindari overfitting). Dengan demikian, spline tidak hanya 

menyediakan interpolasi yang akurat, tetapi juga memberikan kontrol 

yang lebih besar terhadap bentuk kurva. 

 

2. Jenis-Jenis Spline 

Spline adalah bentuk interpolasi numerik yang mengandalkan 

potongan-potongan polinomial derajat rendah untuk membentuk kurva 

halus yang melewati titik-titik data. Keunggulan metode ini terletak pada 

kemampuannya menghasilkan interpolasi yang stabil dan halus tanpa 

harus menggunakan polinomial derajat tinggi yang rentan terhadap 

osilasi. Dalam praktiknya, terdapat beberapa jenis spline yang 

dikembangkan untuk memenuhi berbagai kebutuhan interpolasi dan 

pemodelan data. Jenis-jenis spline ini dibedakan berdasarkan kondisi 

batas, derajat polinomial yang digunakan, serta cara pengontrolan 

kekontinuan dan kelengkungan antar segmen. Jenis spline yang paling 

umum meliputi natural spline, clamped spline, not-a-knot spline, 

smoothing spline, dan B-spline. 

Natural spline adalah jenis spline kubik yang menetapkan bahwa 

turunan kedua dari fungsi spline di titik ujung (boundary) adalah nol, 

yaitu S′′(x0)=0 dan S′′(xn)=0. Kondisi ini memberikan bentuk kurva yang 

cenderung datar di ujung domain, mencerminkan asumsi bahwa 

kelengkungan di luar titik data dianggap tidak signifikan. Natural spline 

sangat populer karena secara matematis sederhana dan cocok untuk data 

yang tidak memiliki informasi tambahan di batas domain. 

Berbeda dengan itu, clamped spline menetapkan nilai turunan 

pertama (kemiringan) pada titik ujung domain. Artinya, pengguna harus 

mengetahui atau memperkirakan S′(x0) dan S′(xn). Clamped spline 

sangat berguna ketika kemiringan atau kecepatan perubahan data pada 

batas domain sudah diketahui, misalnya dalam pemodelan mekanika 
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atau fisika, di mana gradien pada batas bisa dihitung dari teori atau 

eksperimen. 

Jenis lainnya, not-a-knot spline, menghilangkan status simpul 

pada titik kedua dan titik kedua dari akhir, yaitu x1dan xn−1. Dengan kata 

lain, spline pada interval [x0,x2] dan [xn−2,xn] diperlakukan seolah-olah 

sebagai satu segmen tunggal. Tujuan pendekatan ini adalah untuk 

meminimalkan jumlah kondisi sambungan dan menyederhanakan 

sistem, sambil tetap menjaga kekontinuan hingga turunan kedua. 

Smoothing spline adalah jenis spline yang tidak memaksa kurva 

untuk melewati setiap titik data, tetapi berusaha meminimalkan 

gabungan antara kesalahan interpolasi dan kelengkungan kurva. Spline 

ini sangat cocok untuk data yang mengandung noise, karena tidak terlalu 

sensitif terhadap fluktuasi kecil. Fungsi objektif smoothing spline 

biasanya berbentuk: 

 
di mana λ adalah parameter regularisasi. Ketika λ besar, spline 

menjadi lebih halus; ketika kecil, spline lebih mendekati data. 

B-spline (Basis spline) dan Spline NURBS (Non-Uniform 

Rational B-Splines) digunakan secara luas dalam grafik komputer dan 

CAD (Computer-Aided Design). B-spline adalah representasi spline 

dalam basis tertentu yang memberikan fleksibilitas tinggi dan kontrol 

lokal. Tidak seperti spline polinomial biasa, perubahan pada satu titik 

kontrol hanya memengaruhi segmen tertentu, membuatnya sangat 

efisien untuk manipulasi bentuk dalam desain. Dengan berbagai jenis 

spline yang tersedia, pengguna dapat memilih metode yang paling sesuai 

dengan sifat data dan kebutuhan aplikasi. Pemilihan jenis spline yang 

tepat akan menghasilkan interpolasi yang tidak hanya akurat, tetapi juga 

halus, stabil, dan representatif terhadap perilaku data sebenarnya. 

 

3. Proses Pembentukan Spline Kubik 

Proses pembentukan spline kubik merupakan tahap penting 

dalam interpolasi numerik yang bertujuan menghasilkan kurva halus 

yang melewati serangkaian titik data diskrit. Spline kubik adalah 

interpolasi yang menggunakan potongan-potongan fungsi polinomial 

derajat tiga pada setiap interval antar dua titik data. Masing-masing 
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segmen spline diwakili oleh suatu fungsi Si(x) yang berbentuk 

polinomial kubik: 

 

 
 

di mana x∈[xi,xi+1]. Tujuannya adalah menemukan koefisien ai, 

bi, ci, dan di untuk setiap interval sehingga seluruh potongan spline 

tersambung secara mulus membentuk kurva kontinyu, baik dalam nilai 

fungsinya maupun turunannya. 

Langkah pertama dalam membentuk spline kubik adalah 

menetapkan syarat bahwa kurva harus melewati semua titik data, artinya 

Si(xi) = yi  dan Si(xi+1) = yi+1. Ini menghasilkan dua persamaan untuk 

setiap segmen. Selanjutnya, karena spline harus membentuk kurva yang 

halus, maka diperlukan syarat kekontinuan turunan pertama dan turunan 

kedua di setiap titik sambungan x1, x2,..., xn−1. Syarat ini menghasilkan 

dua persamaan tambahan per titik sambungan, yakni: S′i(xi+1) = Si+1 dan 

S′′i(xi+1) = S′′i+1(xi+1).  

Untuk n titik data, akan terbentuk n−1 segmen spline, dan total 

ada 4(n−1)  koefisien yang harus dihitung, sehingga diperlukan jumlah 

persamaan yang sama. Untuk melengkapi sistem persamaan, dua syarat 

tambahan harus diberikan sebagai kondisi batas. Dalam natural spline, 

misalnya, ditetapkan bahwa turunan kedua di kedua ujung domain nol, 

yaitu S′′0(x0) = 0 dan S′′n-2(xn) = 0. Alternatifnya, dalam clamped spline, 

ditentukan nilai kemiringan di ujung domain, seperti S′0(x0) = m0 dan S′n-

2(xn) = mn, berdasarkan informasi yang diketahui atau diasumsikan. 

Setelah semua syarat dituliskan, langkah selanjutnya adalah 

menyusun sistem persamaan linear dalam bentuk matriks, khususnya 

matriks tridiagonal, karena hanya koefisien dari titik-titik berdekatan 

yang saling terkait. Umumnya, sistem ini difokuskan pada pencarian 

nilai koefisien ci (turunan kedua), karena dari nilai ci, koefisien lainnya 

dapat dihitung dengan rumus langsung. Sistem tridiagonal ini kemudian 

diselesaikan menggunakan metode eliminasi Gauss atau algoritma 

Thomas. Setelah semua koefisien diperoleh, fungsi spline dapat 

digunakan untuk mengestimasi nilai fungsi di antara titik-titik data 

secara halus dan stabil. Dengan desain proses yang memastikan 

kekontinuan fungsi dan turunannya, spline kubik menjadi metode 
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interpolasi unggulan dalam berbagai aplikasi rekayasa, grafik komputer, 

dan pemodelan ilmiah. 

 

C. Least Squares dan Regresi Polinomial 

 

Pada analisis data dan komputasi numerik, kita sering kali 

dihadapkan pada sekumpulan data diskrit yang tidak memiliki hubungan 

eksak atau pasti satu sama lain, baik karena adanya noise, kesalahan 

pengukuran, maupun karena hubungan antara variabel memang tidak 

linier. Dalam situasi seperti ini, metode interpolasi tidak lagi memadai 

karena interpolasi mensyaratkan kurva harus melalui seluruh titik data. 

Sebaliknya, metode aproksimasi diperlukan untuk menemukan suatu 

fungsi yang mendekati pola umum dari data tersebut, dan salah satu 

metode paling populer dalam pendekatan ini adalah metode Least 

Squares atau kuadrat terkecil. Ketika fungsi pendekatan berbentuk 

polinomial, metode ini dikenal sebagai regresi polinomial. 

 

1. Konsep Least Squares 

Konsep Least Squares atau metode kuadrat terkecil merupakan 

pendekatan dasar dan penting dalam statistik dan komputasi numerik 

yang digunakan untuk mencari fungsi aproksimasi terbaik terhadap 

sekumpulan data yang tidak sepenuhnya presisi atau tidak mengikuti 

pola tertentu secara eksak. Metode ini dirancang untuk meminimalkan 

jumlah kuadrat selisih antara nilai-nilai hasil observasi atau eksperimen 

dengan nilai-nilai yang diprediksi oleh suatu model matematis. Artinya, 

dalam konteks hubungan antara dua variabel, metode least squares 

bertujuan menemukan garis atau kurva yang paling “pas” di tengah data, 

bukan yang melalui setiap titik secara sempurna, seperti dalam 

interpolasi. Hal ini sangat relevan dalam dunia nyata, karena data hasil 

observasi sering kali mengandung noise atau kesalahan pengukuran 

sehingga tidak cocok diinterpolasi secara langsung. 

Secara matematis, diberikan sekumpulan data 

(x1,y1),(x2,y2),...,(xn,yn), tujuan dari least squares adalah mencari fungsi 

aproksimasi f(x) sedemikian rupa sehingga total kuadrat galat S 

diminimalkan: 
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Fungsi f(x) dapat berupa model linier, polinomial, eksponensial, 

atau bentuk lainnya tergantung kebutuhan. Dalam kasus paling 

sederhana, yaitu regresi linier, model 𝑓(𝑥) diasumsikan berbentuk garis 

lurus 𝑓(𝑥)=𝑎0+𝑎1𝑥, dan metode least squares digunakan untuk 

menentukan koefisien a0dan a 1yang memberikan nilai minimum bagi 

S. Proses ini melibatkan penurunan fungsi kesalahan total S terhadap 

masing-masing parameter, menghasilkan sistem persamaan normal yang 

kemudian diselesaikan untuk mendapatkan parameter terbaik. 

Keunggulan metode least squares terletak pada 

kesederhanaannya, baik dalam konsep maupun implementasi. Ia tidak 

hanya digunakan untuk menemukan parameter model linier, tetapi juga 

dapat diperluas untuk regresi polinomial, multivariat, dan model non-

linier melalui modifikasi algoritma atau penggunaan transformasi basis. 

Bahkan, least squares menjadi pondasi utama dalam banyak algoritma 

machine learning, pengolahan sinyal, dan pemodelan ekonomi. Dalam 

banyak situasi praktis, metode ini menawarkan solusi yang cepat dan 

akurat, terutama ketika hubungan antara variabel sulit didekati secara 

eksak. 

Metode least squares juga memiliki keterbatasan. Ia sangat 

sensitif terhadap outlier titik data yang menyimpang ekstrem dari pola 

umum karena kuadrat galat memperbesar pengaruh deviasi besar. Oleh 

karena itu, dalam kasus data dengan banyak outlier, digunakan 

pendekatan alternatif seperti least absolute deviations atau robust 

regression. Meskipun begitu, secara keseluruhan, konsep least squares 

tetap menjadi alat analisis numerik dan statistika yang sangat penting 

karena kemampuannya menyederhanakan persoalan aproksimasi data 

yang kompleks menjadi bentuk matematis yang dapat dipecahkan secara 

sistematis dan efisien. 

 

2. Regresi Linier sebagai Kasus Khusus 

Regresi linier merupakan bentuk paling sederhana dan paling 

fundamental dari metode Least Squares, menjadikannya kasus khusus 

yang sangat penting dalam analisis data dan komputasi numerik. Regresi 

linier digunakan ketika pola hubungan antara dua variabel dapat didekati 

dengan fungsi garis lurus, yaitu dalam bentuk model matematis: 
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di mana y adalah variabel dependen (respons), x adalah variabel 

independen (prediktor), a0 adalah intersep (titik potong sumbu-y), a1 

adalah kemiringan garis (gradien), dan ε adalah komponen kesalahan 

(residual). Tujuan regresi linier adalah mencari nilai a0 dan a1 yang 

meminimalkan jumlah kuadrat galat antara nilai aktual yi dan nilai yang 

diprediksi oleh garis regresi, yaitu f(xi)=a0+a1xi. 

Proses penurunan model regresi linier sederhana melibatkan 

penggunaan prinsip Least Squares, dengan membentuk fungsi galat total: 

 
Kemudian, nilai 𝑆 diminimalkan terhadap parameter a0 dan 𝑎1 

dengan mengambil turunan parsial terhadap masing-masing parameter 

dan menyamakannya dengan nol, sehingga diperoleh sistem persamaan 

normal sebagai berikut: 

 
Sistem ini dapat diselesaikan secara aljabar untuk memperoleh 

estimasi parameter regresi. Setelah parameter diperoleh, garis regresi 

linier dapat digunakan untuk memprediksi nilai y untuk input x baru, dan 

juga untuk mengukur sejauh mana variabel x berpengaruh terhadap y. 

Menurut Montgomery, Peck & Vining (2012), regresi linier tidak 

hanya memberikan garis terbaik, tetapi juga menyertakan kemampuan 

untuk mengukur keakuratan model melalui nilai-nilai statistik seperti 

koefisien determinasi (R2), nilai p, dan analisis residual. Nilai R2, 

misalnya, mengindikasikan seberapa besar proporsi variansi data yang 

dapat dijelaskan oleh model regresi. Jika R2=0.95, maka 95% variasi 

dalam data y dapat dijelaskan oleh variasi dalam x, sedangkan sisanya 

dianggap sebagai noise atau kesalahan. 

Regresi linier juga sangat mudah diterapkan dalam perangkat 

lunak statistik dan bahasa pemrograman seperti Python, R, dan 

MATLAB. Fungsionalitas ini membuatnya menjadi alat utama dalam 

eksplorasi data awal (exploratory data analysis), pemodelan prediktif, 

serta dalam validasi hipotesis hubungan antar variabel. Namun, regresi 

linier memiliki asumsi dasar yang perlu diperhatikan agar hasilnya valid, 

seperti linearitas hubungan, normalitas residual, homoskedastisitas 

(kesamaan variansi), dan tidak adanya autokorelasi. Jika asumsi ini 
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dilanggar, hasil model bisa menjadi bias atau menyesatkan. Berikut 

contoh soalnya. 

 

Seorang peneliti ingin mengetahui hubungan antara jumlah jam belajar 

(X) dan nilai ujian matematika (Y) siswa. Berikut data lima siswa: 

 
Gunakan regresi linier sederhana untuk menentukan persamaan regresi 

dan prediksi nilai ujian jika seseorang belajar selama 6 jam. 

Jawaban : 

 

 
Hitung koefisien b dan a 
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Dengan regresi linier sederhana, diperoleh model Y=51.67+5.06X. Jika 

seseorang belajar selama 6 jam, diperkirakan akan memperoleh nilai 

sekitar 82.03. 

 

3. Regresi Polinomial 

Regresi polinomial adalah perluasan dari regresi linier yang 

memungkinkan model untuk menangkap hubungan yang bersifat 

nonlinier antara variabel independen (𝑥) dan variabel dependen (𝑦). 

Dalam regresi linier, model dibatasi hanya pada garis lurus (𝑦=𝑎0+𝑎1𝑥), 

sehingga kurang fleksibel ketika data menunjukkan pola lengkung atau 

perubahan arah yang tidak bisa ditangkap oleh garis lurus. Untuk 

mengatasi keterbatasan ini, regresi polinomial menggunakan fungsi 

polinomial sebagai model aproksimasi, yaitu: 

 

 
 

di mana mmm adalah derajat polinomial, a0,a1,...,am adalah 

koefisien regresi, dan ε\varepsilonε adalah komponen galat (error). 

Tujuan dari regresi polinomial tetap sama seperti pada regresi linier: 

meminimalkan jumlah kuadrat selisih antara nilai prediksi dan data 

aktual menggunakan metode Least Squares. 

Menurut Chapra dan Canale (2015) dalam Numerical Methods 

for Engineers, regresi polinomial berguna ketika terdapat indikasi bahwa 

data memiliki hubungan melengkung, misalnya seperti kurva parabola, 

eksponensial, atau siklikal. Model polinomial memungkinkan kita 

menangkap berbagai bentuk tren tersebut dengan cara menambahkan 

pangkat variabel independen ke dalam model regresi. Derajat polinomial 

yang digunakan sangat menentukan bentuk dan fleksibilitas kurva hasil. 

Misalnya, polinomial orde dua (y=a0+a1x+a2x2) cukup untuk 

mendeskripsikan tren berbentuk parabola, sementara orde tiga atau lebih 

tinggi digunakan untuk bentuk yang lebih kompleks. Proses perhitungan 
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koefisien regresi polinomial melibatkan penyusunan sistem persamaan 

normal yang lebih besar dibanding regresi linier. Dalam hal ini, kita 

menghitung jumlah hasil kali dari x dengan berbagai pangkatnya, serta 

dengan y, untuk membentuk sistem persamaan linear yang dapat 

diselesaikan menggunakan eliminasi Gauss atau metode numerik 

lainnya.  

Regresi polinomial sangat fleksibel dan banyak digunakan dalam 

bidang teknik, ekonomi, dan ilmu data, terutama ketika pola data tidak 

dapat dijelaskan dengan baik oleh model linier. Namun demikian, model 

ini juga memiliki kelemahan. Jika derajat polinomial terlalu tinggi, 

model cenderung mengalami overfitting, yaitu menyesuaikan diri secara 

berlebihan dengan data pelatihan hingga kehilangan kemampuan 

generalisasi terhadap data baru. Selain itu, polinomial derajat tinggi bisa 

menimbulkan osilasi tajam antara titik-titik data, mirip dengan fenomena 

osilasi Runge pada interpolasi. 

Untuk mengatasi hal tersebut, pemilihan derajat polinomial harus 

hati-hati, bisa menggunakan teknik validasi silang (cross-validation), 

kriteria Akaike (AIC), atau Bayesian Information Criterion (BIC). 

Secara keseluruhan, regresi polinomial adalah alat yang sangat berguna 

dalam pendekatan aproksimatif terhadap data nonlinier, selama 

digunakan dengan pertimbangan metodologis yang tepat. 
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Kode ini menunjukkan bagaimana polinomial orde dua dapat 

diaproksimasi ke data yang cenderung non-linier menggunakan fungsi 

np.polyfit().Berikut adalah contoh soal dan jawabannya mengenai 

Regresi Polinomial. 

 

Seorang analis ingin memodelkan hubungan antara usia kendaraan (X, 

dalam tahun) dan biaya perawatan tahunan (Y, dalam juta rupiah). Data 

berikut dikumpulkan: 
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Gunakan regresi polinomial orde 2 (kuadrat) untuk menemukan 

persamaan regresi dan prediksi biaya perawatan saat usia kendaraan 3,5 

tahun. 

 

 

 
 

D. Visualisasi dan Evaluasi Aproksimasi 

 

Pada konteks komputasi numerik dan analisis data, aproksimasi 

merupakan metode penting untuk mendekati fungsi atau data yang tidak 

diketahui bentuk analitiknya secara eksak. Aproksimasi sering 

digunakan ketika data hasil eksperimen atau pengamatan tidak dapat 

diwakili secara sempurna oleh model eksak, sehingga dibutuhkan 

pendekatan numerik seperti regresi atau interpolasi. Namun, 

membangun model aproksimasi hanyalah langkah awal yang tak kalah 

penting adalah visualisasi dan evaluasi dari hasil aproksimasi tersebut. 

Visualisasi memungkinkan pemahaman intuitif terhadap kualitas kurva 

aproksimasi, sementara evaluasi memberikan ukuran kuantitatif 

terhadap akurasi dan reliabilitas model tersebut. 
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1. Pentingnya Visualisasi Aproksimasi 

Visualisasi aproksimasi merupakan langkah esensial dalam 

proses analisis data dan komputasi numerik karena membantu 

menyampaikan secara intuitif sejauh mana model aproksimatif mewakili 

data yang sebenarnya. Dalam konteks aproksimasi, baik menggunakan 

regresi linier, polinomial, atau teknik lain seperti spline, visualisasi 

memungkinkan kita mengevaluasi kualitas kurva hasil secara langsung 

melalui representasi grafis. Tanpa visualisasi, analisis terhadap model 

aproksimasi hanya akan mengandalkan metrik numerik seperti RMSE, 

MAE, atau 𝑅2, yang meskipun objektif, sering kali tidak cukup 

menggambarkan perilaku model terhadap data secara menyeluruh. 

Visualisasi memperlihatkan aspek-aspek yang tidak tertangkap oleh 

angka, seperti outlier, pola sistematis dalam residual, atau indikasi 

overfitting dan underfitting. 

Menurut Chapra dan Canale (2015) dalam Numerical Methods 

for Engineers, visualisasi sangat berguna untuk mendeteksi kecocokan 

antara model dan data secara lokal maupun global. Misalnya, ketika 

kurva hasil aproksimasi diplot bersamaan dengan titik-titik data aktual, 

kita bisa segera melihat apakah kurva tersebut terlalu kaku (underfit) atau 

terlalu berlekuk mengikuti data (overfit). Bahkan ketika nilai koefisien 

determinasi 𝑅2 tinggi, bisa saja kurva menampilkan osilasi liar akibat 

pemilihan model yang tidak tepat, seperti pada regresi polinomial derajat 

tinggi. Hal seperti ini hanya bisa diidentifikasi dengan jelas melalui 

visualisasi, bukan sekadar dari nilai metrik statistik. 

Visualisasi juga penting dalam memahami distribusi kesalahan 

(residual). Plot residual terhadap variabel independen dapat 

menunjukkan apakah galat tersebar secara acak atau membentuk pola 

tertentu. Jika residual menunjukkan pola sistematis, seperti pola 

melengkung atau menaik-menurun, hal itu menunjukkan bahwa model 

tidak menangkap karakteristik data dengan baik. Sebaliknya, jika 

residual tersebar acak di sekitar garis nol, ini mengindikasikan bahwa 

model telah menangkap tren data dengan cukup baik. Visualisasi residual 

ini juga menjadi langkah penting dalam menguji asumsi-asumsi statistik 

pada regresi, seperti linearitas, homoskedastisitas, dan normalitas. 

Pada aplikasi dunia nyata, visualisasi aproksimasi juga 

memudahkan komunikasi dan interpretasi hasil. Peneliti, analis, atau 

pengambil keputusan sering kali bukan ahli statistik atau numerik, 
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sehingga menyampaikan hasil dalam bentuk grafik yang mudah 

dipahami jauh lebih efektif dibandingkan tabel angka dan persamaan. 

Grafik regresi atau kurva aproksimasi juga sangat membantu dalam 

presentasi teknis, laporan penelitian, dan dokumentasi ilmiah. 

 

2. Evaluasi Aproksimasi 

Evaluasi aproksimasi adalah proses penting untuk menilai 

seberapa baik suatu model matematis atau numerik dalam 

merepresentasikan hubungan antara variabel-variabel dalam sekumpulan 

data. Dalam konteks komputasi numerik dan analisis data, aproksimasi 

sering digunakan ketika model eksak tidak tersedia atau hubungan antar 

variabel terlalu kompleks untuk dijelaskan secara analitik. Oleh karena 

itu, setelah membentuk model aproksimasi baik melalui regresi linier, 

regresi polinomial, spline, atau metode lainnya kita perlu mengevaluasi 

performa model tersebut secara kuantitatif dan objektif. Evaluasi ini 

bertujuan untuk memastikan bahwa model tidak hanya cocok pada data 

yang tersedia (fit), tetapi juga memiliki kemampuan generalisasi yang 

baik terhadap data baru atau tak terlihat sebelumnya. 

Menurut Burden dan Faires (2010) dalam Numerical Analysis, 

salah satu cara paling umum dalam mengevaluasi aproksimasi adalah 

dengan menghitung galat (error) antara nilai aktual dan nilai hasil 

prediksi model. Galat ini dapat diukur dalam berbagai bentuk, yang 

paling mendasar adalah galat absolut ∣yi−yi∣ dan galat kuadrat (yi−yi)2, 

di mana yi  adalah nilai aktual dan yi adalah hasil prediksi. Dari sini, 

beberapa metrik evaluasi dapat diturunkan, seperti Mean Absolute Error 

(MAE), yang memberikan ukuran rata-rata kesalahan absolut, dan Root 

Mean Squared Error (RMSE), yang mengkuadratkan kesalahan terlebih 

dahulu sebelum dirata-rata, sehingga memberikan penalti lebih besar 

pada kesalahan besar. 

Salah satu metrik yang paling banyak digunakan dalam evaluasi 

regresi adalah koefisien determinasi (R2), yang mengukur proporsi 

variabilitas data yang dapat dijelaskan oleh model aproksimasi. Nilai R2 

berkisar dari 0 hingga 1, di mana nilai mendekati 1 menunjukkan bahwa 

model menjelaskan hampir seluruh variasi dalam data, sedangkan nilai 

mendekati 0 menunjukkan bahwa model kurang efektif dalam 

menjelaskan data. Namun, meskipun R2 berguna, ia bisa menyesatkan 

jika digunakan tanpa memperhatikan kompleksitas model. Model yang 
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terlalu kompleks bisa memiliki R2 tinggi tetapi sebenarnya mengalami 

overfitting, yaitu menyesuaikan diri secara berlebihan dengan data 

pelatihan hingga gagal bekerja dengan baik pada data baru. 

Evaluasi aproksimasi juga melibatkan analisis residual, yaitu 

perbedaan antara nilai aktual dan nilai prediksi model. Pola residual yang 

acak mengindikasikan bahwa model telah menangkap struktur data 

dengan baik, sedangkan pola sistematis (misalnya membentuk kurva 

atau tren) menunjukkan bahwa model belum cukup baik. Visualisasi 

residual dapat memperjelas hal ini dan membantu dalam diagnosis 

model. 

Pada praktik profesional, evaluasi biasanya tidak dilakukan 

hanya dengan satu metrik. Kombinasi antara MAE, RMSE, R2, dan 

analisis residual memberikan gambaran yang lebih menyeluruh tentang 

kualitas aproksimasi. Evaluasi ini juga sangat penting dalam pemilihan 

model terbaik dari beberapa alternatif, penyesuaian parameter model, 

dan validasi hasil sebelum digunakan untuk prediksi atau pengambilan 

keputusan. Oleh karena itu, evaluasi aproksimasi merupakan langkah 

kritis dalam siklus pemodelan numerik dan statistik yang tidak boleh 

diabaikan. 

 

3. Visualisasi Residual dan Diagnostik 

Visualisasi residual dan diagnostik merupakan aspek penting 

dalam evaluasi model aproksimasi, khususnya dalam konteks regresi 

numerik dan statistik. Residual adalah selisih antara nilai sebenarnya dari 

data (yi) dengan nilai yang diprediksi oleh model aproksimasi (yi), yakni 

ri=yi−yi. Analisis terhadap residual memberikan wawasan mendalam 

tentang seberapa baik model menangkap pola hubungan dalam data. 

Visualisasi residual bertujuan untuk mengidentifikasi apakah galat 

(kesalahan prediksi) terdistribusi secara acak, atau justru membentuk 

pola tertentu yang mengindikasikan kelemahan model. Ketika model 

aproksimasi dinilai hanya berdasarkan metrik seperti RMSE atau R2, kita 

bisa saja melewatkan masalah penting yang tersembunyi, seperti non-

linearitas, heteroskedastisitas, atau autokorelasi dan semua ini bisa 

terdeteksi melalui analisis grafis terhadap residual. 

Menurut Montgomery, Peck, dan Vining (2012) dalam 

Introduction to Linear Regression Analysis, pola residual yang baik 

harus menyerupai sebaran acak yang simetris di sekitar garis nol. Ini 

menunjukkan bahwa model sudah cukup baik dalam menangkap struktur 
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data, dan sisa galat hanyalah fluktuasi acak (noise). Namun, jika residual 

menunjukkan pola melengkung, berbentuk U atau terdistribusi asimetris, 

hal itu menandakan bahwa model belum cukup baik mungkin karena 

hubungan antar variabel bersifat nonlinier, namun model yang 

digunakan hanya linier. Dalam regresi polinomial, visualisasi residual 

dapat membantu memilih orde polinomial yang tepat. Jika residual 

melengkung, maka kemungkinan besar derajat polinomial masih terlalu 

rendah. 

Jenis plot residual yang paling umum adalah plot residual 

terhadap nilai prediksi (y) dan plot residual terhadap variabel independen 

(x). Pada kedua plot ini, idealnya residual tersebar acak di sekitar garis 

nol tanpa pola yang jelas. Pola yang berbentuk kipas (menyempit atau 

melebar) menunjukkan adanya heteroskedastisitas, yaitu varian galat 

yang tidak konstan. Ini menjadi masalah serius dalam regresi klasik 

karena melanggar asumsi homoskedastisitas dan dapat membuat 

estimasi varians tidak akurat. 

Visualisasi diagnostik lain termasuk normal probability plot (Q-

Q plot), yang digunakan untuk mengevaluasi apakah residual 

berdistribusi normal. Dalam regresi linear klasik, normalitas residual 

diperlukan untuk validitas uji statistik seperti t-test dan F-test. Jika titik-

titik dalam Q-Q plot menyimpang jauh dari garis diagonal, maka residual 

tidak normal dan model tidak memenuhi asumsi klasik. Selain itu, 

histogram residual dapat digunakan untuk evaluasi visual distribusi 

residual secara langsung. 

Dengan melakukan visualisasi residual, pengguna dapat 

memahami lebih dalam mengapa suatu model bekerja dengan baik atau 

buruk, dan apakah perlu dilakukan transformasi data, penambahan 

variabel, atau penggantian bentuk model. Oleh karena itu, visualisasi 

residual bukan hanya alat bantu, tetapi merupakan bagian integral dari 

proses diagnosis dan validasi model aproksimasi numerik maupun 

statistik yang andal. 

 

4. Evaluasi Kinerja Model pada Data Baru 

Evaluasi kinerja model pada data baru merupakan langkah 

penting dalam proses validasi model aproksimasi atau prediktif untuk 

memastikan bahwa model yang telah dibangun tidak hanya cocok 

dengan data pelatihan (training data), tetapi juga memiliki kemampuan 

generalisasi yang baik terhadap data yang belum pernah dilihat 
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sebelumnya. Dalam praktik nyata, tujuan utama dari pembangunan 

model aproksimasi bukanlah hanya untuk menyesuaikan model terhadap 

data historis, melainkan untuk digunakan dalam prediksi dan estimasi 

nilai di masa depan atau dalam konteks yang berbeda. Oleh karena itu, 

evaluasi model pada data baru sangat krusial untuk menilai apakah 

model bersifat overfit, underfit, atau benar-benar mampu menangkap 

pola dasar dari hubungan antar variabel. 

Menurut Hastie, Tibshirani, dan Friedman (2009) dalam The 

Elements of Statistical Learning, overfitting adalah situasi ketika model 

sangat akurat pada data pelatihan, tetapi berkinerja buruk pada data baru 

karena model terlalu kompleks dan menangkap noise atau fluktuasi acak 

dalam data, bukan pola yang mendasarinya. Sebaliknya, underfitting 

terjadi jika model terlalu sederhana sehingga gagal menangkap pola 

penting bahkan dalam data pelatihan. Kedua kondisi ini bisa sulit 

dikenali jika hanya mengevaluasi model berdasarkan data yang sama 

dengan yang digunakan untuk melatihnya. Untuk itu, evaluasi pada data 

baru yang tidak digunakan dalam proses pelatihan menjadi keharusan 

dalam penilaian performa model secara menyeluruh. 

Salah satu pendekatan yang paling umum adalah dengan 

membagi data menjadi dua bagian: training set dan testing set. Model 

dibangun menggunakan training set, lalu performanya diuji pada testing 

set. Evaluasi dilakukan dengan menghitung metrik seperti Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), atau R-squared 

pada data uji. Jika nilai error pada data uji jauh lebih besar dibandingkan 

dengan data pelatihan, maka model cenderung overfit. Sebaliknya, jika 

error besar pada kedua data, maka kemungkinan besar model underfit. 

Pada situasi dengan data terbatas, evaluasi model dapat dilakukan 

dengan metode cross-validation, di mana data dibagi menjadi beberapa 

subset (fold), dan model dilatih serta diuji secara bergilir di seluruh 

subset. Teknik ini, terutama k-fold cross-validation, sangat efektif dalam 

memberikan estimasi performa model yang lebih stabil dan bebas dari 

pengaruh pemisahan data yang kebetulan tidak representatif. Selain itu, 

evaluasi pada data baru juga mencakup pengamatan terhadap distribusi 

residual, robustness model terhadap noise, serta kemampuan menangani 

data ekstrem atau outlier. Hal ini sangat penting dalam aplikasi dunia 

nyata di mana data masa depan tidak selalu bersih atau konsisten dengan 

pola historis. Model yang hanya diuji pada data pelatihan cenderung 
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menyesatkan karena tidak mencerminkan kondisi operasional 

sesungguhnya. 

Dengan demikian, evaluasi kinerja model pada data baru adalah 

langkah kritis dalam menjamin keandalan dan kegunaan praktis suatu 

model. Model yang baik bukan hanya yang cocok dengan data masa lalu, 

tetapi juga yang mampu memprediksi dengan akurat dalam kondisi dan 

situasi yang bervariasi. Evaluasi yang menyeluruh ini menjadi kunci 

sukses dalam penerapan model numerik, statistik, maupun machine 

learning di berbagai bidang aplikasi. 
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BAB VI 

DIFERENSIASI DAN 

INTEGRASI NUMERIK 
 

 

 

Diferensiasi dan Integrasi Numerik, yang menjadi landasan 

dalam menyelesaikan berbagai persoalan matematika terapan dan teknik. 

Di dunia nyata, fungsi-fungsi yang digunakan tidak selalu memiliki 

bentuk analitik yang sederhana atau mudah diturunkan secara simbolik, 

sehingga pendekatan numerik menjadi solusi efektif dalam 

memperkirakan turunan maupun integral dari suatu fungsi. Dalam bab 

ini, pembaca akan dikenalkan pada berbagai metode diferensiasi 

numerik seperti metode selisih maju, mundur, dan tengah, yang 

digunakan untuk menghitung laju perubahan fungsi secara mendekati. 

Selain itu, metode integrasi numerik seperti metode Trapezoid, Simpson, 

dan teknik Romberg akan dijelaskan secara rinci, lengkap dengan 

pembahasan galat (error) dan kestabilan perhitungan. Topik ini tidak 

hanya penting secara teoritis, tetapi juga memiliki banyak aplikasi 

praktis seperti dalam pemrosesan sinyal, perhitungan energi dalam 

sistem mekanik, serta estimasi luas dan volume dalam berbagai konteks 

sains dan rekayasa. Dengan memahami konsep dan teknik diferensiasi 

serta integrasi numerik, pembaca diharapkan mampu mengembangkan 

solusi numerik yang akurat, efisien, dan aplikatif untuk berbagai 

permasalahan yang kompleks dan dinamis. 

 

A. Metode Selisih Hingga (Finite Difference) 

 

Metode selisih hingga (finite difference method, FDM) 

merupakan salah satu pendekatan numerik yang paling umum digunakan 

untuk menyelesaikan persoalan matematika, terutama dalam hal 

diferensiasi, integrasi, serta penyelesaian persamaan diferensial biasa 



98  Pemrograman dan Komputasi Numerik 

 

(ODE) dan persamaan diferensial parsial (PDE). Konsep dasar metode 

ini adalah menggantikan turunan fungsi kontinu dengan pendekatan 

diskrit menggunakan nilai-nilai fungsi pada titik-titik diskrit dalam 

domain tertentu. 

Burden dan Faires (2011) dalam Numerical Analysis, metode 

selisih hingga bekerja dengan cara mendekati nilai turunan suatu fungsi 

menggunakan selisih nilai fungsi pada titik-titik yang berjarak tertentu. 

Dalam bentuk yang paling sederhana, jika kita memiliki fungsi kontinu 

𝑓(𝑥), maka turunan pertama di titik 𝑥 dapat dihampiri dengan selisih 

antara dua nilai 𝑓(𝑥+ℎ) dan 𝑓(𝑥), dibagi dengan ℎ, yaitu: 

 

 
Ini dikenal sebagai metode selisih maju (forward difference). 

Nilai ℎ merupakan langkah diskret (step size), dan pendekatan ini 

menjadi lebih akurat seiring semakin kecilnya nilai ℎ, meskipun efek 

galat pembulatan bisa menjadi signifikan jika ℎ terlalu kecil. 

 

 
Gunakan 3 titik (termasuk titik batas) untuk menghitung nilai pendekatan 

y pada titik tengah, yaitu x=0.5, dengan metode beda hingga orde 2. 

Jawaban: 
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1. Jenis-Jenis Selisih Hingga 

Metode selisih hingga (finite difference) adalah teknik numerik 

yang digunakan untuk menghampiri turunan suatu fungsi menggunakan 

pendekatan diskrit. Metode ini memanfaatkan nilai-nilai fungsi pada 

titik-titik tertentu yang berjarak tetap dalam domain yang telah dibagi 

menjadi grid atau titik diskrit. Dalam praktik komputasi, turunan eksak 

suatu fungsi seringkali tidak dapat dihitung secara simbolik, terutama 

jika fungsi tersebut hanya diketahui dalam bentuk data atau hasil 

pengukuran. Oleh karena itu, pendekatan selisih hingga menjadi solusi 

efektif dalam memperkirakan turunan-turunan tersebut secara numerik. 

Terdapat tiga jenis utama selisih hingga yang umum digunakan dalam 

komputasi numerik, yaitu selisih maju (forward difference), selisih 

mundur (backward difference), dan selisih tengah (central difference). 

Masing-masing metode memiliki keunggulan, keterbatasan, dan akurasi 

yang berbeda, serta digunakan dalam konteks aplikasi yang spesifik. 

Jenis pertama adalah selisih maju (forward difference). Metode 

ini memperkirakan turunan suatu fungsi pada titik 𝑥 dengan 

memanfaatkan nilai fungsi di titik tersebut dan titik sesudahnya, yaitu 

𝑥+ℎ, di mana ℎ adalah panjang langkah diskrit atau grid spacing. Rumus 

matematisnya adalah: 

 
Metode ini tergolong sederhana dan mudah diterapkan karena 

hanya memerlukan nilai fungsi pada dua titik berurutan. Namun, selisih 

maju memiliki tingkat akurasi yang lebih rendah dibanding metode lain 

karena memiliki galat truncation orde pertama (𝑂(ℎ). Galat truncation 

terjadi karena pendekatan yang digunakan hanya merepresentasikan 

sebagian dari deret Taylor, sehingga hasil yang diperoleh menjadi kurang 

akurat jika ℎ tidak cukup kecil. Metode ini umumnya digunakan ketika 

informasi nilai fungsi hanya tersedia mulai dari titik tertentu ke depan, 



100  Pemrograman dan Komputasi Numerik 

 

seperti dalam kasus proses waktu berjalan ke arah positif, atau pada 

domain batas awal. 

Jenis kedua adalah selisih mundur (backward difference). 

Pendekatan ini memperkirakan turunan dengan menggunakan nilai 

fungsi pada titik 𝑥 dan titik sebelumnya, yaitu 𝑥−ℎ. Rumusnya dituliskan 

sebagai: 

 
Selisih mundur juga memiliki galat truncation orde pertama, 

sehingga tingkat akurasinya setara dengan selisih maju. Metode ini 

cocok digunakan pada kasus di mana data hanya tersedia dari akhir 

domain ke belakang, atau pada titik-titik batas akhir suatu interval, 

terutama saat menangani kondisi batas dalam simulasi numerik. Dalam 

konteks tertentu seperti pemodelan proses historis atau simulasi numerik 

berbasis waktu mundur, selisih mundur menjadi pilihan utama karena 

bentuknya yang mempertimbangkan titik-titik masa lalu. 

Jenis ketiga dan yang paling banyak digunakan adalah selisih 

tengah (central difference). Metode ini memanfaatkan nilai fungsi pada 

dua titik yang simetris terhadap titik 𝑥, yaitu 𝑥−ℎ dan 𝑥+ℎ. Pendekatan 

ini dituliskan sebagai: 

 
Metode ini memiliki galat truncation orde kedua (𝑂(ℎ2))), 

sehingga jauh lebih akurat dibandingkan dengan selisih maju dan selisih 

mundur, khususnya jika ℎ tidak terlalu kecil. Karena nilai turunan 

dihitung berdasarkan rata-rata perubahan ke depan dan ke belakang, 

maka pendekatan ini lebih stabil dan lebih baik dalam banyak kasus 

analisis numerik. Central difference banyak diterapkan dalam simulasi 

fisika, mekanika fluida, dan teknik karena mampu memberikan 

keseimbangan antara akurasi dan efisiensi komputasi. 

Metode selisih hingga juga dikembangkan untuk menghampiri 

turunan orde lebih tinggi, seperti turunan kedua. Untuk turunan kedua 

𝑓′′(𝑥), pendekatan selisih tengah dituliskan sebagai: 
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Turunan kedua sangat penting dalam pemodelan fisik, seperti 

dalam penyelesaian persamaan diferensial parsial yang melibatkan fluks, 

perpindahan panas, atau percepatan. Akurasi metode ini tetap tinggi 

karena menggunakan pendekatan simetris yang mengurangi pengaruh 

kesalahan lokal. 

Beberapa variasi lain dari metode selisih hingga juga tersedia, 

seperti metode selisih hingga tak seragam (non-uniform finite 

difference), di mana jarak antar titik h tidak konstan, serta pendekatan 

selisih orde lebih tinggi (higher-order difference), yang menggunakan 

lebih banyak titik dan menghasilkan akurasi lebih tinggi namun dengan 

kompleksitas komputasi yang lebih besar. 

Pada praktiknya, pemilihan jenis selisih hingga bergantung pada 

beberapa faktor: kondisi batas domain, distribusi data fungsi, kebutuhan 

akurasi, dan efisiensi perhitungan. Misalnya, jika kita memiliki data 

eksperimental yang hanya mencakup nilai dari satu sisi domain, maka 

pendekatan selisih maju atau mundur lebih sesuai. Sebaliknya, untuk 

fungsi yang didefinisikan secara lengkap di sekitar titik evaluasi, selisih 

tengah lebih disarankan karena ketelitiannya. 

 

2. Galat dan Akurasi 

Pada komputasi numerik, dua konsep fundamental yang sangat 

menentukan kualitas hasil perhitungan adalah galat (error) dan akurasi 

(accuracy). Keduanya tidak dapat dipisahkan dan saling berkaitan dalam 

proses evaluasi hasil numerik. Galat menggambarkan sejauh mana hasil 

perhitungan menyimpang dari nilai sebenarnya (eksak), sedangkan 

akurasi menunjukkan tingkat kedekatan hasil komputasi terhadap nilai 

tersebut. Memahami asal-usul, jenis, dan dampak galat sangat penting 

agar seseorang tidak hanya dapat menilai kualitas solusi numerik, tetapi 

juga mengambil langkah-langkah korektif untuk memperbaikinya. 

Secara umum, galat dalam komputasi numerik dapat 

diklasifikasikan ke dalam beberapa jenis utama, yaitu galat pembulatan 

(round-off error), galat pemotongan (truncation error), galat propagasi 

(propagation error), serta galat total (total error) yang merupakan 

kombinasi dari beberapa sumber galat. Galat pembulatan terjadi karena 

komputer tidak dapat menyimpan angka real secara presisi tak hingga. 

Sebagian besar komputer menggunakan standar bilangan floating-point 

(misalnya IEEE 754) yang hanya mampu merepresentasikan sejumlah 

digit tertentu. Ketika angka tidak dapat direpresentasikan secara tepat, 
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maka sistem akan membulatkan angka tersebut ke representasi terdekat, 

menyebabkan terjadinya galat pembulatan. Galat ini sering kali sangat 

kecil, namun jika dikombinasikan dalam perhitungan berulang seperti 

iterasi atau integrasi numerik, dampaknya dapat menjadi signifikan. 

Galat pemotongan merupakan galat yang muncul ketika 

pendekatan numerik digunakan untuk menggantikan prosedur 

matematika yang ideal, seperti deret tak hingga atau turunan eksak. 

Misalnya, ketika metode selisih hingga digunakan untuk menghampiri 

turunan suatu fungsi, nilai sebenarnya dari turunan tersebut digantikan 

dengan bentuk diskrit yang hanya mempertimbangkan sebagian dari 

deret Taylor. Ketidaksesuaian ini menghasilkan galat pemotongan. Jenis 

galat ini sangat bergantung pada ukuran langkah diskret (misalnya ℎ 

dalam metode selisih hingga): semakin kecil ℎ, semakin kecil pula galat 

pemotongan, meskipun pada titik tertentu galat pembulatan akan mulai 

meningkat dan mendominasi, menyebabkan kehilangan presisi. 

Galat propagasi terjadi ketika galat yang muncul pada tahap awal 

perhitungan terbawa dan diperbesar pada tahap-tahap selanjutnya. 

Proses propagasi ini sering kali terjadi dalam metode iteratif atau pada 

penyelesaian sistem persamaan diferensial numerik. Jika suatu metode 

numerik tidak stabil (unstable), galat kecil yang tidak signifikan dapat 

berkembang secara eksponensial dan menghasilkan solusi yang sama 

sekali tidak representatif terhadap kenyataan. Oleh karena itu, penting 

untuk melakukan analisis kestabilan terhadap metode numerik yang 

digunakan. 

Pada praktiknya, galat total adalah gabungan dari semua bentuk 

galat di atas. Meskipun dalam teori kita bisa membahas jenis-jenis galat 

secara terpisah, dalam aplikasi nyata, galat-galat ini muncul secara 

simultan dan berinteraksi satu sama lain. Oleh karena itu, pendekatan 

komputasi numerik yang baik adalah yang mampu meminimalkan galat 

total, baik melalui pemilihan metode yang tepat, pengaturan parameter 

langkah diskret yang optimal, maupun pemrosesan data dengan presisi 

tinggi. 

Berbicara tentang akurasi, konsep ini menjelaskan seberapa 

dekat hasil numerik terhadap solusi eksak yang sesungguhnya. Akurasi 

dapat dinyatakan secara absolut maupun relatif. Galat absolut 

didefinisikan sebagai selisih antara nilai hasil komputasi dan nilai eksak: 
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Pada banyak kasus, galat relatif lebih berguna karena 

memberikan gambaran proporsional terhadap besarnya kesalahan 

terhadap nilai yang dihitung. Misalnya, galat absolut sebesar 0.01 pada 

nilai eksak 1000 mungkin dapat diabaikan, namun galat yang sama pada 

nilai eksak 0.01 bisa menjadi sangat signifikan. 

Untuk mengevaluasi kualitas dan akurasi suatu metode numerik, 

konsep orde konvergensi atau orde galat sering digunakan. Orde ini 

menunjukkan seberapa cepat galat menyusut ketika ukuran langkah 

diskret dikurangi. Misalnya, metode dengan galat 𝑂(ℎ) dikatakan 

memiliki akurasi orde satu, dan metode dengan galat 𝑂(ℎ2) memiliki 

akurasi orde dua. Hal ini berarti jika kita mengurangi ℎ menjadi 

setengahnya, galat pada metode orde satu akan berkurang separuh, 

sementara pada metode orde dua galat akan berkurang seperempat. 

Dengan demikian, orde galat memberikan ukuran kuantitatif dari 

efisiensi suatu metode dalam mencapai hasil yang akurat. 

Akurasi tinggi tidak selalu menjamin hasil yang benar, terutama 

jika metode tersebut tidak stabil atau jika galat pembulatan 

mendominasi. Oleh karena itu, dalam banyak kasus numerik, dibutuhkan 

keseimbangan antara akurasi, stabilitas, dan efisiensi komputasi. Strategi 

praktis dalam menghadapi isu galat dan akurasi mencakup pemilihan 

algoritma numerik yang sesuai dengan jenis masalah, pengujian hasil 

dengan menggunakan ukuran langkah yang berbeda (refinement), serta 

verifikasi terhadap solusi analitik (jika tersedia) atau solusi numerik yang 

sudah terverifikasi. 

Pemahaman menyeluruh tentang galat dan akurasi merupakan 

fondasi dalam komputasi numerik yang andal. Meskipun galat tidak 

dapat dihindari dalam setiap perhitungan numerik, pengelolaan yang 

tepat terhadap sumber-sumber galat akan sangat menentukan seberapa 

efektif suatu metode numerik dalam memodelkan fenomena nyata secara 

kuantitatif. Evaluasi akurasi tidak hanya bersifat matematis, tetapi juga 



104  Pemrograman dan Komputasi Numerik 

 

menjadi instrumen penting dalam menjembatani kesenjangan antara 

teori matematika dan penerapan teknis dalam dunia sains dan rekayasa. 

 

B. Metode Trapezoid, Simpson, dan Romberg  

 

Pada komputasi numerik, integrasi numerik adalah teknik 

penting yang digunakan untuk menghitung luas di bawah kurva atau 

integral dari fungsi yang tidak dapat dihitung secara analitik. Ketika 

fungsi tidak memiliki bentuk antiturunan yang diketahui, atau ketika 

hanya tersedia dalam bentuk data diskrit (seperti hasil eksperimen), maka 

pendekatan numerik menjadi solusi utama. Tiga metode yang paling 

dikenal dan banyak digunakan dalam integrasi numerik adalah metode 

Trapezoid, metode Simpson, dan metode Romberg. Ketiganya 

menawarkan pendekatan yang berbeda dalam mendekati nilai integral 

suatu fungsi dan masing-masing memiliki kelebihan serta batasan 

tergantung pada konteks penggunaannya. 

 

1. Metode Trapezoid 

Metode trapezoid adalah salah satu teknik dasar dalam integrasi 

numerik yang digunakan untuk menghitung aproksimasi nilai integral 

tentu dari suatu fungsi yang kontinu. Dalam banyak kasus praktis, fungsi 

yang ingin diintegrasikan tidak memiliki bentuk antiturunan yang 

diketahui atau terlalu kompleks untuk diselesaikan secara simbolik. Oleh 

karena itu, metode numerik seperti metode trapezoid menjadi solusi yang 

efisien dan relatif mudah diterapkan. Nama “trapezoid” berasal dari cara 

pendekatan yang digunakan, yaitu memperkirakan luas di bawah kurva 

fungsi sebagai jumlah dari luas beberapa trapesium yang dibentuk oleh 

segmen-segmen garis lurus antara titik-titik evaluasi fungsi. 

Secara matematis, jika 𝑓(𝑥) adalah fungsi kontinu pada interval 

[𝑎,𝑏], maka integral tentu ∫𝑎𝑏𝑓(𝑥) 𝑑𝑥 dapat dihampiri menggunakan 

metode trapezoid sederhana sebagai berikut: 

 
di mana h = b - a adalah panjang interval. Rumus ini sebenarnya 

merupakan pendekatan yang sangat kasar karena hanya menggunakan 

dua titik, titik awal dan akhir, dan menghubungkannya dengan garis 



 105  Buku Referensi 

lurus. Luas di bawah kurva di antara kedua titik itu kemudian 

diaproksimasi sebagai luas sebuah trapesium. Oleh karena itu, metode 

ini akan memberikan hasil yang cukup baik hanya jika fungsi f(x) hampir 

linear di antara a dan b. 

Untuk meningkatkan akurasi, digunakan metode trapezoid 

komposit, yaitu dengan membagi interval [a,b][a, b][a,b] menjadi nnn 

subinterval yang sama panjang. Setiap subinterval dihitung luasnya 

menggunakan pendekatan trapesium, kemudian dijumlahkan 

seluruhnya. Formula komposit metode trapezoid dinyatakan sebagai: 

 
Dalam pendekatan ini, kita membentuk nnn trapesium yang 

masing-masing mencakup dua titik evaluasi, dan menjumlahkan luasnya 

secara keseluruhan. Nilai fungsi di titik-titik tengah dikalikan dua karena 

merupakan titik yang digunakan dua kali dalam perhitungan luas dua 

trapesium yang bersebelahan. 

Menurut Burden dan Faires (2011), metode trapezoid memiliki 

orde akurasi kedua (O(h2)), yang berarti jika panjang langkah hhh dibagi 

dua, maka galat (kesalahan aproksimasi) akan berkurang hingga 

seperempat. Galat dari metode ini dapat diperkirakan dengan rumus: 

 
untuk suatu ξ∈[a,b], yang menunjukkan bahwa galat tergantung 

pada nilai turunan kedua dari fungsi f(x). Oleh karena itu, metode 

trapezoid akan lebih akurat jika fungsi yang diintegrasikan memiliki 

turunan kedua yang kecil atau mendekati nol (yakni, mendekati linear). 

Namun, jika fungsi memiliki kelengkungan yang tajam, metode ini akan 

menghasilkan galat yang cukup signifikan. 

Salah satu keunggulan utama metode trapezoid adalah 

kesederhanaannya. Karena hanya melibatkan operasi dasar 

(penjumlahan dan perkalian skalar), metode ini sangat mudah 

diimplementasikan dalam pemrograman. Bahkan, banyak kalkulator 

ilmiah dan perangkat lunak spreadsheet seperti Excel menyediakan 

fungsi bawaan untuk metode trapezoid, menjadikannya sangat praktis 

untuk analisis numerik cepat. Dalam bahasa pemrograman seperti 
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Python, MATLAB, atau C++, metode ini juga menjadi dasar untuk 

algoritma integrasi numerik yang lebih kompleks. 

Keterbatasan metode trapezoid tetap perlu diperhatikan. Salah 

satu kelemahan terbesarnya adalah kecenderungan untuk kurang akurat 

ketika diterapkan pada fungsi yang sangat melengkung, osilatif, atau 

diskontinu. Dalam kasus seperti itu, hasil aproksimasi bisa menyimpang 

jauh dari nilai eksak. Untuk meningkatkan ketelitian tanpa harus 

mengurangi panjang langkah secara ekstrem (yang dapat meningkatkan 

beban komputasi), biasanya digunakan metode numerik dengan orde 

lebih tinggi seperti metode Simpson atau Romberg. 

Pada konteks tertentu, metode trapezoid justru menjadi pilihan 

utama. Misalnya, dalam pengolahan sinyal atau data eksperimental di 

mana nilai fungsi hanya diketahui pada titik-titik tertentu secara diskrit 

(tanpa bentuk fungsional eksplisit), metode trapezoid menjadi 

pendekatan praktis yang dapat langsung diterapkan. Demikian pula 

dalam integrasi pada domain waktu riil dalam sistem tertanam 

(embedded systems), pendekatan berbasis trapezoid sering digunakan 

karena kecepatan dan ringannya komputasi. 

Pada aplikasi dunia nyata, metode trapezoid digunakan dalam 

berbagai bidang, seperti fisika (untuk menghitung kerja mekanik dari 

grafik gaya vs. perpindahan), ekonomi (untuk estimasi nilai rata-rata 

fungsi permintaan), biologi (untuk menghitung area di bawah kurva 

pertumbuhan), dan teknik (untuk menghitung energi listrik berdasarkan 

tegangan dan arus). Meski sederhana, metode ini tetap relevan karena 

fleksibilitasnya untuk digunakan dalam beragam kondisi praktis. 

 

Hitung pendekatan nilai integral berikut menggunakan metode 

trapezoid: 
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Maka, 

 
 

Maka,  

 
 

Dengan metode trapezoid dan 2 subinterval, nilai pendekatan dari: 

 
Nilai eksak dari integral tersebut adalah: 
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2. Metode Simpson 

Metode Simpson adalah salah satu teknik integrasi numerik yang 

sangat terkenal dan banyak digunakan karena menawarkan 

keseimbangan yang baik antara akurasi dan efisiensi komputasi. Metode 

ini merupakan pendekatan untuk menghitung integral tentu dari suatu 

fungsi dengan menggunakan interpolasi polinomial kuadrat (parabola) 

sebagai pendekatan lokal terhadap fungsi yang diintegrasikan. 

Ketimbang menggunakan garis lurus seperti pada metode trapezoid, 

metode Simpson menggunakan segmen parabola untuk mendekati kurva 

fungsi, sehingga menghasilkan estimasi luas di bawah kurva yang jauh 

lebih akurat, terutama untuk fungsi-fungsi yang halus dan melengkung. 

Menurut Chapra dan Canale (2015) dalam buku Numerical 

Methods for Engineers, metode Simpson diperoleh dengan mengambil 

tiga titik pada fungsi yang ingin diintegrasikan, yaitu titik awal 𝑎, titik 

tengah 𝑚, dan titik akhir 𝑏, lalu membentuk fungsi polinomial kuadrat 

yang melewati ketiga titik tersebut. Integral dari fungsi asli kemudian 

dihampiri dengan integral dari polinomial tersebut. Rumus dasar metode 

ini, yang dikenal sebagai Simpson’s 1/3 Rule, adalah sebagai berikut: 

 
Untuk fungsi yang lebih kompleks atau interval yang lebih luas, 

metode ini diperluas menjadi bentuk Simpson Komposit, di mana 

interval [𝑎,𝑏] dibagi menjadi sejumlah genap 𝑛 subinterval yang sama 

panjang (h =
b−a

n
), dan integral dihitung sebagai jumlah dari integral 

beberapa segmen parabola. Rumus Simpson Komposit adalah: 

 
Fungsi pada indeks ganjil dikalikan empat karena menjadi titik 

tengah segmen parabola, sedangkan fungsi pada indeks genap (kecuali 

titik awal dan akhir) dikalikan dua karena menjadi titik sambungan antar 

parabola. 

Keunggulan utama dari metode Simpson terletak pada orde 

akurasi keempat (O(h4)). Ini berarti jika panjang langkah hhh dibagi dua, 
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maka galat aproksimasi akan berkurang dari nilai sebelumnya. Galat 

truncation (pemotongan) metode Simpson diberikan oleh: 

 
untuk suatu ξ∈[a,b], yang menunjukkan bahwa galat bergantung 

pada turunan keempat dari fungsi f(x). Oleh karena itu, metode Simpson 

akan menghasilkan hasil yang sangat akurat untuk fungsi yang halus dan 

tidak memiliki perubahan mendadak pada kelengkungan. 

Metode Simpson memiliki keterbatasan, yaitu jumlah subinterval 

harus genap. Jika jumlah subinterval ganjil, maka metode ini tidak dapat 

langsung diterapkan secara penuh. Untuk mengatasi masalah ini, kadang 

digunakan gabungan antara Simpson’s 1/3 Rule dan Simpson’s 3/8 Rule, 

yang merupakan varian lain dari metode Simpson yang menggunakan 

empat titik (tiga subinterval). Simpson 3/8 Rule memiliki rumus: 

 
Meski jarang digunakan secara keseluruhan, aturan 3/8 berguna 

dalam menutupi sisa interval ketika jumlah subinterval tidak bisa dibagi 

rata untuk aturan 1/3. 

Dari segi implementasi, metode Simpson sangat mudah 

diprogram menggunakan bahasa komputasi seperti Python, MATLAB, 

atau C++. Dalam praktiknya, pendekatan ini sering digunakan dalam 

berbagai aplikasi sains dan teknik seperti simulasi fisika, perhitungan 

energi, volume fluida, analisis struktur, dan bahkan ekonomi dan biologi. 

Misalnya, untuk menghitung total konsumsi energi berdasarkan kurva 

daya terhadap waktu, metode Simpson dapat digunakan untuk 

menghasilkan estimasi numerik dengan presisi tinggi. 

Metode Simpson juga sangat bermanfaat dalam kasus di mana 

fungsi hanya tersedia dalam bentuk data diskrit dari pengukuran 

eksperimen. Dalam hal ini, interpolasi lokal berbasis parabola 

memungkinkan kita mendekati integral meskipun tidak memiliki bentuk 

fungsi eksplisit. Ini menjadikan metode Simpson sebagai alat yang 

sangat fleksibel dan berguna dalam analisis data real-world. 

Akurasi metode Simpson bergantung pada asumsi bahwa fungsi 

f(x) dapat diaproksimasi dengan baik oleh polinomial kuadrat pada 

setiap subinterval. Jika fungsi tersebut sangat tidak mulus, osilatif, atau 

memiliki diskontinuitas, maka hasil integrasi bisa menjadi tidak akurat. 
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Dalam kasus seperti itu, solusi yang lebih baik mungkin menggunakan 

pendekatan orde lebih tinggi atau teknik adaptif seperti metode Romberg 

atau kuadratur Gauss. 

 

 
 

 
Maka,  

 
Maka, 

 
Dengan metode Simpson 1/3 dan 2 subinterval, diperoleh pendekatan: 

 
Sementara nilai eksaknya adalah: 
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3. Metode Romberg 

Metode Romberg adalah salah satu teknik integrasi numerik yang 

menggabungkan kelebihan dari metode trapezoid dan konsep 

ekstrapolasi Richardson untuk menghasilkan hasil integral dengan 

akurasi tinggi. Dibandingkan metode trapezoid dan Simpson, metode 

Romberg memiliki keunggulan dari sisi konvergensi dan efisiensi dalam 

mencapai ketelitian yang lebih tinggi tanpa harus memperkecil ukuran 

langkah secara ekstrem. Metode ini sangat cocok digunakan untuk fungsi 

yang halus (smooth) dan kontinu, di mana turunan berorde tinggi dapat 

diperkirakan dengan baik. Pendekatan ini secara bertahap meningkatkan 

akurasi dengan memanfaatkan hasil integrasi trapezoid dari beberapa 

tingkat subdivisi dan mengurangi galat truncation dengan teknik 

ekstrapolasi numerik sistematis. 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, 

metode Romberg dimulai dengan menghitung integral tentu 

menggunakan metode trapezoid pada sejumlah langkah diskret hhh yang 

semakin kecil. Hasil tersebut kemudian disusun dalam bentuk tabel 

segitiga yang dikenal sebagai tabel Romberg, yang memungkinkan kita 

menggabungkan informasi dari beberapa tingkat pembagian interval 

untuk memperbaiki hasil sebelumnya. Proses ini dilakukan dengan 

mengaplikasikan rumus ekstrapolasi Richardson, yaitu teknik matematis 

untuk memperkirakan limit dari deret pendekatan numerik terhadap nilai 

sebenarnya dengan mengurangi pengaruh galat berorde rendah. 

Langkah pertama dalam metode Romberg adalah menghitung 

integral dengan metode trapezoid pada interval [a,b] dengan jumlah 

pembagian n=1, yang menghasilkan nilai pertama R1,1. Kemudian 

jumlah subinterval digandakan (n=2,4,8,...), dan untuk setiap tingkat K, 

dihitung nilai Rk,1 sebagai hasil metode trapezoid dengan 2k−1 

subinterval. Setelah itu, diperoleh nilai-nilai ekstrapolasi yang lebih 

tinggi dengan rumus: 
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Rumus ini merupakan inti dari ekstrapolasi Richardson, di mana 

Rk,jR_{k,j}Rk,j merupakan hasil koreksi terhadap galat orde rendah 

menggunakan dua nilai sebelumnya. Dengan cara ini, setiap level baru 

dalam tabel Romberg memberikan pendekatan yang lebih akurat 

terhadap nilai integral sebenarnya. 

Keunggulan metode Romberg terletak pada konvergensi cepat 

yang dihasilkan dari pendekatan sistematis terhadap pengurangan galat. 

Misalnya, metode trapezoid memiliki galat truncation orde dua (O(h2)), 

tetapi dengan menerapkan ekstrapolasi Richardson secara berulang, 

metode Romberg dapat mencapai orde konvergensi yang sangat tinggi, 

bahkan mendekati eksponensial terhadap jumlah tingkat ekstrapolasi. 

Artinya, kita bisa mendapatkan hasil integral yang sangat akurat hanya 

dalam beberapa iterasi, tanpa harus memperkecil ukuran langkah hingga 

titik yang mengakibatkan akumulasi galat pembulatan. 

Metode Romberg juga memiliki keterbatasan. Pertama, metode 

ini sangat bergantung pada kelicinan fungsi. Jika fungsi f(x) memiliki 

diskontinuitas, turunan tak terbatas, atau perubahan ekstrem dalam 

kelengkungan, maka hasil ekstrapolasi bisa menjadi tidak stabil atau 

menyimpang jauh dari nilai sebenarnya. Selain itu, metode ini 

memerlukan penyimpanan memori tambahan untuk menampung semua 

hasil intermediate dalam tabel Romberg, dan kompleksitas 

komputasinya meningkat secara signifikan dibanding metode trapezoid 

atau Simpson. Oleh karena itu, meskipun metode Romberg unggul dalam 

hal akurasi, ia tidak selalu menjadi pilihan terbaik untuk semua jenis 

fungsi, terutama dalam kondisi sumber daya terbatas. 

Pada praktiknya, metode Romberg sangat berguna dalam aplikasi 

yang memerlukan hasil integrasi presisi tinggi, seperti dalam fisika 

teoretis, komputasi teknik, pemrosesan sinyal, atau dalam verifikasi 

numerik untuk membandingkan hasil dengan metode analitik. Misalnya, 

dalam perhitungan gaya total dalam sistem mekanika fluida, distribusi 

beban dalam analisis struktur, atau evaluasi energi dalam sistem partikel, 

metode Romberg memungkinkan penghitungan integral dengan 

kesalahan sangat kecil. 

Implementasi metode Romberg dalam perangkat lunak 

komputasi seperti MATLAB, Python (melalui pustaka SciPy), dan 

bahasa pemrograman ilmiah lainnya sangat mudah dilakukan karena 

bentuknya yang rekursif dan tabel yang sistematis. Dalam Python, fungsi 
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scipy.integrate.romberg() menyediakan fitur otomatis untuk menghitung 

integral dengan metode ini tanpa harus membangun tabel secara manual. 

Sebagai ilustrasi sederhana, misalkan kita ingin menghitung 

integral ∫ 𝑒−𝑥2
𝑑𝑥

1

0
, fungsi ini tidak memiliki antiturunan dalam bentuk 

tertutup, sehingga harus dihitung secara numerik. Dengan metode 

Romberg, hasilnya akan sangat dekat dengan nilai referensi 

∫ 𝑒−𝑥2
𝑑𝑥

1

0
≈ 0,746824 hanya dalam beberapa iterasi, lebih cepat 

dibanding metode Simpson atau trapezoid standar dengan jumlah titik 

yang sama. 

 

Hitung pendekatan nilai integral berikut menggunakan Metode Romberg 

hingga tingkat R2,2: 

 

 
Maka,  

 



114  Pemrograman dan Komputasi Numerik 

 

 
 

C. Evaluasi Akurasi dan Estimasi Kesalahan 

 

Evaluasi akurasi dan estimasi kesalahan adalah dua aspek 

fundamental dalam analisis numerik dan komputasi ilmiah. Ketika 

metode numerik digunakan untuk menghampiri solusi dari persoalan 

matematika seperti integral, turunan, atau solusi sistem persamaan 

diferensial, hasil yang diperoleh bersifat aproksimasi, bukan nilai eksak. 

Oleh karena itu, sangat penting untuk memahami seberapa dekat hasil 

tersebut terhadap nilai sebenarnya (akurasi) serta sejauh mana kesalahan 

(galat) dapat dikenali, diprediksi, dan dikendalikan. Dalam konteks ini, 

proses evaluasi akurasi dan estimasi kesalahan menjadi indikator utama 

yang menentukan kualitas dan reliabilitas hasil komputasi. 

Menurut Burden dan Faires (2011) dalam Numerical Analysis, 

akurasi mengacu pada seberapa dekat nilai hasil komputasi numerik 

terhadap nilai eksak dari masalah yang diselesaikan. Dalam pengukuran 

matematis, akurasi dapat dijelaskan melalui galat absolut dan galat 

relatif. Galat absolut didefinisikan sebagai selisih langsung antara nilai 

eksak dan hasil aproksimasi: 

 
Pada praktiknya, galat relatif lebih sering digunakan karena 

memberikan ukuran kesalahan yang lebih kontekstual, terutama ketika 

nilai eksak sangat kecil atau sangat besar. 

Pada Chapra dan Canale (2015), dinyatakan bahwa semua 

metode numerik mengandung kesalahan yang berasal dari berbagai 

sumber, yang secara umum dapat dikategorikan ke dalam dua kelompok 
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besar: galat pembulatan (round-off error) dan galat pemotongan 

(truncation error). Galat pembulatan timbul akibat keterbatasan 

representasi bilangan real dalam komputer, sedangkan galat pemotongan 

muncul dari penyederhanaan atau pemotongan operasi matematika 

seperti deret Taylor atau pendekatan diskrit dalam diferensiasi dan 

integrasi. 

 

1. Galat Pembulatan 

Galat pembulatan (round-off error) adalah salah satu jenis 

kesalahan paling mendasar dalam komputasi numerik yang berasal dari 

keterbatasan sistem komputer dalam merepresentasikan bilangan real. 

Dalam sistem digital, komputer menyimpan angka dalam bentuk biner 

dengan jumlah digit terbatas. Akibatnya, banyak bilangan riil yang tidak 

dapat direpresentasikan secara persis dalam sistem biner tersebut, 

sehingga komputer harus melakukan pembulatan ke nilai terdekat yang 

dapat direpresentasikan. Proses pembulatan inilah yang menghasilkan 

galat pembulatan, yang dalam banyak kasus bersifat sangat kecil, tetapi 

bisa menjadi signifikan ketika akumulatif dalam perhitungan yang 

kompleks atau berulang. 

Menurut Burden dan Faires (2011), galat pembulatan merupakan 

konsekuensi langsung dari penggunaan bilangan floating-point dalam 

sistem komputasi. Standar umum seperti IEEE 754 mendefinisikan 

bagaimana bilangan disimpan dan dioperasikan dalam memori 

komputer. Dalam standar ini, sebuah bilangan floating-point disusun dari 

tiga bagian: bit tanda (sign), eksponen, dan mantissa (atau significand). 

Karena panjang mantissa terbatas (misalnya, 23 bit untuk single 

precision dan 52 bit untuk double precision), hanya sejumlah terbatas 

angka desimal yang dapat diwakili secara tepat. Misalnya, angka 1/3 

dalam sistem desimal adalah 0.333..., sebuah desimal tak hingga. Dalam 

sistem biner, representasi ini lebih terbatas lagi dan pasti akan dipotong 

atau dibulatkan pada digit tertentu, menghasilkan nilai yang sedikit 

berbeda dari nilai eksaknya. 

Pada praktiknya, galat pembulatan bisa muncul dalam berbagai 

bentuk operasi numerik, termasuk penjumlahan, perkalian, pembagian, 

dan terutama dalam operasi yang melibatkan selisih dua bilangan yang 

hampir sama (dikenal sebagai cancellation). Misalnya, dalam operasi 

x−y di mana x dan y bernilai sangat dekat, hasil selisihnya menjadi 

sangat kecil dan dapat kehilangan digit signifikan, sehingga 
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meningkatkan proporsi galat pembulatan terhadap nilai hasil. Hal ini 

sangat berbahaya dalam komputasi presisi tinggi karena galat kecil pada 

digit rendah bisa menjadi dominan. 

Pada iterasi numerik atau algoritma rekursif, galat pembulatan 

bisa terpropagasi dan diperbesar. Sebagai contoh, dalam metode numerik 

seperti metode Euler atau Runge-Kutta untuk menyelesaikan persamaan 

diferensial, pembulatan hasil setiap langkah akan memengaruhi langkah 

berikutnya. Jika tidak dikendalikan, hal ini dapat menyebabkan 

akumulasi kesalahan yang signifikan dan mengarahkan solusi pada hasil 

yang sangat menyimpang dari kenyataan. Oleh karena itu, analisis 

stabilitas numerik menjadi penting dalam menilai sejauh mana suatu 

metode tahan terhadap galat pembulatan. 

Strategi untuk mengurangi dampak galat pembulatan mencakup 

penggunaan presisi lebih tinggi (misalnya, menggunakan double 

daripada single precision), pembulatan yang stabil secara numerik, dan 

penataan ulang algoritma untuk menghindari pengurangan angka yang 

hampir sama atau pembagian terhadap angka sangat kecil. Dalam 

pengembangan perangkat lunak ilmiah dan rekayasa, teknik ini menjadi 

bagian penting dari proses validasi hasil numerik. 

 

2. Galat Pemotongan 

Galat pemotongan (truncation error) adalah jenis kesalahan 

numerik yang muncul ketika suatu metode numerik menggunakan 

pendekatan yang menyederhanakan operasi matematis eksak dengan 

memotong atau mengabaikan bagian dari ekspresi matematis tersebut. 

Tidak seperti galat pembulatan yang berasal dari keterbatasan 

representasi bilangan dalam komputer, galat pemotongan terjadi karena 

metode numerik secara sadar memilih untuk hanya mempertahankan 

sebagian komponen dari suatu operasi, seperti deret tak hingga, turunan, 

atau integral. Galat ini bersifat sistematis dan dapat dihitung atau 

dikendalikan melalui pemilihan metode serta pengaturan parameter 

numerik seperti ukuran langkah diskrit. 

Menurut Chapra dan Canale (2015) dalam Numerical Methods 

for Engineers, galat pemotongan paling umum terjadi dalam pendekatan 

numerik terhadap turunan dan integral. Misalnya, dalam metode selisih 

hingga untuk menghitung turunan pertama dari suatu fungsi 𝑓(𝑥), 

digunakan formula: 
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Dengan mengabaikan suku 
ℎ2

2
f′′(x)+…., maka terjadi galat 

pemotongan. Semakin besar nilai hhh, maka semakin besar juga galat 

pemotongan yang ditimbulkan karena kontribusi suku-suku yang 

diabaikan menjadi signifikan. 

Galat pemotongan juga terjadi dalam metode integrasi numerik 

seperti metode trapezoid atau Simpson. Misalnya, dalam metode 

trapezoid komposit, integral dihampiri oleh jumlah luas trapesium antara 

titik-titik fungsi. Dalam pendekatan ini, bentuk kurva sebenarnya diganti 

dengan garis lurus, sehingga bagian melengkung dari fungsi tidak 

diperhitungkan secara tepat. Galat yang timbul dapat diekspresikan 

secara matematis sebagai: 

 
untuk suatu ξ∈[a,b], menunjukkan bahwa galat tergantung pada 

turunan kedua fungsi dan jumlah subinterval nnn. Ini berarti bahwa galat 

pemotongan dapat dikurangi dengan memperkecil h (yakni memperbesar 

jumlah subinterval), atau dengan menggunakan metode numerik dengan 

orde lebih tinggi seperti metode Simpson yang memperhitungkan 

kelengkungan fungsi. 

Salah satu keunggulan dari galat pemotongan dibanding galat 

pembulatan adalah sifatnya yang dapat diprediksi dan dikendalikan. Jika 

suatu metode memiliki orde galat tertentu, maka pengguna dapat secara 

sistematis memperkirakan berapa banyak kesalahan yang akan terjadi 

dan menyesuaikan parameter komputasi agar kesalahan tetap dalam 

batas toleransi. Misalnya, metode dengan galat orde dua (O(h2)) akan 

memiliki galat yang berkurang seperempat jika hhh dibagi dua. 
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Pemahaman ini memungkinkan desain algoritma yang adaptif terhadap 

kebutuhan presisi. 

Ada batas bawah di mana pengurangan hhh tidak lagi efektif 

karena akan memicu galat pembulatan, sehingga terdapat trade-off 

antara mengurangi galat pemotongan dan mencegah galat pembulatan. 

Dalam pengembangan perangkat lunak numerik yang efisien, penting 

untuk menyeimbangkan dua jenis galat ini agar diperoleh hasil 

komputasi yang optimal. 

 

3. Evaluasi Akurasi Secara Praktis 

Evaluasi akurasi secara praktis dalam komputasi numerik adalah 

proses menilai seberapa dekat hasil komputasi mendekati nilai eksak, 

meskipun dalam banyak kasus nilai eksak tersebut tidak diketahui secara 

pasti. Oleh karena itu, evaluasi akurasi tidak hanya bergantung pada 

perhitungan galat absolut atau relatif, melainkan juga pada strategi-

strategi praktis yang dapat digunakan untuk memverifikasi dan 

memvalidasi hasil aproksimasi numerik. Evaluasi ini menjadi sangat 

penting dalam konteks aplikasi nyata, seperti simulasi fisika, optimasi 

teknik, atau perhitungan statistik, di mana hasil komputasi sering 

dijadikan dasar pengambilan keputusan atau desain sistem. 

Salah satu pendekatan paling umum dalam evaluasi akurasi 

adalah analisis konvergensi. Dalam metode ini, hasil komputasi numerik 

diuji dengan melakukan perhitungan berulang menggunakan ukuran 

langkah atau parameter diskret yang semakin kecil. Jika metode numerik 

yang digunakan benar dan stabil, maka hasil perhitungan akan 

menunjukkan pola konvergen menuju nilai tetap tertentu. Misalnya, 

dalam integrasi numerik menggunakan metode trapezoid atau Simpson, 

jika panjang langkah ℎ diperkecil, hasil integral yang diperoleh 

seharusnya semakin mendekati nilai sejati. Pola konvergensi ini dapat 

diukur dan divisualisasikan dengan memplot hasil terhadap ukuran h 

atau jumlah subinterval. Dengan demikian, meskipun nilai eksak tidak 

diketahui, kita dapat memperkirakan bahwa hasil sudah berada dalam 

kisaran yang dapat diterima secara akurat. 

Evaluasi akurasi juga dilakukan melalui perbandingan antar 

metode numerik. Dalam banyak kasus, dua atau lebih metode dengan 

orde akurasi berbeda digunakan untuk menyelesaikan masalah yang 

sama. Selisih hasil antara metode berakurasi lebih tinggi (misalnya 

Simpson atau Romberg) dengan metode lebih sederhana (misalnya 
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trapezoid) dapat memberikan gambaran mengenai besar kesalahan 

aproksimasi. Teknik ini dikenal sebagai pendekatan estimasi galat 

melalui redundansi metode, dan sering digunakan dalam perangkat lunak 

komputasi teknik untuk memberikan informasi kepercayaan terhadap 

hasil. 

Cara lainnya adalah menggunakan pendekatan nilai referensi 

atau solusi benchmark, terutama dalam kasus di mana fungsi uji tertentu 

telah diketahui nilai eksaknya. Ini sering digunakan dalam pengujian 

algoritma numerik, di mana fungsi dengan solusi analitik digunakan 

untuk membandingkan hasil aproksimasi. Jika hasil numerik mendekati 

solusi referensi dengan galat relatif kecil, maka metode dianggap valid 

dan akurat untuk konteks yang serupa. 

Pada iterasi numerik seperti metode Newton-Raphson atau 

metode Jacobi, galat antar iterasi sering digunakan sebagai indikator 

akurasi. Jika perubahan nilai hasil antara dua iterasi berturut-turut sangat 

kecil (misalnya kurang dari 10−6), maka hasil tersebut diasumsikan telah 

konvergen. Meskipun bukan galat sejati, estimasi ini secara praktis 

cukup efektif dalam menentukan titik henti perhitungan. 

D. Aplikasi pada Persoalan Teknik 

 

Pada bidang teknik, perhitungan analitik yang presisi sering kali 

tidak memungkinkan karena kompleksitas sistem yang dianalisis. Oleh 

sebab itu, metode numerik menjadi pendekatan utama dalam 

menyelesaikan berbagai persoalan teknik yang melibatkan formulasi 

matematika rumit, fungsi tak diketahui, dan sistem tak linear. Metode 

numerik memungkinkan solusi pendekatan terhadap masalah teknik 

dengan efisiensi tinggi, baik dari sisi waktu maupun sumber daya 

komputasi. Persoalan teknik yang melibatkan mekanika struktur, 

perpindahan panas, dinamika fluida, kelistrikan, kontrol sistem, dan 

simulasi material kini hampir seluruhnya mengandalkan pendekatan 

numerik. 

Menurut Chapra dan Canale (2015) dalam Numerical Methods 

for Engineers, metode numerik digunakan dalam teknik karena sebagian 

besar masalah teknik nyata mengarah pada persamaan diferensial (biasa 

atau parsial), sistem persamaan linier besar, atau fungsi-fungsi yang 

tidak dapat diintegrasikan secara analitik. Dalam konteks ini, metode 

seperti metode selisih hingga (finite difference method/FDM), metode 

elemen hingga (finite element method/FEM), metode volume hingga 
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(finite volume method/FVM), dan metode Runge-Kutta menjadi tulang 

punggung penyelesaian masalah-masalah teknik secara komputasional. 

 

1. Mekanika Struktur 

Mekanika struktur adalah cabang penting dalam bidang teknik 

sipil, mesin, dan arsitektur yang mempelajari perilaku benda padat 

terutama struktur teknik yang mengalami beban, tekanan, dan gaya 

lainnya. Fokus utamanya adalah untuk menganalisis dan merancang 

struktur seperti balok, kolom, rangka baja, jembatan, gedung, hingga 

pesawat terbang, agar mampu menahan beban yang bekerja tanpa 

mengalami kerusakan atau kegagalan. Konsep-konsep dasar dalam 

mekanika struktur meliputi tegangan (stress), regangan (strain), lendutan 

(deflection), momen lentur, gaya geser, dan stabilitas struktur. Prinsip-

prinsip ini diterapkan untuk memastikan bahwa struktur dirancang tidak 

hanya kuat dan stabil, tetapi juga efisien dari segi material dan biaya. 

Menurut Hibbeler (2012) dalam Mechanics of Materials, 

mekanika struktur bekerja berdasarkan hukum-hukum dasar fisika, 

khususnya hukum Newton dan prinsip keseimbangan gaya, serta prinsip 

deformasi elastis dari bahan. Salah satu konsep inti dalam analisis 

struktur adalah hukum Hooke, yang menjelaskan hubungan linear antara 

tegangan dan regangan dalam batas elastis suatu material. Dalam konteks 

teknik, hal ini memungkinkan insinyur untuk menghitung respons 

struktur terhadap gaya yang bekerja, seperti lenturan balok akibat beban 

merata atau gaya konsentris pada kolom. 

Pada aplikasi praktisnya, mekanika struktur tidak hanya 

berfungsi sebagai alat analisis, tetapi juga sebagai dasar untuk 

pengambilan keputusan desain. Misalnya, dalam merancang jembatan 

baja, insinyur harus menentukan ukuran, bentuk, dan jenis material yang 

digunakan berdasarkan perhitungan tegangan maksimum, batas leleh 

material, serta faktor keamanan. Selain itu, struktur harus memenuhi 

kriteria batas (limit states), baik batas kekuatan (ultimate limit state) 

maupun batas layan (serviceability limit state), agar tetap aman dan 

nyaman digunakan sepanjang umur bangunan. 

Seiring dengan kompleksitas bentuk struktur dan beban yang 

semakin variatif, metode analisis manual menjadi terbatas. Oleh karena 

itu, analisis numerik, khususnya metode elemen hingga (finite element 

method/FEM), menjadi alat bantu utama dalam mekanika struktur 

modern. Metode ini membagi struktur kompleks menjadi elemen-elemen 
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kecil (seperti segitiga atau persegi), dan menghitung distribusi gaya, 

tegangan, dan deformasi pada setiap elemen untuk kemudian 

digabungkan menjadi analisis keseluruhan. Perangkat lunak berbasis 

FEM seperti SAP2000, ANSYS, atau ABAQUS kini menjadi standar 

dalam perencanaan struktur besar seperti gedung pencakar langit atau 

jembatan gantung. 

Mekanika struktur juga mencakup aspek dinamik struktur, di 

mana struktur harus mampu menghadapi beban yang berubah terhadap 

waktu, seperti gempa bumi, angin kencang, atau lalu lintas kendaraan 

berat. Untuk kondisi seperti ini, struktur perlu dianalisis berdasarkan 

respons dinamis, dan sering kali melibatkan simulasi berbasis metode 

numerik yang memperhitungkan gaya inersia, redaman, dan frekuensi 

alami sistem. 

 

2. Perpindahan Panas dan Termodinamika 

Perpindahan panas dan termodinamika merupakan dua cabang 

ilmu penting dalam teknik mesin, teknik kimia, dan rekayasa energi yang 

saling berkaitan erat dalam memahami dan mengendalikan fenomena 

energi dalam sistem teknik. Termodinamika berfokus pada studi 

mengenai hubungan antara panas, kerja, dan energi dalam suatu sistem, 

serta kondisi kesetimbangan termal dan proses perubahan energi yang 

terjadi. Di sisi lain, perpindahan panas (heat transfer) mempelajari 

bagaimana energi dalam bentuk panas berpindah dari satu tempat ke 

tempat lain melalui tiga mekanisme utama: konduksi, konveksi, dan 

radiasi. Kedua cabang ini menjadi landasan dalam merancang mesin, 

sistem pendingin, turbin, boiler, reaktor, dan banyak sistem teknik 

lainnya yang melibatkan konversi dan transportasi energi. 

Menurut Çengel dan Boles (2015) dalam Thermodynamics: An 

Engineering Approach, termodinamika menjelaskan perubahan energi 

melalui hukum-hukum dasar: Hukum Pertama Termodinamika yang 

menyatakan kekekalan energi, dan Hukum Kedua Termodinamika yang 

memperkenalkan konsep entropi dan arah alami dari proses termal. 

Misalnya, dalam sistem mesin kalor seperti motor bakar atau turbin gas, 

hukum pertama menjelaskan konversi panas menjadi kerja mekanis, 

sedangkan hukum kedua membatasi efisiensi konversi tersebut, karena 

selalu ada sebagian energi yang hilang sebagai panas yang tidak dapat 

digunakan. Hukum-hukum ini digunakan untuk menganalisis siklus 

termal seperti siklus Rankine, siklus Otto, dan siklus Brayton, yang 
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menjadi dasar dalam perancangan pembangkit listrik dan mesin 

kendaraan. 

Ilmu perpindahan panas menjadi penting dalam menentukan 

bagaimana dan seberapa cepat panas berpindah dari satu bagian sistem 

ke bagian lainnya. Dalam konduksi, panas mengalir dalam benda padat 

dari suhu tinggi ke suhu rendah melalui getaran atom dan konduksi 

elektron, dijelaskan dengan hukum Fourier. Dalam konveksi, panas 

berpindah antara permukaan padat dan fluida yang mengalir, dan 

dianalisis menggunakan bilangan Nusselt, bilangan Reynolds, dan 

hukum Newton pendinginan. Sedangkan radiasi panas melibatkan energi 

elektromagnetik yang dipancarkan oleh permukaan benda, dijelaskan 

dengan hukum Stefan-Boltzmann dan konsep emisivitas. 

Pada rekayasa, analisis perpindahan panas sering digunakan 

untuk merancang sistem pendingin (seperti radiator, heat exchanger, dan 

sistem HVAC), serta isolasi termal pada dinding bangunan atau pipa. 

Misalnya, pada sistem penukar kalor (heat exchanger), insinyur harus 

memperhitungkan laju perpindahan panas antara dua fluida tanpa 

mencampurkannya secara langsung, guna memastikan efisiensi energi 

dan stabilitas operasi. Untuk sistem elektronik, analisis termal 

diperlukan untuk memastikan bahwa suhu komponen seperti prosesor 

tidak melebihi batas operasionalnya. 

Perhitungan perpindahan panas dan termodinamika sering kali 

melibatkan persamaan diferensial parsial yang kompleks, sehingga 

metode numerik seperti metode elemen hingga (FEM) atau metode beda 

hingga (FDM) digunakan untuk menghitung distribusi suhu dalam 

geometri yang rumit. Perangkat lunak seperti ANSYS, COMSOL, atau 

MATLAB digunakan untuk simulasi termal secara menyeluruh, mulai 

dari analisis stasioner hingga perpindahan panas transien. 

Dengan memahami prinsip-prinsip perpindahan panas dan 

termodinamika, para insinyur mampu mengendalikan aliran energi dan 

suhu dalam sistem teknik secara efisien dan berkelanjutan. Ilmu ini 

sangat vital dalam pengembangan teknologi energi terbarukan, 

kendaraan hemat energi, bangunan ramah lingkungan, dan sistem 

pendinginan berteknologi tinggi. Oleh karena itu, perpindahan panas dan 

termodinamika terus menjadi pilar utama dalam inovasi teknologi energi 

dan rekayasa masa depan. 
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3. Dinamika Fluida Komputasi (CFD) 

Dinamika Fluida Komputasi (Computational Fluid 

Dynamics/CFD) adalah cabang teknik yang menggunakan metode 

numerik dan algoritma komputasi untuk menganalisis dan memecahkan 

persoalan yang melibatkan aliran fluida dan transfer energi. Dalam 

konteks teknik, CFD menjadi alat penting dalam memahami perilaku 

fluida (gas dan cairan), memprediksi distribusi tekanan, kecepatan, suhu, 

dan berbagai parameter penting lainnya dalam sistem rekayasa yang 

kompleks. Dengan kemampuan ini, CFD telah menjadi teknologi utama 

dalam desain dan optimasi produk pada berbagai sektor seperti 

penerbangan, otomotif, energi, lingkungan, hingga biomedis. 

Menurut Versteeg dan Malalasekera (2007) dalam An 

Introduction to Computational Fluid Dynamics, CFD bekerja dengan 

cara mendiskretkan dan menyelesaikan persamaan Navier-Stokes, yaitu 

persamaan diferensial parsial non-linier yang mendeskripsikan 

konservasi massa (kontinuitas), momentum (hukum Newton), dan energi 

dalam fluida. Karena sulit atau bahkan tidak mungkin menyelesaikan 

persamaan tersebut secara analitik untuk kasus nyata yang kompleks, 

maka metode numerik seperti finite volume method (FVM), finite 

element method (FEM), dan finite difference method (FDM) digunakan 

untuk menyelesaikannya dalam bentuk diskrit di atas grid atau mesh 

yang menggambarkan domain aliran. 

Pada aplikasi teknik, CFD memberikan keunggulan besar karena 

mampu menggantikan eksperimen fisik yang mahal dan memakan 

waktu. Misalnya, dalam industri otomotif, CFD digunakan untuk 

menganalisis aerodinamika mobil guna mengurangi hambatan udara dan 

meningkatkan efisiensi bahan bakar. Dalam teknik penerbangan, CFD 

membantu mendesain bentuk sayap dan badan pesawat agar memiliki lift 

optimal dan drag minimal. CFD juga digunakan dalam perencanaan 

sistem HVAC (Heating, Ventilation, and Air Conditioning) di gedung 

untuk memastikan aliran udara dan distribusi suhu sesuai standar 

kenyamanan termal. 

CFD memungkinkan simulasi berbagai jenis aliran, mulai dari 

aliran laminar hingga turbulen, aliran termal konvektif, aliran multifase 

(seperti campuran air dan udara), hingga reaksi kimia dalam aliran fluida. 

Dengan kemajuan teknologi komputasi, perangkat lunak CFD modern 

seperti ANSYS Fluent, OpenFOAM, COMSOL Multiphysics, dan 

STAR-CCM+ menyediakan antarmuka dan solver canggih yang mampu 
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menangani geometri kompleks, berbagai kondisi batas, serta interaksi 

fluida dengan struktur padat. 

CFD bukan hanya soal menjalankan simulasi. Kualitas hasil 

sangat bergantung pada pemahaman fisika aliran, pemilihan model 

turbelensi yang tepat (misalnya k-ε atau Large Eddy Simulation), 

pemilihan skema numerik yang stabil, serta resolusi mesh yang cukup 

untuk menangkap fenomena aliran penting. Selain itu, proses validasi 

dan verifikasi harus dilakukan untuk memastikan bahwa hasil simulasi 

mendekati realitas fisik dan cocok dengan data eksperimen atau 

perhitungan teoritis. 

 

4. Teknik Elektro dan Elektronika 

Teknik elektro dan elektronika merupakan cabang ilmu teknik 

yang berfokus pada studi, perancangan, dan penerapan sistem yang 

melibatkan listrik, elektromagnetisme, serta perangkat elektronik. Ruang 

lingkup teknik elektro mencakup sistem tenaga listrik, kontrol, 

komunikasi, dan komputer, sedangkan teknik elektronika lebih 

menekankan pada perancangan dan pemrosesan sinyal dalam perangkat-

perangkat mikro seperti transistor, rangkaian terpadu (IC), sensor, dan 

mikrokontroler. Kedua bidang ini menjadi fondasi utama dari berbagai 

inovasi teknologi modern, mulai dari pembangkit listrik dan jaringan 

distribusi hingga ponsel pintar dan perangkat Internet of Things (IoT). 

 

Gambar 4. Internet of Things 

 
Sumber:Binar 
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Menurut Hambley (2014) dalam Electrical Engineering: 

Principles and Applications, teknik elektro mempelajari bagaimana 

energi listrik dihasilkan, ditransmisikan, dan digunakan secara efisien. 

Di sektor pembangkitan tenaga listrik, para insinyur elektro merancang 

sistem pembangkit seperti PLTA, PLTU, PLTS, dan PLTN, serta sistem 

transmisi tegangan tinggi. Dalam proses ini, metode numerik digunakan 

untuk menganalisis sistem jaringan listrik secara linier dan non-linier, 

menentukan kestabilan tegangan, arus gangguan, serta distribusi beban. 

Simulasi berbasis perangkat lunak seperti ETAP, MATLAB Simulink, 

dan PowerWorld menjadi alat utama dalam perencanaan sistem tenaga 

yang andal dan berkelanjutan. 

Teknik elektronika berkaitan erat dengan pengembangan sirkuit 

mikroelektronik dan sistem digital. Para insinyur elektronika merancang 

sirkuit menggunakan komponen seperti resistor, kapasitor, dioda, 

transistor, dan mikrokontroler untuk menciptakan perangkat seperti 

sensor suhu, penguat sinyal, osilator, serta sistem tertanam (embedded 

systems). Elektronika juga menjadi tulang punggung teknologi 

komunikasi dan kontrol, misalnya pada pemancar radio, radar, perangkat 

nirkabel, dan sistem kendali otomatis di industri. Dalam pengembangan 

perangkat seperti ponsel, laptop, dan peralatan medis, prinsip-prinsip 

elektronika digunakan untuk memastikan efisiensi energi, keandalan 

sinyal, dan miniaturisasi perangkat. 

Salah satu aspek penting dalam teknik elektro dan elektronika 

modern adalah pengolahan sinyal digital (DSP), di mana sinyal analog 

diubah menjadi bentuk digital agar dapat diolah, disimpan, dan 

ditransmisikan secara efisien. Teknik ini digunakan dalam berbagai 

aplikasi seperti pemrosesan audio, pengenalan suara, pengolahan gambar 

digital, serta sistem komunikasi nirkabel. Dalam hal ini, metode numerik 

seperti transformasi Fourier diskrit (DFT), filter digital (FIR dan IIR), 

serta algoritma kompresi menjadi elemen penting dalam mendukung 

kinerja sistem. 

Perkembangan teknologi otomasi dan kontrol juga sangat 

bergantung pada teknik elektro dan elektronika. Sistem kendali seperti 

PID (Proportional-Integral-Derivative), kontrol logika fuzzy, hingga 

kontrol adaptif digunakan untuk mengatur kecepatan motor, posisi robot, 

suhu sistem, dan proses industri lainnya. Dengan dukungan sensor dan 

aktuator, sistem ini mampu bekerja secara otomatis dan presisi tinggi. 

Dalam dunia industri 4.0, integrasi antara teknik elektro, pemrograman, 
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dan komunikasi data membentuk sistem cerdas berbasis IoT dan AI yang 

mampu mengoptimalkan produktivitas dan efisiensi. 

 

5. Sistem Otomatisasi dan Kontrol 

Sistem otomatisasi dan kontrol merupakan cabang penting dalam 

teknik elektro, mekatronika, dan teknik industri yang berfokus pada 

pengaturan perilaku sistem dinamis secara otomatis melalui penggunaan 

perangkat keras (seperti sensor, aktuator, dan kontroler) dan perangkat 

lunak (seperti algoritma kontrol dan sistem tertanam). Tujuan utama dari 

sistem ini adalah menciptakan operasi yang efisien, presisi tinggi, stabil, 

dan minim campur tangan manusia. Sistem kontrol banyak diterapkan 

dalam berbagai bidang, mulai dari proses manufaktur, otomotif, 

robotika, energi, transportasi, hingga peralatan rumah tangga pintar. 

Menurut Ogata (2010) dalam Modern Control Engineering, 

sistem kontrol bekerja berdasarkan prinsip pengumpanan (feedback) atau 

umpan terbuka (open-loop). Dalam kontrol umpan balik, sensor 

digunakan untuk mendeteksi keluaran sistem, lalu informasi ini 

dibandingkan dengan nilai referensi (setpoint). Selisih antara keduanya 

(disebut sebagai error) akan diproses oleh pengontrol (seperti pengontrol 

PID) untuk menghasilkan sinyal yang mengatur aktuator, sehingga 

sistem dapat menyesuaikan dirinya agar tetap berada dalam kondisi yang 

diinginkan. Misalnya, dalam sistem kendali suhu ruangan, sensor suhu 

mengukur kondisi aktual dan pengontrol mengatur pemanas atau 

pendingin untuk mencapai suhu target. 

Pengontrol PID (Proportional-Integral-Derivative) adalah jenis 

kontroler yang paling umum dan banyak digunakan karena 

kesederhanaannya serta efektivitasnya dalam berbagai jenis sistem. 

Komponen proporsional (P) memberikan respons terhadap error saat ini, 

integral (I) mengatasi error jangka panjang (akumulasi error), dan 

turunan (D) merespons perubahan cepat dari error. Dengan penyesuaian 

parameter yang tepat, pengontrol PID mampu mengendalikan sistem 

dengan respons yang cepat dan stabil tanpa overshoot atau osilasi 

berlebih. 

Pada sistem industri modern, otomatisasi dikembangkan melalui 

penggunaan Programmable Logic Controller (PLC), yang merupakan 

komputer industri tahan lingkungan yang diprogram untuk mengatur 

proses produksi secara berurutan atau paralel. PLC membaca sinyal dari 

sensor, memproses logika kendali, dan mengaktifkan output seperti 
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motor, katup, atau lampu indikator. PLC menjadi komponen inti dalam 

sistem otomasi pabrik, termasuk pada lini perakitan mobil, pengemasan 

makanan, dan pengolahan air bersih. 

Integrasi sistem kontrol dengan teknologi informasi telah 

melahirkan konsep kontrol berbasis komputer dan jaringan. Dalam 

pendekatan ini, sistem kendali terhubung secara digital dan dapat diakses 

serta dikendalikan secara jarak jauh melalui antarmuka manusia-mesin 

(HMI) atau Supervisory Control and Data Acquisition (SCADA). Ini 

memungkinkan perusahaan memantau seluruh proses produksi secara 

real-time, meningkatkan efisiensi operasional, deteksi kesalahan lebih 

awal, dan pengambilan keputusan yang berbasis data. 

Di sektor transportasi, sistem kontrol digunakan dalam cruise 

control mobil, sistem navigasi pesawat terbang, hingga kendali otomatis 

kereta cepat. Sementara dalam dunia robotika, sistem kontrol 

memastikan gerakan lengan robot presisi sesuai dengan jalur atau posisi 

targetnya. Dalam energi, sistem kontrol berperan dalam manajemen grid 

listrik, pengaturan turbin pembangkit, dan sistem energi terbarukan yang 

dinamis seperti panel surya dan turbin angin. 

Dengan perkembangan teknologi sensor, kecerdasan buatan (AI), 

dan komunikasi data, sistem otomatisasi dan kontrol kini berkembang 

menuju arah cyber-physical systems dan internet of things (IoT). Sistem-

sistem ini mampu beradaptasi secara cerdas terhadap perubahan 

lingkungan, melakukan prediksi kegagalan, serta belajar dari data 

historis untuk mengoptimalkan performa secara berkelanjutan. Oleh 

karena itu, pemahaman terhadap sistem otomatisasi dan kontrol sangat 

penting bagi para insinyur dan teknolog modern yang ingin membangun 

sistem yang efisien, adaptif, dan siap menghadapi tantangan industri 

masa depan. 

 

6. Rekayasa Material dan Struktur Mikro 

Rekayasa material dan struktur mikro adalah bidang 

interdisipliner dalam teknik dan ilmu material yang mempelajari 

hubungan antara struktur internal material pada skala mikro dan nano 

terhadap sifat mekanik, termal, listrik, maupun kimianya. Tujuan utama 

dari bidang ini adalah merekayasa bahan dengan sifat yang diinginkan 

melalui kontrol atas komposisi, morfologi, dan struktur mikroskopik. 

Rekayasa material sangat penting dalam mendukung inovasi teknologi, 

mulai dari pengembangan bahan ringan untuk pesawat terbang, logam 
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tahan panas untuk turbin gas, hingga material superkonduktor, 

biomaterial, dan nanokomposit untuk perangkat elektronik canggih. 

Menurut Callister dan Rethwisch (2020) dalam Materials 

Science and Engineering: An Introduction, sifat makroskopik suatu 

material sangat dipengaruhi oleh struktur mikronya, seperti ukuran butir, 

orientasi kristal, cacat kristal, serta distribusi fasa. Misalnya, logam 

dengan ukuran butir yang lebih kecil cenderung memiliki kekuatan tarik 

yang lebih tinggi, sebagaimana dijelaskan dalam prinsip Hall-Petch, 

yang menyatakan bahwa kekuatan logam meningkat seiring dengan 

berkurangnya ukuran butir. Oleh karena itu, proses-proses seperti 

pengerjaan dingin, pemanasan ulang (annealing), atau rekayasa 

solidifikasi dimanfaatkan untuk mengubah struktur mikro demi 

mendapatkan karakteristik mekanik yang diinginkan. 

Rekayasa struktur mikro tidak hanya terbatas pada logam, tetapi 

juga mencakup keramik, polimer, dan komposit. Dalam pengembangan 

komposit, misalnya, struktur mikro dirancang sedemikian rupa agar serat 

penguat (seperti serat karbon atau serat kaca) terdistribusi merata dalam 

matriks polimer atau logam. Hal ini menghasilkan material dengan 

kombinasi kekuatan tinggi, ringan, dan ketahanan terhadap keausan atau 

korosi. Sifat-sifat seperti ini sangat dibutuhkan dalam industri otomotif, 

pesawat terbang, serta konstruksi infrastruktur yang mengutamakan 

efisiensi dan daya tahan. 

Perkembangan teknologi juga memungkinkan analisis struktur 

mikro hingga ke tingkat nano dengan menggunakan teknik karakterisasi 

canggih seperti mikroskop elektron transmisi (TEM), mikroskop 

elektron pemindaian (SEM), dan difraksi sinar-X (XRD). Teknik ini 

memungkinkan para insinyur dan ilmuwan material memahami 

distribusi fasa, cacat kristal, atau interaksi atom dalam material. 

Informasi ini menjadi dasar dalam pemodelan material berbasis 

komputer, termasuk simulasi molekuler dan metode elemen hingga 

(FEM) untuk memprediksi perilaku material dalam kondisi ekstrem, 

seperti tekanan tinggi atau suhu tinggi. Selain itu, struktur mikro sangat 

berperan dalam rekayasa material fungsional, seperti bahan magnetik, 

piezoelektrik, termolistrik, dan superkonduktor. Dalam bidang 

biomaterial, struktur mikro digunakan untuk merekayasa implan tulang 

dan jaringan buatan agar memiliki porositas dan kekasaran permukaan 

yang sesuai dengan proses regenerasi biologis. 
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BAB VII 

PENYELESAIAN 

PERSAMAAN 

NONLINEAR 
 

 

 

Persamaan nonlinear merupakan salah satu fondasi penting 

dalam dunia sains dan teknik, yang sering kali muncul dalam berbagai 

permasalahan nyata seperti mekanika, dinamika fluida, ekonomi, serta 

sistem kendali. Tidak seperti persamaan linear yang memiliki sifat 

sederhana dan solusi langsung, persamaan nonlinear menghadirkan 

kompleksitas tinggi dan memerlukan pendekatan khusus untuk 

menemukan solusinya. Dalam dunia komputasi modern, penyelesaian 

persamaan nonlinear secara numerik menjadi sangat relevan karena 

sering kali tidak tersedia solusi analitik yang eksak. Oleh karena itu, 

metode numerik seperti bisection, regula falsi, Newton-Raphson, dan 

secant method dikembangkan untuk memberikan solusi pendekatan yang 

efisien dan stabil. Melalui bab ini, pembaca akan diperkenalkan pada 

prinsip dasar penyelesaian persamaan nonlinear, karakteristik 

konvergensi metode-metode yang digunakan, serta kelebihan dan 

keterbatasan masing-masing pendekatan.  

 

A. Metode Bagi Dua dan Regulafalsi 

 

Di dunia komputasi numerik, penyelesaian persamaan nonlinear 

menjadi salah satu topik penting, khususnya ketika solusi analitik tidak 

dapat ditemukan secara langsung. Dua metode paling dasar namun 

efektif yang digunakan untuk menyelesaikan persamaan nonlinear 
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adalah Metode Bagi Dua (Bisection Method) dan Metode Regula Falsi 

(False Position Method). Kedua metode ini tergolong dalam kelompok 

metode bracketing, yaitu teknik yang memerlukan dua nilai awal yang 

mengurung akar fungsi.  

 

1. Metode Bagi Dua 

Metode Bagi Dua atau Bisection Method merupakan salah satu 

teknik paling dasar dan penting dalam penyelesaian persamaan nonlinear 

secara numerik. Metode ini tergolong dalam kategori bracketing 

methods, yakni pendekatan yang bekerja dengan menyempitkan interval 

yang mengandung akar dari suatu fungsi secara bertahap. Prinsip 

dasarnya sangat sederhana namun kuat, yakni jika suatu fungsi kontinu 

f(x) memiliki tanda yang berlawanan pada dua titik, misalnya f(a)<0 dan 

f(b)>0, maka menurut Teorema Nilai Antara (Intermediate Value 

Theorem) pasti terdapat setidaknya satu akar c∈(a,b) yang memenuhi 

f(c)=0. Inilah dasar teoritis dari metode bagi dua. 

Langkah pertama dalam metode ini adalah menentukan interval 

awal [a,b] di mana nilai fungsi pada kedua ujung memiliki tanda yang 

berlawanan. Setelah itu, titik tengah dari interval dihitung, yaitu 𝑐 =
𝑎+𝑏

2
, 

dan nilai fungsi di titik tersebut, f(c) dievaluasi. Jika f(c)=0, maka c 

adalah solusi akar yang dicari. Namun dalam praktiknya, sangat jarang 

nilai fungsi di titik tengah benar-benar nol. Oleh karena itu, proses 

dilanjutkan dengan menentukan subinterval baru yang masih 

mengandung akar, yaitu antara [a,c] atau [c,b], tergantung pada tanda 

fungsi di titik-titik tersebut. Proses ini diulang terus-menerus dengan cara 

yang sama hingga panjang interval ∣b−a∣ menjadi sangat kecil atau nilai 

fungsi ∣f(c)∣ mendekati nol, sesuai dengan tingkat toleransi kesalahan 

yang telah ditentukan. 

Kekuatan utama metode bagi dua terletak pada stabilitas dan 

jaminan konvergensi. Selama syarat dasar f(a)×f(b)<0 dipenuhi dan 

fungsi bersifat kontinu pada interval tersebut, maka metode ini pasti akan 

menemukan akar atau pendekatannya. Oleh karena itu, metode ini 

dianggap sangat andal, terutama dalam kondisi di mana fungsi memiliki 

bentuk yang kompleks atau tidak mudah diturunkan secara analitik. 

Pendekatan ini juga tidak bergantung pada kemiringan fungsi atau 

perubahan bentuk grafiknya, yang membuatnya sangat berguna untuk 
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fungsi-fungsi yang tidak diketahui bentuk pastinya atau yang memiliki 

perilaku tidak terduga di antara titik a dan b. 

Keunggulan dalam kestabilan dan kesederhanaan ini juga disertai 

dengan kelemahan, terutama dalam hal kecepatan konvergensi. Metode 

bagi dua hanya menunjukkan konvergensi linier, artinya error berkurang 

secara bertahap dan cukup lambat dari iterasi ke iterasi. Dalam 

praktiknya, dibutuhkan banyak iterasi untuk mencapai ketelitian yang 

tinggi, terutama jika akar berada sangat dekat dengan salah satu ujung 

interval. Hal ini menjadikan metode ini kurang efisien dibandingkan 

metode yang menggunakan informasi tambahan, seperti Newton-

Raphson atau metode secant, yang memiliki kecepatan konvergensi yang 

lebih tinggi. Selain itu, metode bagi dua tidak dapat digunakan jika 

fungsi tidak berubah tanda pada interval awal, yang berarti proses seleksi 

interval awal menjadi sangat penting. 

Aplikasi metode bagi dua sangat luas dan mencakup berbagai 

bidang, mulai dari fisika, teknik elektro, teknik mesin, hingga ekonomi. 

Contohnya, dalam teknik sipil, metode ini dapat digunakan untuk 

menghitung titik netral dalam sistem struktur lentur. Dalam ilmu 

ekonomi, metode bagi dua bisa diterapkan untuk mencari nilai suku 

bunga internal (IRR) yang membuat nilai kini bersih (NPV) sama dengan 

nol. Dalam pengembangan perangkat lunak atau pemrograman, metode 

ini juga sangat sering digunakan sebagai bagian dari modul numerik, 

terutama dalam bahasa seperti Python, MATLAB, C++, dan Java. 

Implementasinya relatif mudah dan tidak memerlukan struktur data 

kompleks, hanya membutuhkan iterasi sederhana berbasis logika 

percabangan dan perhitungan aritmatika dasar. 

Sebagai ilustrasi, pertimbangkan fungsi f(x) = x3- x - 2. Kita ingin 

mencari akar fungsi tersebut dalam interval [1, 2]. Evaluasi awal 

menunjukkan f(1)=−2 dan f(2)=2, sehingga fungsi memenuhi syarat 

metode bagi dua. Titik tengah pertama adalah c1=1.5, di mana 

f(1.5)=−0.125, masih negatif, yang berarti akar ada pada interval [1.5, 

2]. Proses ini terus diulang: hitung titik tengah baru, evaluasi nilai fungsi, 

dan perbarui interval. Setelah beberapa iterasi, nilai pendekatan akar 

akan mendekati 1.521, yang merupakan akar nyata dari fungsi tersebut. 

Meskipun konvergensinya lambat, hasil akhirnya sangat presisi jika 

dilakukan hingga toleransi tertentu. 

Secara implementatif, metode bagi dua dapat dituliskan dalam 

bentuk program komputasi sederhana. Misalnya, dalam Python, cukup 
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menggunakan perulangan while dan logika pembaruan nilai aaa atau bbb 

berdasarkan hasil evaluasi fungsi di titik tengah. Fungsi umum biasanya 

juga dilengkapi parameter toleransi dan jumlah iterasi maksimum untuk 

mencegah komputasi tak berujung akibat fungsi yang sangat mendekati 

datar di sekitar akar. 

Pada pengajaran dan pembelajaran komputasi numerik, metode 

bagi dua sangat direkomendasikan sebagai titik awal untuk 

memperkenalkan prinsip penyelesaian persamaan nonlinear. Ini karena 

metode ini mengajarkan banyak konsep mendasar seperti pemilihan 

interval, evaluasi fungsi, penggunaan toleransi kesalahan, dan 

pentingnya sifat kontinuitas. Bahkan ketika mahasiswa atau peneliti 

akhirnya beralih ke metode yang lebih kompleks, pemahaman yang kuat 

tentang metode bagi dua tetap menjadi landasan penting dalam 

memahami bagaimana pendekatan numerik bekerja secara umum. 

Dengan segala kelebihan dan keterbatasannya, metode bagi dua 

tetap menjadi alat yang relevan, terutama ketika kestabilan dan 

keandalan lebih diprioritaskan daripada kecepatan. Dalam dunia di mana 

solusi eksak semakin langka dan model numerik semakin dominan, 

metode seperti ini memberikan alternatif yang kuat dan dapat dipercaya 

untuk menyelesaikan masalah nonlinear dalam berbagai disiplin ilmu. 

 

 
Cari akar dalam interval [1,2], dan lakukan tiga iterasi. 
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Setelah tiga iterasi, kita mendekati akar dalam interval [1.5, 

1.625], dengan nilai pendekatan terakhir x≈1.625. Metode ini akan terus 

mempersempit interval hingga mendekati akar sejati dari f(x)=0. 
 

2. Metode Regula Falsi 

Metode Regula Falsi, atau sering disebut juga False Position 

Method, merupakan salah satu metode numerik yang digunakan untuk 

menyelesaikan persamaan nonlinear f(x)=0 dengan cara yang lebih 

cerdas dibandingkan metode bagi dua. Sama seperti metode bisection, 

Regula Falsi termasuk dalam kategori bracketing methods, yaitu metode 

yang memerlukan dua titik awal aaa dan bbb sehingga f(a)×f(b)<0, 

artinya terdapat perubahan tanda nilai fungsi di antara dua titik tersebut. 

Berdasarkan Teorema Nilai Antara (Intermediate Value Theorem), jika 

fungsi f(x) bersifat kontinu dalam interval tersebut, maka dijamin 

terdapat setidaknya satu akar di antara aaa dan bbb. Namun, keunikan 

metode Regula Falsi terletak pada cara pendekatannya dalam 

menentukan nilai x baru (akar pendekatan), yakni dengan menggunakan 

persamaan garis lurus yang menghubungkan dua titik fungsi tersebut dan 

menghitung titik potong garis dengan sumbu x. Secara matematis, titik 

pendekatan akar c dihitung berdasarkan rumus: 

 
Rumus ini secara geometris berarti bahwa C adalah titik potong 

garis lurus antara titik (a,f(a)) dan (b,f(b)) terhadap sumbu x. Dengan 

kata lain, alih-alih memilih titik tengah seperti dalam metode bagi dua, 
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metode Regula Falsi memilih titik yang diperkirakan lebih dekat dengan 

akar karena mempertimbangkan nilai fungsi itu sendiri. Pendekatan ini 

membuat metode ini memiliki potensi konvergensi yang lebih cepat 

daripada metode bisection, karena lebih "menyesuaikan diri" dengan 

bentuk kurva fungsi. 

Langkah-langkah metode Regula Falsi cukup sederhana dan 

efisien. Pertama, tentukan dua nilai awal aaa dan bbb yang memenuhi 

syarat bracketing f(a)×f(b)<0. Kedua, hitung nilai C menggunakan 

rumus di atas. Ketiga, evaluasi f(c); jika f(c)=0, maka C adalah akar dari 

fungsi. Jika tidak, perbarui nilai interval: jika f(a)×f(c)<0, maka akar 

berada dalam interval [a,c], sehingga b diganti dengan C; jika 

f(c)×f(b)<0, maka akar berada dalam interval [c,b], sehingga a diganti 

dengan C. Proses ini diulang hingga nilai absolut f(c) lebih kecil dari 

toleransi yang ditentukan atau panjang interval sudah sangat kecil. 

Keunggulan utama metode Regula Falsi adalah kecepatannya 

dalam konvergensi pada banyak kasus, terutama dibandingkan dengan 

metode bagi dua. Karena pendekatan nilai C lebih bersifat adaptif dan 

tergantung pada bentuk fungsi, maka dalam fungsi-fungsi yang tidak 

terlalu datar atau memiliki gradien yang cukup tajam, metode ini dapat 

mencapai solusi lebih cepat. Sebagai contoh, dalam fungsi f(x)=x3-x-2, 

jika digunakan Regula Falsi dengan nilai awal a=1 dan b=2, nilai akar 

akan mendekati x≈1.521 dalam iterasi yang lebih sedikit dibandingkan 

metode bagi dua. 

Regula Falsi juga memiliki kelemahan tertentu yang perlu 

diperhatikan. Salah satu kelemahan signifikan adalah potensi stagnasi 

konvergensi. Ini terjadi ketika salah satu dari dua titik aaa atau bbb tetap 

tidak berubah dalam banyak iterasi karena nilai fungsi di titik tersebut 

sangat kecil atau tidak berubah secara signifikan. Dalam kasus seperti 

ini, meskipun metode masih bekerja, konvergensinya menjadi sangat 

lambat dan mendekati metode bagi dua. Untuk mengatasi masalah ini, 

beberapa varian dari metode Regula Falsi telah dikembangkan, seperti 

metode Modified Regula Falsi, Illinois Method, dan Pegasus Method, 

yang mencoba mengoreksi titik stagnan agar proses konvergensi tetap 

cepat. 

Pada praktik komputasi, Regula Falsi sering kali digunakan 

ketika metode yang lebih kompleks seperti Newton-Raphson tidak bisa 

diaplikasikan karena fungsi tidak terdiferensiasi dengan mudah, atau 

nilai turunan tidak tersedia atau tidak stabil. Karena metode ini hanya 
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membutuhkan evaluasi fungsi, tanpa perlu menghitung turunan, maka ia 

sangat cocok untuk fungsi-fungsi kompleks atau eksperimental yang 

diperoleh dari data empiris. Selain itu, metode ini relatif mudah 

diimplementasikan dalam bahasa pemrograman seperti Python, 

MATLAB, maupun C++. Berikut merupakan ilustrasi implementasi 

sederhana metode Regula Falsi dalam Python. 

 
 

Dengan contoh fungsi: 

 
Dari penjelasan tersebut, dapat disimpulkan bahwa metode 

Regula Falsi merupakan kompromi antara kesederhanaan metode 

bisection dan kecepatan metode Newton-Raphson. Ia tidak secepat 

metode berbasis turunan, namun lebih aman karena tidak bergantung 

pada informasi turunan fungsi. Metode ini sangat cocok untuk digunakan 

dalam tahap awal pemrograman numerik atau ketika menghadapi fungsi 

yang sulit dianalisis secara simbolik. Dengan memilih interval awal yang 

tepat dan toleransi yang sesuai, metode ini mampu memberikan solusi 

yang akurat dan efisien untuk berbagai jenis permasalahan nonlinear 

yang kompleks. 
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Setelah 3 iterasi, akar pendekatan berada di sekitar x≈1.505. 

Metode Regula Falsi lebih cepat dari metode Bisection karena 

menggunakan pendekatan garis lurus antara titik-titik. 

 

B. Metode Newton-Raphson dan Secant 

 

Pada penyelesaian persamaan nonlinear 𝑓(𝑥)=0, metode numerik 

sangat penting ketika solusi eksak tidak tersedia atau sulit ditemukan. 
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Dua metode populer yang digunakan untuk pendekatan akar adalah 

metode Newton-Raphson dan metode Secant. Keduanya merupakan 

bagian dari metode terbuka (open methods), yang tidak mensyaratkan 

nilai awal harus mengurung akar seperti pada metode bracketing 

(misalnya metode bagi dua atau regula falsi). Karena itulah, kedua 

metode ini dikenal memiliki konvergensi yang lebih cepat, meskipun 

dengan risiko konvergensi yang tidak dijamin jika pemilihan titik awal 

kurang tepat. 

 

1. Metode Newton-Raphson 

Metode Newton-Raphson adalah salah satu teknik numerik 

paling populer dan efisien untuk mencari akar persamaan nonlinear 

f(x)=0. Metode ini dikenal luas dalam bidang teknik, fisika, matematika 

terapan, dan ilmu komputer karena konvergensinya yang cepat dan 

kemampuannya menyelesaikan berbagai permasalahan kompleks 

dengan pendekatan iteratif. Diperkenalkan oleh Sir Isaac Newton dan 

Joseph Raphson pada abad ke-17, metode ini memanfaatkan pendekatan 

kalkulus, khususnya turunan pertama fungsi, untuk memperkirakan nilai 

akar secara bertahap dengan tingkat ketelitian yang semakin tinggi. 

Dasar teori dari metode Newton-Raphson didasarkan pada 

perluasan Taylor orde pertama dari fungsi f(x). Jika kita 

mengembangkan f(x) di sekitar titik x=xn, maka dapat dituliskan: 

 
Dengan mengasumsikan 𝑓(𝑥)=0 dan menyelesaikan persamaan 

tersebut untuk 𝑥, maka diperoleh rumus iteratif: 

 
Rumus ini merupakan inti dari metode Newton-Raphson, di 

mana xn+1 adalah pendekatan akar yang lebih baik berdasarkan nilai 

xnx_nxn sebelumnya. Iterasi ini terus dilakukan sampai diperoleh nilai 

xn+1 yang mendekati akar sebenarnya dengan tingkat kesalahan yang bisa 

ditoleransi. 

Salah satu keunggulan utama metode Newton-Raphson adalah 

kecepatan konvergensinya yang kuadratik, artinya jika pendekatan awal 

cukup dekat dengan akar sebenarnya, maka jumlah digit benar dari hasil 

perhitungan akan bertambah dua kali lipat di setiap iterasi. Hal ini 
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membuat metode ini sangat efisien dibandingkan metode lain seperti 

bisection atau regula falsi yang hanya konvergen secara linier. Namun, 

kecepatan ini hanya dapat dicapai apabila kondisi ideal terpenuhi, seperti 

turunan fungsi tidak mendekati nol dan nilai awal tidak terlalu jauh dari 

akar. 

Pada implementasinya, metode Newton-Raphson memerlukan 

dua komponen utama: nilai fungsi f(x) dan turunan pertamanya f′(x). Ini 

menjadi kekuatan sekaligus keterbatasan metode. Pada satu sisi, 

informasi turunan memberikan arah dan kecepatan pergerakan menuju 

akar, sehingga konvergensi menjadi sangat efisien. Namun di sisi lain, 

metode ini menjadi sulit atau tidak praktis jika turunan fungsi tidak 

diketahui secara eksplisit, sulit dihitung, atau fungsi tidak 

terdiferensialkan dengan baik di sekitar titik yang sedang dianalisis. 

Dalam kasus semacam ini, pengguna dapat mempertimbangkan metode 

alternatif seperti metode secant, yang tidak memerlukan turunan 

eksplisit. 

Contoh sederhana penerapan metode Newton-Raphson adalah 

pada fungsi f(x)=x3 - x - 2, di mana akar nyata dari persamaan ini terletak 

di sekitar x≈1.521. Dengan memilih titik awal x0=1.5x, kita dapat 

menghitung f(x0)=−0.125 dan f′(x0)=3(1.5)2−1=5.75. Maka: 

 
Dengan hanya satu iterasi, nilai pendekatan akar sudah sangat 

dekat dengan solusi sebenarnya. Dalam beberapa iterasi berikutnya, hasil 

perhitungan akan semakin mendekati akar sejati dengan tingkat 

kesalahan yang sangat kecil. 

Meski sangat efektif, metode Newton-Raphson memiliki 

sejumlah potensi masalah. Jika nilai awal terlalu jauh dari akar, atau jika 

fungsi memiliki turunan nol di titik tertentu (seperti di puncak atau 

lembah grafik), maka perhitungan bisa tidak stabil atau bahkan gagal 

konvergen. Dalam beberapa kasus ekstrem, iterasi dapat menyimpang 

jauh dari akar sebenarnya, atau masuk ke dalam siklus tak berujung yang 

tidak menghasilkan konvergensi. Oleh karena itu, pemilihan nilai awal 

yang baik dan pemahaman bentuk fungsi menjadi sangat krusial dalam 

menjamin keberhasilan metode ini. 

Pada praktik pemrograman, implementasi metode Newton-

Raphson relatif mudah. Bahasa seperti Python, MATLAB, atau C++ 
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menyediakan cara cepat untuk menghitung fungsi dan turunannya. 

Sebagai contoh, implementasi sederhana dalam Python dapat dituliskan 

sebagai berikut: 

 
Dalam penggunaan dunia nyata, metode Newton-Raphson 

banyak diterapkan dalam berbagai bidang. Dalam teknik sipil, digunakan 

untuk menghitung deformasi struktur nonlinear. Dalam bidang 

keuangan, digunakan untuk menghitung akar dari persamaan nilai kini 

bersih (NPV) dalam penentuan IRR (Internal Rate of Return). Dalam 

bidang optimisasi dan pembelajaran mesin, metode ini menjadi dasar 

bagi algoritma yang lebih kompleks seperti gradient descent dan 

Newton's optimization method dalam pelatihan model. 
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Setelah tiga iterasi, diperoleh akar pendekatan x≈1.5211. Metode 

Newton-Raphson sangat cepat konvergen jika tebakan awal dekat 

dengan akar dan turunan tidak mendekati nol. 

 

2. Metode Secant 

Metode Secant merupakan salah satu metode numerik yang 

digunakan untuk menyelesaikan persamaan nonlinear dalam bentuk 

f(x)=0, dan secara khusus merupakan variasi dari metode Newton-

Raphson yang tidak memerlukan turunan eksplisit dari fungsi yang 

dianalisis. Metode ini menjadi alternatif praktis ketika fungsi f(x) terlalu 

kompleks atau tidak memiliki turunan yang dapat dihitung dengan 

mudah. Oleh karena itu, metode Secant menjadi sangat relevan dalam 

banyak aplikasi komputasi teknik, fisika, dan ekonomi, di mana bentuk 

fungsi sering kali tidak diketahui secara simbolik atau hanya tersedia 

dalam bentuk data numerik. 

Secara konseptual, metode Secant memanfaatkan pendekatan 

turunan numerik berdasarkan dua titik pendekatan sebelumnya. Jika 

pada metode Newton-Raphson digunakan turunan analitik f′(x), maka 

pada metode Secant, turunan didekati dengan: 

 
Rumus ini kemudian disubstitusikan ke dalam formula Newton-

Raphson, sehingga diperoleh rumus iteratif metode Secant: 

 
Dengan demikian, metode ini hanya memerlukan dua nilai awal, 

yaitu x0 dan x1, yang digunakan untuk memulai iterasi dalam mencari 

akar fungsi. Berbeda dengan metode bracketing seperti metode bisection 

atau regula falsi, metode Secant termasuk dalam kategori open methods, 

yang tidak mengharuskan kedua nilai awal mengurung akar (tidak harus 

f(x0)×f(x1)<0. 
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Kekuatan utama dari metode Secant terletak pada kesederhanaan 

perhitungannya dan kecepatan konvergensi yang relatif tinggi 

dibandingkan metode-metode bracketing. Meskipun kecepatan 

konvergensi metode Secant tidak secepat Newton-Raphson yang bersifat 

kuadratik, metode ini memiliki konvergensi super-linear dengan laju 

mendekati 1.618, yakni golden ratio. Artinya, dalam banyak kasus, 

metode ini tetap memberikan hasil yang cukup cepat dan efisien, tanpa 

syarat ketersediaan turunan fungsi. 

Sebagai ilustrasi, pertimbangkan fungsi nonlinear f(x)=x3-x-2. 

Kita ingin mencari akar fungsi tersebut menggunakan metode Secant. 

Misalkan dua nilai awal adalah x0=1 dan x1=2. Maka, f(1)=−2 dan 

f(2)=2. Iterasi pertama akan menghasilkan: 

 
Dengan terus melanjutkan proses iteratif menggunakan dua nilai 

pendekatan terakhir, kita akan mendekati akar sejati dari fungsi tersebut, 

yaitu sekitar x≈1.521. Meskipun pada contoh ini metode regula falsi juga 

dapat digunakan, metode Secant cenderung lebih cepat karena tidak 

memerlukan validasi tanda fungsi untuk memperbarui interval. 

Metode Secant bukan tanpa kelemahan. Salah satu kelemahan 

utama adalah tidak adanya jaminan konvergensi. Karena metode ini tidak 

menggunakan prinsip bracketing, maka jika nilai awal tidak dipilih 

dengan tepat atau jika fungsi memiliki perilaku tak menentu (seperti 

perubahan kemiringan ekstrem atau osilasi lokal), maka iterasi dapat 

menyimpang jauh dari akar atau bahkan tidak konvergen sama sekali. 

Selain itu, jika dua nilai pendekatan menghasilkan f(xn)=f(xn−1), maka 

metode akan gagal karena menghasilkan pembagian nol. Oleh karena itu, 

kontrol terhadap nilai-nilai awal dan pemeriksaan stabilitas perhitungan 

menjadi aspek penting dalam penerapan metode ini. 

Pada praktiknya, metode Secant dapat diimplementasikan 

dengan sangat mudah dalam bahasa pemrograman seperti Python, 

MATLAB, atau C++. Contoh implementasi sederhana metode ini dalam 

Python adalah sebagai berikut: 
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Penggunaan metode ini sangat cocok untuk fungsi-fungsi yang 

tidak diketahui bentuk turunannya, seperti fungsi empiris yang diperoleh 

dari hasil eksperimen atau pengukuran. Misalnya, dalam rekayasa sistem 

kontrol, kita bisa menggunakannya untuk menyetel parameter sistem 

berdasarkan fungsi karakteristik hasil simulasi. Dalam ekonomi, metode 

ini bisa digunakan untuk menghitung tingkat diskonto dari arus kas 

dengan model yang tidak memiliki turunan eksplisit. Dalam ilmu data, 

metode Secant bahkan dapat digunakan dalam pencarian nilai minimum 

fungsi loss secara numerik. 

Dari perspektif pendidikan, metode Secant juga sangat 

bermanfaat untuk memperkenalkan konsep turunan numerik dan 

pendekatan iteratif. Mahasiswa dapat memahami bagaimana perbedaan 

antara metode terbuka dan tertutup memengaruhi hasil akhir, serta 

menyadari pentingnya pemilihan nilai awal. Selain itu, metode ini 

menjadi jembatan alami antara metode reguler dan metode berbasis 

turunan seperti Newton-Raphson. 
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Maka,  

 

 

 

 
Setelah tiga iterasi, pendekatan akar dari f(x)=0 berada di sekitar 

x≈1.112. Metode secant cepat dan tidak memerlukan turunan, berbeda 

dengan Newton-Raphson. 

 

C. Konvergensi dan Stabilitas Solusi 

 

Pada bidang komputasi numerik dan penyelesaian persamaan 

matematis secara numerik, dua konsep yang sangat fundamental adalah 

konvergensi dan stabilitas solusi. Kedua konsep ini menentukan 

keberhasilan dan keandalan suatu metode numerik dalam memberikan 

solusi yang mendekati nilai sebenarnya. Sebuah metode yang akurat 

tetapi tidak stabil, atau metode yang stabil tetapi tidak konvergen, tidak 

akan dapat digunakan secara efektif dalam praktik nyata. Oleh karena 

itu, memahami konvergensi dan stabilitas secara mendalam sangat 
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penting, baik dalam pengembangan algoritma maupun dalam 

penerapannya untuk menyelesaikan masalah ilmiah dan rekayasa. 

 

1. Konvergensi 

Konvergensi merupakan konsep fundamental dalam komputasi 

numerik yang mengukur seberapa efektif suatu metode numerik dalam 

menghampiri solusi sebenarnya dari sebuah masalah matematis. Dalam 

konteks penyelesaian persamaan nonlinear, sistem linier, maupun 

persamaan diferensial, konvergensi menentukan apakah urutan solusi 

mendekati nilai yang benar saat jumlah iterasi bertambah. Dengan kata 

lain, suatu metode dikatakan konvergen jika hasil pendekatan 

numeriknya semakin dekat ke solusi eksak seiring bertambahnya iterasi 

atau penyempurnaan partisi numerik. Konsep ini tidak hanya penting 

secara teoritis, tetapi juga sangat menentukan keberhasilan metode 

numerik dalam berbagai aplikasi dunia nyata seperti simulasi teknik, 

optimisasi, pemodelan ilmiah, dan pemrosesan data. 

Menurut Burden dan Faires (2010), konvergensi suatu metode 

numerik secara formal dapat didefinisikan sebagai berikut: jika terdapat 

suatu solusi eksak x∗ dan urutan hasil pendekatan {xn}, maka metode 

dikatakan konvergen jika: 

 
Artinya, seiring dengan bertambahnya iterasi atau 

penyempurnaan skema (seperti langkah waktu atau ukuran grid), solusi 

numerik xn semakin dekat ke nilai x∗. Dalam praktiknya, pengguna akan 

menghentikan proses iterasi pada titik di mana selisih antara dua iterasi 

berturut-turut sudah berada di bawah toleransi kesalahan tertentu, 

misalnya ∣xn+1 - xn∣ < ϵ. 

Salah satu aspek penting dari konvergensi adalah kecepatan 

konvergensi atau rate of convergence. Ini menjelaskan seberapa cepat 

pendekatan menuju solusi sebenarnya. Terdapat beberapa tingkatan 

konvergensi yang umum digunakan dalam teori numerik: 

 

 
Kecepatan konvergensi sangat memengaruhi efisiensi 

komputasi. Dalam metode iteratif, semakin tinggi laju konvergensi, 
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semakin sedikit iterasi yang dibutuhkan untuk mencapai presisi tertentu, 

sehingga waktu komputasi lebih singkat dan penggunaan sumber daya 

menjadi lebih efisien. Oleh karena itu, analisis konvergensi sering kali 

dilakukan sebelum memilih atau merancang metode numerik yang akan 

digunakan untuk menyelesaikan suatu masalah. 

Tidak semua metode dijamin konvergen dalam segala situasi. 

Kondisi awal, sifat fungsi, dan parameter numerik sangat memengaruhi 

konvergensi. Misalnya, dalam metode Newton-Raphson, konvergensi 

kuadratik hanya dapat dicapai jika titik awal cukup dekat dengan akar 

dan fungsi memiliki turunan yang tidak nol di sekitar akar. Jika tidak, 

iterasi bisa menyimpang jauh dan bahkan tidak pernah mendekati akar 

(divergen). Hal ini menunjukkan bahwa analisis konvergensi tidak hanya 

bergantung pada rumus iteratif, tetapi juga pada pemahaman sifat 

masalah yang sedang diselesaikan. 

Pada konteks penyelesaian persamaan diferensial numerik, 

konvergensi memiliki definisi yang sedikit berbeda tetapi prinsipnya 

serupa. Misalnya, dalam penyelesaian persamaan diferensial biasa 

(ODE) dengan metode numerik seperti Euler atau Runge-Kutta, 

konvergensi mengacu pada apakah solusi numerik mendekati solusi 

eksak ketika langkah waktu (Δ𝑡) didekati ke nol. Suatu metode dikatakan 

konvergen jika kesalahan total (global error) mendekati nol ketika 

ukuran langkah mendekati nol. Oleh karena itu, dalam banyak kasus, 

konvergensi dinyatakan sebagai fungsi dari ukuran langkah: 

Error∼𝑂(ℎ𝑝)p), di mana 𝑝 menunjukkan orde akurasi dari metode 

tersebut. 

Hubungan antara konsistensi, stabilitas, dan konvergensi juga 

dijelaskan dalam Teorema Lax (Lax Equivalence Theorem), yang 

menyatakan bahwa untuk skema linear yang stabil dan konsisten, maka 

metode tersebut pasti konvergen. Ini berarti bahwa konvergensi tidak 

bisa dilihat secara terpisah dari aspek stabilitas dan keakuratan metode. 

Jika suatu metode tidak stabil atau tidak konsisten, maka meskipun 

secara matematis menjanjikan, metode tersebut bisa gagal menghampiri 

solusi sebenarnya. 

Pada praktik rekayasa dan ilmu terapan, konvergensi tidak hanya 

menjadi syarat teoritis, melainkan juga panduan penting dalam validasi 

simulasi numerik. Misalnya, dalam simulasi struktur bangunan 

menggunakan metode elemen hingga (finite element method), hasil yang 
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diperoleh pada model kasar (coarse mesh) harus diverifikasi dengan 

memperkecil ukuran elemen (mesh refinement). Jika solusi tidak berubah 

secara signifikan saat mesh diperhalus, maka solusi dianggap konvergen 

dan valid. Konsep ini juga diterapkan dalam simulasi fluida, analisis 

medan elektromagnetik, dan berbagai bidang yang memerlukan 

pendekatan numerik berbasis grid. 

Secara praktis, untuk mengukur konvergensi, para insinyur dan 

ilmuwan biasanya melakukan studi konvergensi (convergence study), 

yaitu dengan mencoba berbagai nilai parameter numerik (misalnya 

ukuran grid atau langkah waktu) dan membandingkan hasilnya. Jika 

perbedaan hasil menjadi semakin kecil, dan mendekati nilai tetap, maka 

metode dianggap telah mencapai konvergensi numerik. 

Konvergensi adalah fondasi dari setiap algoritma numerik yang 

andal. Metode yang tidak konvergen tidak dapat dipercaya dalam 

menghasilkan hasil yang benar, betapapun canggih atau cepatnya metode 

tersebut. Oleh karena itu, dalam pengembangan algoritma, simulasi 

numerik, dan penerapan di dunia nyata, analisis konvergensi harus 

menjadi bagian utama dalam evaluasi keakuratan dan efisiensi metode 

numerik. Pemahaman yang baik tentang karakteristik konvergensi 

memungkinkan praktisi memilih metode yang paling tepat sesuai dengan 

jenis masalah, struktur matematis fungsi, serta keterbatasan sumber daya 

komputasi yang tersedia. 

 
 

Tentukan apakah metode ini konvergen, dan hitung galat relatif pada 

iterasi ke-3. 
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Kesimpulan 

• Karena nilai xn dari iterasi ke iterasi semakin mendekati suatu nilai 

tetap, metode ini menunjukkan konvergensi. 

• Galat relatif sebesar 1.74% menunjukkan bahwa hasil sudah cukup 

dekat, meskipun belum sangat presisi. 

• Untuk keperluan praktis, konvergensi biasanya diterima jika galat 

relatif < 1% (tergantung toleransi yang ditentukan pengguna). 

 

2. Stabilitas Solusi 

Stabilitas solusi merupakan konsep kunci dalam komputasi 

numerik yang berkaitan erat dengan keandalan dan ketahanan suatu 

metode numerik terhadap gangguan atau kesalahan kecil dalam proses 

perhitungan. Dalam konteks penyelesaian masalah numerik baik itu 

persamaan aljabar, diferensial, maupun sistem linear stabilitas mengukur 

seberapa besar efek kesalahan kecil pada data input atau pembulatan 

selama iterasi dapat mempengaruhi solusi akhir. Dengan kata lain, 

stabilitas solusi menggambarkan apakah sebuah metode mampu menjaga 

agar kesalahan kecil tidak berkembang secara signifikan sehingga 

menyebabkan penyimpangan besar pada hasil akhir. Konsep ini sangat 

penting dalam dunia nyata karena setiap komputasi yang dilakukan 

dengan komputer digital pasti mengandung kesalahan pembulatan akibat 

keterbatasan presisi representasi bilangan floating point. 

Menurut Chapra dan Canale (2015), stabilitas numerik adalah 

kemampuan metode untuk membatasi pertumbuhan kesalahan selama 

proses iteratif berlangsung. Kesalahan tersebut bisa berasal dari dua 

sumber utama: (1) kesalahan pembulatan, yang terjadi ketika hasil 

perhitungan dibatasi oleh jumlah digit yang dapat direpresentasikan 

komputer, dan (2) kesalahan gangguan input, yaitu ketidakakuratan pada 

data awal atau nilai awal iterasi. Dalam algoritma yang tidak stabil, 

kesalahan-kesalahan kecil ini bisa diperkuat oleh struktur perhitungan 
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hingga mengakibatkan hasil akhir yang menyimpang jauh dari solusi 

sebenarnya. 

Salah satu ilustrasi paling umum dari pentingnya stabilitas adalah 

pada metode numerik untuk menyelesaikan persamaan diferensial biasa 

(ODE). Misalnya, dalam metode Euler eksplisit, hasil iterasi sangat 

bergantung pada ukuran langkah waktu (Δ𝑡). Jika Δ𝑡 terlalu besar, 

kesalahan lokal yang terjadi dalam satu iterasi bisa diperkuat secara 

eksponensial di iterasi-iterasi berikutnya. Akibatnya, meskipun metode 

Euler secara teori konsisten (yakni mampu mendekati solusi sebenarnya 

jika langkah waktu cukup kecil), tetapi bila digunakan dengan langkah 

waktu yang tidak sesuai, hasil akhirnya bisa menjadi tidak masuk akal 

atau bahkan mengalami numerical blow-up. Oleh karena itu, untuk 

metode eksplisit seperti Euler, hanya nilai-nilai langkah waktu tertentu 

yang menjamin stabilitas solusi wilayah nilai ini disebut daerah 

stabilitas. 

Pada konteks metode numerik untuk sistem persamaan linear, 

stabilitas berkaitan dengan kondisi matriks yang digunakan dalam 

perhitungan. Jika sebuah matriks koefisien dari sistem linear sangat 

sensitif terhadap perubahan kecil dalam data (disebut ill-conditioned), 

maka solusi yang dihasilkan dapat berubah drastis bahkan ketika 

perubahan data sangat kecil. Kondisi seperti ini biasanya dinyatakan 

dalam bentuk angka kondisi (condition number). Matriks dengan angka 

kondisi tinggi menunjukkan bahwa metode yang digunakan untuk 

menyelesaikannya bisa sangat tidak stabil. Oleh karena itu, stabilitas 

solusi dalam sistem linear sangat dipengaruhi oleh struktur aljabar dari 

sistem tersebut, bukan hanya oleh metode yang digunakan. 

Pada metode iteratif, seperti metode Gauss-Seidel atau Jacobi 

untuk sistem linear, stabilitas juga berperan penting. Algoritma iteratif 

harus dirancang agar error tidak diperbesar pada setiap langkah, 

melainkan diminimalkan. Ketika algoritma terus menerus memperkuat 

error dari langkah sebelumnya, maka proses iterasi akan menyimpang 

dari hasil sebenarnya dan menjadi divergen. Oleh karena itu, analisis 

spektral radius dari matriks iterasi sering digunakan untuk menilai 

stabilitas suatu metode iteratif. Jika spektral radius lebih kecil dari satu, 

maka metode dijamin stabil dan konvergen. 

Salah satu aspek penting lainnya dari stabilitas adalah dalam 

simulasi waktu atau pemodelan dinamika sistem yang berlangsung 
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selama periode tertentu. Dalam konteks ini, stabilitas menentukan 

apakah solusi numerik akan terus mengikuti perilaku sistem aktual atau 

mengalami deviasi seiring waktu. Sebagai contoh, dalam simulasi 

pergerakan partikel atau simulasi dinamika fluida, kesalahan kecil pada 

posisi atau kecepatan bisa menyebabkan solusi yang menyimpang jauh 

jika metode yang digunakan tidak stabil terhadap waktu. Oleh karena itu, 

para insinyur dan ilmuwan sering kali melakukan analisis sensitivitas 

dan uji kestabilan waktu sebelum menggunakan hasil simulasi untuk 

pengambilan keputusan. 

Stabilitas solusi juga sangat penting dalam pemrosesan sinyal 

dan analisis numerik data eksperimen. Ketika data input mengandung 

noise atau gangguan, metode numerik yang tidak stabil dapat 

memperbesar efek noise tersebut dan menghasilkan kesimpulan yang 

salah. Oleh karena itu, dalam bidang seperti rekonstruksi citra, 

pemodelan keuangan, dan pembelajaran mesin, pemilihan metode yang 

stabil menjadi keharusan untuk menjaga validitas hasil akhir. 

Pada praktiknya, untuk menjamin stabilitas solusi, beberapa 

pendekatan umum digunakan: (1) penggunaan metode implisit pada 

sistem diferensial, seperti metode Backward Euler yang dikenal lebih 

stabil dibandingkan metode eksplisit; (2) penyesuaian parameter 

numerik, seperti langkah waktu atau toleransi kesalahan; (3) 

pengondisian ulang data atau sistem, untuk menghindari sistem ill-

conditioned; dan (4) penerapan analisis kestabilan teoritis terhadap 

metode numerik sebelum diimplementasikan. 

 

3. Studi Kasus Komputasional 

Di era modern yang semakin mengandalkan teknologi untuk 

mendukung pengambilan keputusan, pendekatan komputasional telah 

menjadi elemen penting dalam analisis sistem kompleks, termasuk 

dalam isu lingkungan. Salah satu permasalahan yang krusial di banyak 

kota besar di dunia adalah polusi udara. Emisi dari kendaraan bermotor, 

industri, dan pembakaran sampah memberikan kontribusi signifikan 

terhadap pencemaran udara, yang berdampak pada kesehatan manusia 

dan lingkungan. Untuk itu, studi kasus ini mengangkat permasalahan 

penyebaran polusi udara di kawasan perkotaan dengan menggunakan 

pendekatan komputasi numerik berbasis metode Finite Difference dan 

pemrograman Python, guna memprediksi distribusi konsentrasi polutan 
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dalam suatu wilayah dan membantu pemerintah merumuskan kebijakan 

mitigasi yang lebih akurat. 

 

4. Latar Belakang Permasalahan 

Kawasan padat penduduk dengan kepadatan kendaraan tinggi 

menghasilkan emisi karbon monoksida (CO), nitrogen dioksida (NO₂), 

dan partikel-partikel berbahaya (PM2.5) dalam jumlah besar. Dalam 

banyak kasus, sensor pengukuran polusi udara hanya dipasang di 

beberapa titik tertentu, sehingga informasi distribusi spasial dan 

temporal polutan bersifat terbatas. Oleh karena itu, dibutuhkan model 

simulasi berbasis komputasi untuk memperkirakan bagaimana polutan 

menyebar di wilayah tersebut dalam kurun waktu tertentu, dengan 

mempertimbangkan pengaruh kecepatan angin, arah angin, dan 

perubahan konsentrasi emisi. Simulasi ini tidak hanya berfungsi untuk 

menggambarkan kondisi saat ini, tetapi juga digunakan untuk 

memprediksi skenario masa depan, seperti dampak pembangunan jalan 

baru atau pengurangan volume kendaraan. 

 

5. Formulasi Masalah Secara Matematis 

Model dasar yang digunakan dalam studi ini adalah Persamaan 

Adveksi-Difusi dua dimensi yang menyatakan perubahan konsentrasi 

polutan 𝐶(𝑥,𝑦,𝑡) seiring waktu: 

 
Persamaan ini mencerminkan bahwa polutan menyebar karena 

efek adveksi oleh angin, difusi karena perbedaan konsentrasi, dan 

bertambah karena sumber emisi. 

Untuk menyelesaikannya secara numerik, persamaan diferensial 

parsial tersebut didiskretisasi menggunakan skema Finite Difference 

eksplisit. Domain wilayah dibagi menjadi grid dua dimensi, dan waktu 
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dipecah dalam langkah-langkah kecil. Komputasi dilakukan untuk 

menghitung konsentrasi polutan di setiap titik grid pada setiap langkah 

waktu. 

 

6. Implementasi Komputasional 

Simulasi ini diimplementasikan menggunakan bahasa 

pemrograman Python karena kemudahan dalam manipulasi matriks serta 

ketersediaan pustaka ilmiah seperti NumPy dan Matplotlib. Wilayah 

simulasi dibuat dalam ukuran 1 km x 1 km yang dibagi menjadi 100 x 

100 grid, dengan setiap grid berukuran 10 meter. Kecepatan angin diatur 

tetap, misalnya 2 m/s ke arah timur dan 1 m/s ke arah utara. Emisi dari 

kendaraan dimodelkan sebagai sumber tetap yang berada di tengah kota. 

Potongan kode Python untuk skema numerik eksplisit sebagai berikut: 

 
Visualisasi distribusi konsentrasi polusi dilakukan dengan 

menggunakan Matplotlib. Hasil simulasi menunjukkan bahwa polusi 

tertinggi terkonsentrasi di dekat sumber emisi dan menyebar mengikuti 

arah angin. Distribusi konsentrasi ini dapat dipetakan dalam bentuk 

kontur warna, sehingga memberikan pemahaman spasial yang jelas 

kepada pengambil kebijakan. 

 

7. Analisis Hasil dan Validasi 

Setelah simulasi dijalankan selama 24 jam waktu simulasi, 

diperoleh peta distribusi konsentrasi polusi pada setiap titik grid. Nilai 

tertinggi terdeteksi di wilayah pusat kota, sementara nilai terendah 

berada di pinggiran kota, mengikuti arah dominan angin. Selain itu, 

ketika skenario penurunan emisi sebesar 50% dari sektor kendaraan 

diterapkan, konsentrasi polutan menurun secara signifikan, terutama 

pada area padat lalu lintas. Untuk memvalidasi model, data sensor nyata 

dari stasiun pemantau kualitas udara kota digunakan. Hasil simulasi 

dibandingkan dengan data aktual dan menunjukkan deviasi kurang dari 

10%, yang menandakan bahwa model cukup akurat dalam memprediksi 
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pola sebaran polusi udara. Dalam dunia komputasi lingkungan, selisih di 

bawah 15% dianggap masih dalam batas yang bisa diterima untuk model 

prediktif. 

 

8. Relevansi dan Implikasi Kebijakan 

Studi kasus ini menunjukkan bahwa pendekatan komputasional 

berbasis metode numerik dapat memberikan informasi spasial yang jauh 

lebih lengkap daripada data pengamatan saja. Pemerintah daerah dapat 

memanfaatkan hasil simulasi ini untuk: 

a. Menentukan zona emisi rendah (low emission zones). 

b. Menyesuaikan arah pembangunan jalan agar tidak memusatkan 

lalu lintas di area padat. 

c. Menentukan lokasi strategis pemasangan alat pemantau kualitas 

udara. 

d. Mensimulasikan skenario darurat jika terjadi lonjakan polusi 

akibat kebakaran hutan atau kecelakaan industri. 

Model ini juga dapat diperluas ke simulasi multi-pollutan dan 

integrasi data waktu nyata dari sensor Internet of Things (IoT), sehingga 

prediksi menjadi lebih responsif dan adaptif terhadap kondisi terkini. 

 

9. Kesimpulan 

Studi kasus ini membuktikan bahwa pendekatan komputasi 

numerik memiliki peran penting dalam memahami dan mengelola 

permasalahan lingkungan yang kompleks seperti polusi udara. Dengan 

menggunakan model matematis yang diformulasikan dalam persamaan 

diferensial parsial dan diselesaikan menggunakan metode numerik Finite 

Difference, simulasi distribusi polutan dapat dilakukan secara efisien dan 

akurat. Implementasi berbasis Python membuat proses ini dapat diakses 

oleh banyak pihak tanpa memerlukan perangkat lunak mahal. Lebih dari 

itu, pendekatan ini memperlihatkan bagaimana teknologi komputasi 

dapat berperan langsung dalam mendukung kebijakan berbasis data 

(data-driven policy) untuk meningkatkan kualitas hidup masyarakat 

perkotaan. Ke depannya, integrasi metode ini dengan data penginderaan 

jauh, big data, dan kecerdasan buatan akan memperkuat kapasitas 

pemodelan lingkungan yang lebih dinamis dan adaptif. 
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BAB VIII 

PERSAMAAN 

DIFERENSIAL BIASA 

(PDB) 
 

 

 

Persamaan Diferensial Biasa (PDB) merupakan salah satu pilar 

utama dalam matematika terapan yang berperan penting dalam 

memahami dan memodelkan dinamika berbagai fenomena alam maupun 

rekayasa. Dari gerak planet di langit hingga penyebaran penyakit 

menular, dari getaran mekanik hingga dinamika keuangan, PDB menjadi 

alat matematis yang tak tergantikan dalam menjelaskan perubahan 

variabel terhadap waktu atau parameter lainnya. Dalam konteks 

komputasi numerik, penyelesaian PDB secara analitik sering kali tidak 

memungkinkan, sehingga pendekatan numerik menjadi solusi yang 

sangat vital. Melalui metode seperti Euler, Runge-Kutta, dan multi-step 

methods, kita mampu memperoleh pendekatan solusi yang cukup akurat 

dengan efisiensi komputasi yang tinggi. Pemahaman terhadap teori 

dasar, kestabilan metode, serta implementasi algoritma dalam platform 

pemrograman modern seperti Python atau MATLAB menjadi 

kompetensi penting bagi mahasiswa, peneliti, dan praktisi.  

 

A. Pengenalan PDB dan Model Aplikatif 

 

Persamaan Diferensial Biasa (PDB) atau Ordinary Differential 

Equation (ODE) merupakan salah satu bentuk persamaan matematika 

yang melibatkan turunan suatu fungsi terhadap satu variabel bebas. 

Dalam bentuk paling umum, PDB menyatakan hubungan antara fungsi 

tak diketahui dan turunannya, yang sangat berguna untuk memodelkan 
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fenomena dinamis dalam berbagai disiplin ilmu. Tidak hanya terbatas 

pada fisika dan teknik, PDB juga banyak diaplikasikan dalam biologi, 

ekonomi, ekologi, kedokteran, hingga ilmu sosial. 

Menurut Zill dan Wright (2017) dalam bukunya "Differential 

Equations with Boundary-Value Problems", Persamaan Diferensial 

Biasa adalah persamaan yang mengandung turunan dari suatu fungsi 

dengan satu variabel bebas, berbeda dengan Partial Differential 

Equations (PDE) yang melibatkan turunan parsial dari fungsi beberapa 

variabel. Secara umum, PDB dapat dituliskan dalam bentuk: 

 
atau dalam bentuk eksplisit sebagai fungsi dari turunan: 

 
Klasifikasi PDB (Persamaan Diferensial Biasa) didasarkan pada 

beberapa kategori: 

• Orde: Derajat tertinggi dari turunan yang terdapat dalam persamaan. 

• Linearitas: Suatu persamaan dikatakan linear jika tidak ada 

perkalian antara fungsi tak diketahui dan turunannya. 

• Homogenitas: Suatu persamaan dikatakan homogen jika semua suku 

bergantung pada fungsi dan turunannya, tanpa adanya konstanta 

bebas. 

1. Fisika dan Teknik 

Pada bidang fisika dan teknik, Persamaan Diferensial Biasa 

(PDB) merupakan alat fundamental untuk memodelkan berbagai 

fenomena dinamis yang melibatkan perubahan terhadap waktu atau 

ruang dalam sistem fisis. Salah satu contoh paling mendasar adalah 

dalam mekanika klasik, di mana hukum kedua Newton yang berbunyi F 

= ma dapat diubah menjadi bentuk PDB orde dua: 

 
Dengan menyusun gaya 𝐹 sebagai fungsi dari posisi, kecepatan, 

dan waktu, kita dapat memodelkan gerak partikel secara lengkap. 

Misalnya, dalam sistem pegas-massa tanpa redaman, gaya pemulih 

𝐹=−𝑘𝑥 menghasilkan persamaan: 
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yang merupakan PDB linier homogen orde dua dan memiliki solusi 

osilasi harmonik. 

Pada teknik elektro, PDB juga berperan penting. Sebagai contoh, 

analisis rangkaian RLC (Resistor, Induktor, Kapasitor) menghasilkan 

persamaan diferensial yang menggambarkan tegangan atau arus dalam 

waktu. Untuk rangkaian seri, hukum Kirchoff menyatakan bahwa jumlah 

gaya gerak listrik sama dengan jumlah tegangan di tiap komponen, 

sehingga diperoleh: 

 
yang merupakan PDB orde dua dengan koefisien konstan, di 

mana 𝑞 dalah muatan, dan 𝐸(𝑡) adalah tegangan sumber. 

Pada teknik mesin, getaran mekanis pada struktur seperti balok 

atau jembatan juga dimodelkan dengan PDB. Bahkan dalam sistem 

termal dan fluida, meskipun umumnya menggunakan persamaan 

diferensial parsial (PDE), pendekatan PDB sering digunakan untuk 

penyederhanaan model sistem dinamis seperti lumped parameter 

systems. Keseluruhan ini menunjukkan bahwa PDB adalah dasar dari 

analisis sistem teknik dan fisika, serta menjadi penghubung antara teori 

matematis dan implementasi teknologi nyata. 

 

2. Biologi dan Kedokteran 

Pada bidang biologi dan kedokteran, Persamaan Diferensial 

Biasa (PDB) berperan penting dalam memodelkan dinamika sistem 

biologis yang kompleks dan sering kali tidak dapat diamati secara 

langsung. Salah satu aplikasi paling umum adalah dalam model 

pertumbuhan populasi, di mana perubahan jumlah individu dalam suatu 

populasi dari waktu ke waktu dapat dijelaskan menggunakan PDB. 

Model Malthus, yang merupakan model pertumbuhan eksponensial 

paling sederhana, dinyatakan sebagai 
𝑑𝑃

𝑑𝑡
= 𝑟𝑃 dengan P sebagai populasi 

dan r sebagai laju pertumbuhan. Namun, model ini tidak realistis untuk 

jangka panjang karena tidak mempertimbangkan keterbatasan sumber 

daya. Oleh karena itu, diperkenalkan model logistik oleh Verhulst:  
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𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝐾
) 

di mana K adalah kapasitas dukung lingkungan. Model ini banyak 

digunakan dalam studi ekologi, mikrobiologi, hingga pertumbuhan 

tumor. 

Di bidang kedokteran dan epidemiologi, PDB menjadi dasar 

dalam pengembangan model penyebaran penyakit. Salah satu model 

paling terkenal adalah SIR model (Susceptible-Infected-Recovered), 

yang terdiri dari sistem PDB yang menggambarkan interaksi antara 

populasi yang rentan, terinfeksi, dan sembuh: 

 
Model ini sangat penting dalam memprediksi dinamika wabah, 

merancang intervensi seperti vaksinasi, dan menentukan kebijakan 

kesehatan masyarakat. 

PDB juga digunakan dalam farmakokinetika, untuk memodelkan 

penyerapan, distribusi, dan eliminasi obat dalam tubuh. Misalnya, 

perubahan konsentrasi obat dalam plasma darah sering digambarkan 

dengan model eksponensial sederhana berdasarkan hukum laju pertama. 

Secara keseluruhan, PDB memberikan kerangka matematis yang sangat 

kuat untuk menjelaskan, memprediksi, dan mengendalikan fenomena 

biologis dan medis yang kompleks secara kuantitatif. 

 

3. Ekonomi dan Keuangan 

Pada ekonomi dan keuangan, Persamaan Diferensial Biasa 

(PDB) digunakan secara luas untuk memodelkan dinamika sistem 

ekonomi yang berkembang terhadap waktu, seperti akumulasi modal, 

konsumsi, suku bunga, inflasi, hingga harga aset. Salah satu contoh 

paling terkenal adalah model pertumbuhan Solow, yang menjelaskan 

bagaimana modal per pekerja berubah seiring waktu: 
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di mana K adalah modal per pekerja, sss adalah tingkat tabungan, 

f(k)f(k)f(k) adalah fungsi produksi, δ\deltaδ adalah tingkat depresiasi 

modal, dan nnn adalah laju pertumbuhan penduduk. Model ini 

memberikan wawasan penting tentang bagaimana negara-negara dapat 

tumbuh secara berkelanjutan dan mengapa ada perbedaan pendapatan 

antarnegara. 

Pada teori konsumsi antar waktu, PDB digunakan untuk 

menggambarkan bagaimana individu merencanakan konsumsi dan 

tabungan sepanjang hidupnya berdasarkan preferensi waktu dan suku 

bunga. Model Ramsey misalnya, menggunakan PDB untuk merumuskan 

dinamika konsumsi optimal dan kapitalisasi dalam jangka panjang. 

Pada keuangan matematika, PDB menjadi dasar dalam 

penentuan harga opsi dan derivatif. Model Black-Scholes, meskipun 

merupakan persamaan diferensial parsial, sering kali direduksi ke bentuk 

PDB untuk derivatif sederhana. Selain itu, perubahan nilai portofolio 

atau obligasi jangka panjang dapat dimodelkan dengan PDB berbasis 

suku bunga acuan dan risiko. Lebih lanjut, dalam analisis makroekonomi 

dinamis seperti Dynamic Stochastic General Equilibrium (DSGE), PDB 

membentuk kerangka utama untuk menggambarkan ekspektasi agen 

ekonomi dan interaksi antar variabel ekonomi. Keseluruhannya, PDB 

memberikan alat kuantitatif penting untuk memodelkan dan 

memprediksi perilaku ekonomi dalam jangka pendek dan panjang secara 

sistematis. 

 

4. Kimia dan Reaksi Biokimia 

Pada kimia dan reaksi biokimia, Persamaan Diferensial Biasa 

(PDB) merupakan alat penting untuk memodelkan laju perubahan 

konsentrasi zat kimia dalam suatu reaksi seiring waktu. PDB digunakan 

dalam kinetika kimia untuk menggambarkan bagaimana konsentrasi 

reaktan dan produk berubah berdasarkan mekanisme reaksi dan hukum 

laju. Sebagai contoh, untuk reaksi berorde satu seperti peluruhan zat A: 

 
dengan laju reaksi v = −k[A], maka perubahan konsentrasi A 

terhadap waktu dinyatakan dalam bentuk PDB: 
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yang memiliki solusi eksponensial [A](t)=[A]0e−kt, menggambarkan 

penurunan konsentrasi secara bertahap. Model ini penting dalam studi 

reaksi kimia sederhana, termasuk peluruhan radioaktif dan reaksi 

pembakaran. 

Pada sistem reaksi berantai atau reaksi simultan, seperti dalam 

sintesis senyawa kompleks atau degradasi senyawa kimia, dibutuhkan 

sistem PDB untuk melacak perubahan konsentrasi beberapa spesies 

secara bersamaan. Contohnya adalah reaksi A→B→C, yang 

menghasilkan dua PDB terhubung secara simultan. 

Lebih kompleks lagi, dalam reaksi enzimatik dan biokimia, PDB 

digunakan untuk menggambarkan dinamika sistem biologis seperti 

model Michaelis-Menten, yang menyederhanakan interaksi antara enzim 

dan substrat: 

 
di mana [𝑆] adalah konsentrasi substrat, [𝑃] produk, 𝑉max laju 

maksimum, dan 𝐾𝑚 konstanta Michaelis. PDB semacam ini banyak 

diterapkan dalam farmakologi, metabolisme, dan sintesis protein. 

 

5. Lingkungan dan Ekologi 

Pada lingkungan dan ekologi, Persamaan Diferensial Biasa 

(PDB) merupakan alat analitis penting untuk memodelkan dinamika 

ekosistem, perubahan lingkungan, serta interaksi antara komponen biotik 

dan abiotik. Salah satu penerapan utama PDB adalah dalam model 

transportasi dan peluruhan polutan, misalnya untuk menggambarkan 

konsentrasi zat pencemar dalam air atau udara. Jika suatu sungai 

menerima limbah dari sumber tertentu, maka perubahan konsentrasi 

polutan C(t) dapat dimodelkan sebagai: 

 
di mana k adalah konstanta peluruhan alami dan S(t) adalah laju 

suplai polutan. Model ini sangat relevan untuk mengkaji efektivitas 

kebijakan pengendalian pencemaran dan memprediksi dampak 

lingkungan dalam jangka waktu tertentu. 

Pada ekologi populasi, PDB digunakan untuk memodelkan 

dinamika predator-mangsa, kompetisi antarspesies, dan keseimbangan 



 159  Buku Referensi 

ekosistem. Model klasik Lotka-Volterra menggambarkan interaksi dua 

spesies: 

 
di mana N adalah populasi mangsa, P populasi predator, r laju 

pertumbuhan mangsa, a laju konsumsi, b efisiensi konversi energi, dan 

𝑚 mortalitas predator. Model ini memberikan wawasan tentang fluktuasi 

populasi dan titik-titik kestabilan ekosistem. 

PDB juga digunakan dalam model perubahan iklim, seperti 

dalam menghitung penyerapan karbon oleh hutan, akumulasi gas rumah 

kaca di atmosfer, serta respons termal laut dan daratan. Model ini 

mendukung penelitian lingkungan jangka panjang dan pengambilan 

kebijakan berbasis sains. Dengan demikian, PDB menjadi fondasi 

penting dalam upaya memahami dan mengelola perubahan lingkungan 

serta menjaga keberlanjutan sumber daya alam melalui pendekatan 

kuantitatif dan prediktif. 

 

B. Metode Euler dan Runge-Kutta Orde 4 

 

Menurut Zill dan Wright (2017) dalam Differential Equations 

with Boundary-Value Problems, banyak persoalan dalam fisika, teknik, 

dan ilmu terapan yang dinyatakan dalam bentuk Persamaan Diferensial 

Biasa (PDB) tidak dapat diselesaikan secara analitik karena 

kompleksitas bentuknya. Oleh karena itu, pendekatan numerik menjadi 

penting untuk memperoleh solusi pendekatan. Dua metode numerik 

paling dikenal dan banyak digunakan adalah Metode Euler dan Runge-

Kutta Orde 4 (RK4). Keduanya digunakan untuk menyelesaikan masalah 

nilai awal (initial value problems/IVP), yaitu PDB yang memiliki nilai 

fungsi diketahui pada titik awal. 

Secara umum, masalah nilai awal untuk PDB orde pertama 

dinyatakan sebagai: 
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di mana f(x,y) adalah fungsi yang diketahui, dan y(x) adalah fungsi tak 

diketahui yang akan diaproksimasi secara numerik. 

 

1. Metode Euler 

Pada lingkungan dan ekologi, Persamaan Diferensial Biasa 

(PDB) berperan krusial dalam membentuk model matematis yang 

menjelaskan dinamika sistem alam secara kuantitatif dan prediktif. Alam 

merupakan sistem kompleks yang mengalami perubahan seiring waktu, 

mulai dari populasi makhluk hidup, penyebaran polutan, hingga 

perubahan iklim dan semua dinamika ini dapat dirumuskan dalam bentuk 

PDB untuk memungkinkan analisis sistematis serta proyeksi ke depan. 

Salah satu contoh paling mendasar adalah dalam model pencemaran 

lingkungan, khususnya dalam air dan udara. Misalnya, konsentrasi 

polutan kimia dalam sungai atau danau dapat dimodelkan dengan PDB 

berbentuk: 

 
di mana C(t) adalah konsentrasi polutan pada waktu t, 𝑘 adalah 

konstanta peluruhan atau degradasi alami, dan S(t) adalah laju input dari 

sumber pencemar seperti pabrik atau limbah rumah tangga. Dengan 

model ini, para peneliti dapat memperkirakan berapa lama waktu yang 

dibutuhkan untuk air kembali ke kualitas normal, serta mengevaluasi 

skenario intervensi seperti pengurangan sumber pencemar atau 

pengolahan limbah. 

Pada konteks ekologi, PDB digunakan untuk menggambarkan 

pertumbuhan dan interaksi antar populasi. Model pertumbuhan 

eksponensial digunakan untuk menjelaskan dinamika populasi tanpa 

hambatan, tetapi dalam kenyataannya sumber daya terbatas, sehingga 

model logistik yang memperhitungkan kapasitas dukung lingkungan (𝐾) 

menjadi lebih realistis: 

 
Model ini menggambarkan bagaimana populasi tumbuh pesat 

pada awalnya namun melambat ketika mendekati batas sumber daya 

lingkungan. Dalam ekosistem yang lebih kompleks, interaksi antara 
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spesies, seperti predator dan mangsa, dapat dimodelkan menggunakan 

model Lotka-Volterra: 

 
dengan N sebagai populasi mangsa, P sebagai predator, dan parameter 

𝑟,𝑎,𝑏,𝑚 mewakili laju reproduksi dan interaksi antar spesies. Model ini 

memungkinkan pemahaman fluktuasi populasi dalam jangka panjang 

dan penentuan kondisi stabil atau bencana ekologis. 

PDB digunakan dalam perubahan iklim dan siklus biogeokimia. 

Misalnya, penyerapan karbon oleh tumbuhan dan pelepasannya kembali 

ke atmosfer dapat dimodelkan untuk mengkaji keseimbangan karbon 

global. PDB juga digunakan untuk mensimulasikan dinamika suhu bumi 

berdasarkan masukan energi matahari, emisi gas rumah kaca, dan umpan 

balik albedo permukaan. Selain itu, dalam studi konservasi, model 

berbasis PDB digunakan untuk mengevaluasi risiko kepunahan spesies 

langka dan menentukan kebijakan pengelolaan habitat atau perlindungan 

hutan. 

Penerapan PDB dalam lingkungan dan ekologi tidak hanya 

membantu dalam memahami fenomena kompleks secara teoritis, tetapi 

juga memberikan alat praktis untuk pengambilan keputusan berbasis 

data. Model numerik yang dibangun dari PDB dapat dimasukkan ke 

dalam simulasi komputer untuk memprediksi dampak perubahan iklim, 

efek deforestasi, atau keberhasilan program restorasi lingkungan. 

Dengan demikian, PDB merupakan fondasi penting bagi sains 

lingkungan modern, yang menggabungkan matematika, teknologi, dan 

kebijakan untuk mendukung pengelolaan alam yang berkelanjutan dan 

adaptif. 

 
Gunakan Metode Euler untuk menghitung nilai pendekatan dari 

y pada x=0,1dan x=0,2 dengan langkah h=0,1. 

 Jawaban: 
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Maka,  

 
Maka,  

 
 

2. Metode Runge-Kutta Orde 4 (RK4) 

Metode Runge-Kutta Orde 4 (RK4) adalah salah satu metode 

numerik paling populer dan andal dalam menyelesaikan Persamaan 

Diferensial Biasa (PDB), khususnya pada masalah nilai awal. Metode ini 

merupakan bagian dari keluarga Runge-Kutta yang dikembangkan oleh 

matematikawan Jerman, Carl Runge dan Martin Wilhelm Kutta, pada 

awal abad ke-20. Dibandingkan dengan metode numerik dasar seperti 

metode Euler, RK4 menawarkan akurasi jauh lebih tinggi tanpa 

menambah kerumitan algoritma secara signifikan, sehingga sangat 

cocok digunakan dalam pemrograman komputasi sains dan teknik. 

Secara prinsip, RK4 bekerja dengan menghitung estimasi rata-

rata kemiringan fungsi f(x,y) di sekitar titik xn, lalu menggunakannya 

untuk memperkirakan nilai yn+1 di titik xn+1=xn+h, dengan h sebagai 

panjang langkah. Dalam setiap iterasi, RK4 menghitung empat nilai 

gradien (kemiringan): 
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yang merupakan rata-rata tertimbang dari keempat kemiringan tersebut. 

Strategi ini memberikan galat lokal orde lima dan galat global orde 

empat, yang berarti tingkat kesalahan menurun secara signifikan dengan 

penambahan jumlah langkah yang lebih halus (nilai h lebih kecil). 

Kelebihan RK4 terletak pada kombinasi antara akurasi dan 

efisiensi. Dalam praktiknya, RK4 sangat stabil dan mampu menangani 

berbagai jenis PDB termasuk yang non-linear, tanpa memerlukan 

penurunan turunan tingkat lebih tinggi atau penyesuaian khusus. Oleh 

karena itu, metode ini banyak diterapkan dalam berbagai bidang: 

simulasi gerak partikel dalam fisika, dinamika populasi dalam ekologi, 

perhitungan orbit dalam astronomi, serta model ekonomi dan keuangan. 

Metode ini juga memiliki batasan. Karena sifatnya eksplisit, RK4 

tidak cocok untuk PDB yang stiff, yaitu sistem yang memiliki laju 

perubahan sangat berbeda dalam satu sistem persamaan, di mana metode 

implisit seperti Backward Euler atau metode Gear lebih disarankan. 

Selain itu, meskipun RK4 cukup akurat, ia memerlukan empat evaluasi 

fungsi per langkah, sehingga bisa memakan waktu komputasi lebih lama 

dibanding metode eksplisit orde rendah dalam sistem berskala besar. 

 

C. Sistem PDB dan Solusi Numerik 

 

Menurut Zill dan Wright (2017) dalam buku Differential 

Equations with Boundary-Value Problems, Persamaan Diferensial Biasa 

(PDB) adalah persamaan yang menghubungkan suatu fungsi dengan satu 

variabel bebas dan turunannya. Dalam banyak kasus nyata seperti 

dinamika sistem fisika, interaksi biologi populasi, atau ekonomi makro 

masalah yang muncul tidak hanya terdiri dari satu PDB, melainkan 

beberapa persamaan yang saling berkaitan, dikenal sebagai sistem PDB 

(system of ordinary differential equations). Sistem ini sangat penting 

karena hampir semua sistem dinamis kompleks di dunia nyata 

melibatkan beberapa variabel yang berubah secara simultan dan saling 

memengaruhi. Sistem PDB adalah himpunan dua atau lebih PDB yang 

memiliki keterkaitan satu sama lain dan harus diselesaikan secara 

bersamaan. Secara umum, sistem PDB orde pertama dapat dituliskan 

sebagai: 
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dengan kondisi awal yi (t0)=yi,0. Sistem seperti ini banyak ditemukan 

dalam bidang teknik, epidemiologi, dan astrofisika. Salah satu contoh 

klasik adalah model SIR dalam epidemiologi, yang menggambarkan 

dinamika tiga populasi: rentan (S), terinfeksi (I), dan pulih (R), sebagai 

berikut: 

 
 

1. Penyelesaian Analitik dan Keterbatasannya 

Penyelesaian analitik dalam konteks Persamaan Diferensial 

Biasa (PDB) merujuk pada proses memperoleh solusi eksplisit dari suatu 

persamaan diferensial dalam bentuk fungsi yang memenuhi persamaan 

tersebut dan kondisi awal yang diberikan. Menurut Zill dan Wright 

(2017), penyelesaian analitik idealnya memberikan representasi eksak 

dari fungsi tak diketahui, biasanya dalam bentuk kombinasi fungsi 

aljabar, eksponensial, trigonometri, atau logaritmik. Dalam kasus 

sederhana seperti PDB linear orde satu, misalnya: 

𝑑𝑦

𝑑𝑥
= 𝑘𝑦 

solusi analitiknya mudah diperoleh:  

y(x)=Cekx 

 

dengan C sebagai konstanta integrasi yang ditentukan dari kondisi awal. 

Penyelesaian analitik semacam ini sangat berguna karena memberikan 

wawasan langsung mengenai perilaku sistem misalnya, apakah sistem 
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bersifat stabil, apakah solusi akan tumbuh tanpa batas, atau apakah akan 

konvergen menuju keadaan tunak. 

Seiring bertambahnya kompleksitas sistem, keterbatasan 

pendekatan analitik menjadi sangat nyata. Sebagian besar PDB yang 

muncul dari model dunia nyata misalnya sistem non-linear, sistem 

dengan banyak variabel, atau dengan fungsi koefisien yang kompleks 

tidak dapat diselesaikan secara analitik. Hal ini disebabkan oleh 

ketidakmampuan metode aljabar konvensional untuk menangani struktur 

non-linear atau bentuk turunan yang saling terkait secara kompleks. 

Sebagai contoh, dalam model predasi Lotka-Volterra atau model 

penyebaran penyakit SIR, meskipun bentuk matematisnya jelas, solusi 

eksplisit dalam bentuk tertutup (closed-form solution) jarang tersedia. 

Dalam banyak kasus, bahkan jika solusi analitik ada secara teoritis, 

bentuknya terlalu rumit atau melibatkan fungsi-fungsi khusus (seperti 

fungsi Bessel atau fungsi gamma) yang tidak praktis digunakan dalam 

perhitungan teknis atau interpretasi. 

Penyelesaian analitik biasanya hanya berlaku dalam domain 

terbatas dan sangat sensitif terhadap kondisi awal. Artinya, sedikit 

perubahan pada parameter atau kondisi awal dapat mengubah bentuk 

solusi secara signifikan. Ini menjadi kendala besar ketika menangani 

sistem parameterisasi atau simulasi skenario dalam aplikasi dunia nyata 

seperti dinamika fluida, ekosistem kompleks, atau model ekonomi 

dinamis, yang sering kali memerlukan evaluasi berulang dengan variasi 

parameter. 

Keterbatasan lain dari pendekatan analitik adalah 

ketidakfleksibelannya dalam mengakomodasi data aktual atau input 

tidak kontinu. Dalam kenyataannya, banyak sistem bekerja dengan data 

pengamatan atau sinyal tak kontinu yang tidak dapat dicocokkan secara 

langsung dengan fungsi analitik. Oleh karena itu, penggunaan metode 

numerik menjadi pendekatan dominan dalam praktik modern, karena 

mampu mengakomodasi struktur sistem yang kompleks, kondisi batas 

arbitrer, dan ketidakteraturan data yang khas dalam pemodelan dunia 

nyata. 

Dengan demikian, meskipun penyelesaian analitik memiliki 

keunggulan dalam hal ketepatan dan kejelasan matematis, 

keterbatasannya dalam fleksibilitas, skalabilitas, dan penerapan praktis 

menjadikannya kurang memadai untuk banyak aplikasi modern. Di 

sinilah pendekatan numerik, seperti metode Euler atau Runge-Kutta, 
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mengambil peran penting dalam menghasilkan solusi pendekatan yang 

cukup akurat dan dapat diimplementasikan secara luas melalui perangkat 

lunak dan simulasi komputer. 

 

2. Solusi Numerik untuk Sistem PDB 

Solusi numerik untuk sistem Persamaan Diferensial Biasa (PDB) 

merupakan pendekatan komputasional yang sangat penting dalam 

menyelesaikan persoalan dinamis yang tidak dapat ditangani secara 

analitik. Sistem PDB terdiri dari dua atau lebih persamaan diferensial 

yang saling terkait, menggambarkan interaksi antar variabel yang 

berubah terhadap satu variabel bebas, biasanya waktu. Dalam dunia 

nyata, sistem seperti ini banyak ditemukan, misalnya dalam model 

penyebaran penyakit (model SIR), dinamika populasi (model Lotka-

Volterra), interaksi kimia multikomponen, sistem mekanis multibenda, 

dan pemodelan lingkungan. Karena sebagian besar sistem ini bersifat 

non-linear dan tidak memiliki solusi eksplisit, maka pendekatan numerik 

menjadi metode yang paling umum dan efektif. 

Menurut Burden dan Faires (2015), metode numerik bekerja 

dengan cara mendiskretisasi domain waktu menjadi langkah-langkah 

kecil, lalu memperkirakan nilai variabel di setiap langkah berdasarkan 

informasi pada langkah sebelumnya. Untuk sistem PDB, metode seperti 

Euler dan Runge-Kutta Orde 4 (RK4) dapat diperluas secara langsung. 

Dalam metode Euler, misalnya, setiap persamaan dalam sistem diupdate 

secara simultan pada setiap langkah waktu menggunakan formula 

𝑦𝑛+1=𝑦𝑛+ℎ𝑓(𝑥𝑛,𝑦𝑛). Meskipun metode ini sederhana, akurasinya rendah 

dan rentan terhadap instabilitas, terutama untuk sistem yang kompleks 

atau "stiff". Sebagai alternatif, RK4 menawarkan peningkatan akurasi 

yang signifikan dengan menghitung rata-rata gradien dari beberapa titik 

evaluasi di dalam interval waktu yang sama. Untuk sistem PDB, RK4 

menghitung empat vektor gradien untuk semua komponen sistem, lalu 

menggabungkannya menjadi solusi pendekatan di langkah berikutnya. 

Metode ini sangat populer karena memberikan keseimbangan antara 

presisi dan efisiensi komputasi. 

Solusi numerik sistem PDB juga sangat bergantung pada 

pemilihan ukuran langkah (step size). Langkah yang terlalu besar dapat 

menghasilkan error yang besar dan solusi tidak stabil, sedangkan langkah 

yang terlalu kecil memperlambat komputasi dan meningkatkan 
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kebutuhan memori. Oleh karena itu, dalam praktiknya sering digunakan 

metode adaptif seperti Runge-Kutta-Fehlberg atau solver otomatis 

seperti ode45 di MATLAB dan solve_ivp di Python, yang dapat 

menyesuaikan ukuran langkah secara otomatis untuk menjaga kestabilan 

dan akurasi. 

Pada sistem yang sangat kompleks atau stiff, metode eksplisit 

seperti RK4 tidak lagi cukup. Sebagai solusinya, digunakan metode 

implisit seperti Backward Euler atau metode BDF (Backward 

Differentiation Formula) yang memiliki stabilitas numerik lebih baik. 

Metode ini biasanya memerlukan penyelesaian sistem aljabar non-linear 

di setiap langkah waktu, tetapi mampu menangani dinamika cepat tanpa 

menyebabkan osilasi numerik yang tidak diinginkan. 

Solusi numerik sistem PDB telah menjadi tulang punggung 

berbagai aplikasi ilmiah dan rekayasa modern. Ia memungkinkan 

simulasi jangka panjang, analisis sensitivitas parameter, dan optimisasi 

proses. Keunggulan metode numerik terletak pada fleksibilitasnya dalam 

menangani sistem non-linear, batasan waktu arbitrer, dan masukan 

berbasis data, menjadikannya alat yang sangat esensial dalam pemodelan 

kuantitatif berbasis komputer. 

 

3. Implementasi Komputasi 

Implementasi komputasi dalam penyelesaian Persamaan 

Diferensial Biasa (PDB) merupakan langkah krusial dalam menerapkan 

metode numerik secara praktis untuk berbagai kebutuhan pemodelan 

ilmiah dan rekayasa. Karena sebagian besar PDB tidak memiliki solusi 

analitik atau memiliki bentuk solusi yang terlalu kompleks untuk 

dievaluasi secara langsung, pendekatan numerik berbasis komputasi 

menjadi solusi utama untuk memperoleh estimasi solusi secara efisien 

dan akurat. Proses ini melibatkan penerjemahan metode numerik seperti 

Euler, Runge-Kutta, atau metode implisit ke dalam bentuk algoritma 

yang dapat dijalankan oleh komputer, serta mengoptimalkan kecepatan 

dan stabilitas perhitungan dalam berbagai platform pemrograman. 

Bahasa pemrograman seperti Python, MATLAB, R, Julia, dan 

C++ merupakan alat utama dalam implementasi komputasi. Python, 

misalnya, sangat populer karena memiliki pustaka numerik yang kaya 

seperti NumPy, SciPy, dan Matplotlib, yang memudahkan proses 

integrasi numerik, manipulasi data, dan visualisasi hasil. Fungsi odeint 

dari pustaka scipy.integrate digunakan untuk menyelesaikan sistem PDB 
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berbasis metode LSODA, yang secara otomatis memilih antara metode 

stiff dan non-stiff. Untuk penggunaan lanjutan, solve_ivp menawarkan 

kontrol yang lebih detail terhadap metode integrasi (misalnya RK45, 

RK23, BDF), toleransi error, dan pencatatan hasil. 

Contoh implementasi sederhana dari model SIR dalam Python 

menunjukkan bagaimana PDB diubah menjadi fungsi Python, kemudian 

diselesaikan menggunakan odeint dalam beberapa baris kode. Demikian 

pula, MATLAB menyediakan fungsi ode45, ode23, dan ode15s untuk 

berbagai jenis sistem, dengan dokumentasi luas dan visualisasi 

terintegrasi. Keunggulan MATLAB terletak pada antarmuka numerik 

yang stabil dan kuat, serta kemudahan dalam menyusun model simulasi 

dinamis melalui Simulink untuk sistem kontrol atau mekanika. 

Implementasi komputasi juga mencakup visualisasi hasil, 

validasi solusi, dan efisiensi pemrosesan. Visualisasi hasil, seperti 

plotting grafik 𝑦(𝑡) terhadap waktu, sangat membantu dalam memahami 

perilaku sistem dinamis, mendeteksi stabilitas, osilasi, atau kondisi 

tunak. Validasi hasil dapat dilakukan dengan membandingkan solusi 

numerik terhadap solusi analitik (jika tersedia), atau menggunakan 

pengujian konsistensi model dan sensitivitas terhadap perubahan 

parameter. Sementara itu, efisiensi pemrosesan dapat ditingkatkan 

melalui optimasi kode, pemilihan metode integrasi adaptif, atau 

penggunaan paralelisasi untuk sistem berdimensi tinggi. 

Implementasi komputasi juga sangat penting dalam konteks 

simulasi jangka panjang dan sistem real-time, seperti pemodelan 

epidemiologi untuk kebijakan kesehatan, sistem kontrol otomatis pada 

robotika, atau dinamika struktural dalam teknik sipil. Kemampuan untuk 

mengintegrasikan solusi PDB dengan antarmuka pengguna, database, 

dan sistem pemantauan menjadikan komputasi numerik tidak hanya 

sebagai alat teoritis, tetapi juga bagian integral dari pengambilan 

keputusan berbasis sains dan teknologi. Dengan demikian, penguasaan 

implementasi komputasi menjadi keterampilan kunci dalam era 

pemodelan numerik modern. 
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D. Simulasi Dinamis dalam Sistem Teknik dan Biologi 

 

Menurut Ogata (2010) dalam Modern Control Engineering, 

simulasi dinamis adalah proses untuk merepresentasikan perilaku sistem 

fisik dalam bentuk model matematika yang disimulasikan terhadap 

waktu menggunakan komputer. Dalam konteks ini, sistem dinamis 

berarti sistem yang perilakunya berubah terhadap waktu dan dipengaruhi 

oleh kondisi awal serta input tertentu. Baik di bidang teknik maupun 

biologi, simulasi dinamis berbasis persamaan diferensial biasa (PDB) 

menjadi pendekatan utama untuk memahami dan memprediksi perilaku 

sistem kompleks yang tidak bisa dianalisis secara statis atau linear. 
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1. Simulasi Dinamis dalam Sistem Teknik 

Simulasi dinamis dalam sistem teknik merupakan pendekatan 

komputasi yang digunakan untuk memodelkan dan menganalisis 

perilaku sistem teknik yang berubah terhadap waktu. Menurut Ogata 

(2010) dalam Modern Control Engineering, simulasi dinamis 

memungkinkan insinyur untuk merepresentasikan sistem fisis seperti 

mekanika, elektrikal, termal, dan sistem kendali dalam bentuk 

persamaan diferensial biasa (PDB) yang kemudian diselesaikan secara 

numerik menggunakan perangkat lunak komputasi. Tujuan utama dari 

simulasi ini adalah untuk memahami respons sistem terhadap masukan, 

mengevaluasi stabilitas, efisiensi, dan kinerja, serta menguji desain 

sebelum direalisasikan dalam bentuk fisik. Dalam era teknik modern, 

simulasi dinamis telah menjadi bagian integral dari proses perancangan 

dan pengujian sistem teknik di berbagai sektor industri. 

Pada rekayasa mekanik, sistem dinamis muncul dalam bentuk 

gerakan benda, osilasi, getaran, dan interaksi gaya. Salah satu contoh 

klasik adalah sistem massa-pegas-redaman, yang dirumuskan sebagai 

PDB orde dua: 

 
dengan m sebagai massa, C koefisien redaman, K konstanta pegas, dan 

F(t) sebagai gaya luar. Simulasi dinamis memungkinkan insinyur untuk 

mengevaluasi bagaimana sistem merespon terhadap impuls, osilasi, atau 

gangguan. Dalam analisis struktur dan kendaraan, simulasi ini digunakan 

untuk menilai ketahanan terhadap getaran, prediksi resonansi, dan 

pengujian sistem suspensi. Dengan pemodelan yang akurat, pengujian 

fisik yang mahal dapat diminimalkan, serta peningkatan desain dapat 

dilakukan lebih efisien. 

Di bidang teknik elektro dan kontrol, simulasi dinamis digunakan 

untuk menganalisis sistem listrik seperti rangkaian RLC, motor listrik, 

dan sistem kendali tertutup. Misalnya, rangkaian RLC seri dijelaskan 

oleh PDB: 

 
di mana q adalah muatan, dan E(t) tegangan masukan. Dalam konteks 

sistem kendali, persamaan tersebut digabungkan dengan elemen kendali 
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seperti pengendali PID (Proportional-Integral-Derivative) untuk 

mengatur keluaran agar mengikuti masukan referensi. Simulasi 

digunakan untuk menganalisis respon transien (waktu naik, waktu turun, 

overshoot), respon mantap, serta kestabilan sistem. Software seperti 

MATLAB/Simulink sangat populer di kalangan insinyur kontrol karena 

menyediakan lingkungan visual dan numerik untuk memodelkan sistem 

dinamis, melakukan tuning parameter, serta melakukan simulasi real-

time dan hardware-in-the-loop (HIL). 

Simulasi dinamis juga penting dalam sistem termal dan energi, 

termasuk analisis perpindahan panas, efisiensi sistem pendinginan, dan 

desain pembangkit listrik. Contohnya, pendinginan sistem elektronik 

dapat dimodelkan dengan PDB: 

 
yang menggambarkan perubahan suhu terhadap waktu berdasarkan 

perpindahan panas ke lingkungan dan sumber panas internal. Dengan 

simulasi, insinyur dapat mengevaluasi bagaimana suhu sistem bereaksi 

terhadap perubahan beban, ventilasi, atau desain heatsink. Dalam 

konteks yang lebih besar, simulasi termal digunakan dalam desain sistem 

HVAC (Heating, Ventilation, and Air Conditioning) untuk bangunan 

hemat energi dan efisien secara lingkungan. 

Pada bidang robotika dan mekatronika, simulasi dinamis sangat 

penting untuk mengembangkan kontrol gerak robot, lengan manipulator, 

atau kendaraan otomatis. Sistem ini umumnya memiliki banyak derajat 

kebebasan dan dinamika non-linier yang kompleks. PDB yang mewakili 

sistem robot sering kali mencakup interaksi gaya, torsi, percepatan, dan 

kontrol feedback. Dengan simulasi dinamis, desainer dapat 

mengevaluasi jalur lintasan, konsumsi energi, dan respons kontrol 

terhadap perubahan lingkungan, bahkan sebelum perangkat keras robot 

dibangun. Hal ini mempercepat iterasi desain dan mengurangi kesalahan 

saat implementasi fisik. 

Simulasi dinamis dalam teknik sipil digunakan untuk 

menganalisis respons struktur terhadap beban dinamis seperti gempa 

bumi, angin, atau kendaraan yang melintas. Model struktur bangunan 

atau jembatan dapat direpresentasikan sebagai sistem massa-terdistribusi 

dan diredam, yang kemudian dianalisis menggunakan metode numerik 
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berbasis PDB. Simulasi ini sangat penting dalam desain bangunan tahan 

gempa dan infrastruktur yang aman terhadap gangguan lingkungan. 

Secara implementatif, simulasi dinamis dilakukan melalui 

perangkat lunak seperti MATLAB/Simulink, ANSYS, OpenModelica, 

atau platform pemrograman seperti Python yang menggunakan pustaka 

scipy.integrate untuk menyelesaikan sistem PDB. Pendekatan numerik 

seperti Runge-Kutta orde 4 (RK4) atau solver adaptif seperti ode45 dan 

solve_ivp digunakan untuk menyelesaikan sistem secara akurat dengan 

kontrol terhadap galat numerik dan kestabilan solusi. Visualisasi hasil 

simulasi berupa grafik waktu terhadap posisi, kecepatan, suhu, atau 

tegangan memungkinkan insinyur mengevaluasi performa sistem dan 

melakukan optimasi desain. 

Dengan demikian, simulasi dinamis dalam sistem teknik tidak 

hanya memperkuat pemahaman teoritis tentang perilaku sistem, tetapi 

juga menjadi alat praktis untuk eksperimen virtual, pengujian desain, dan 

validasi sistem. Ia menggabungkan teori matematika, algoritma numerik, 

dan implementasi komputasi dalam satu kerangka kerja yang sangat 

penting bagi perkembangan rekayasa modern. Seiring dengan 

berkembangnya teknologi komputasi dan sensor cerdas, simulasi 

dinamis akan semakin terintegrasi dalam proses rekayasa canggih seperti 

sistem kendali adaptif, perancangan berbasis model (model-based 

design), dan digital twin. 

 

2. Simulasi Dinamis dalam Sistem Biologi 

Simulasi dinamis dalam sistem biologi merupakan pendekatan 

matematis dan komputasional yang digunakan untuk memahami dan 

memprediksi perilaku sistem biologis yang kompleks, yang berubah 

seiring waktu. Sistem-sistem ini mencakup berbagai skala, mulai dari 

dinamika molekuler di dalam sel hingga interaksi antarpopulasi dalam 

ekosistem. Menurut Murray (2002), simulasi dinamis pada dasarnya 

dibangun di atas persamaan diferensial biasa (PDB), yang digunakan 

untuk menggambarkan laju perubahan variabel-variabel biologis seperti 

populasi, konsentrasi molekul, atau penyebaran penyakit terhadap 

waktu. Dengan simulasi ini, para ilmuwan dapat melakukan eksperimen 

virtual yang mendekati realitas biologis, menguji hipotesis, dan 

merancang intervensi medis atau ekologis tanpa harus langsung 

melakukan uji laboratorium yang mahal dan rumit. 
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Salah satu aplikasi paling awal dan luas dari simulasi dinamis 

dalam biologi adalah dalam model populasi dan ekologi. Model 

pertumbuhan eksponensial dan logistik, misalnya, menggambarkan 

bagaimana populasi makhluk hidup bertambah dengan 

mempertimbangkan sumber daya lingkungan. Model logistik, yang 

menggunakan PDB 
dN

dt
= rN (1 −

N

K
) mampu menangkap fenomena 

batas kapasitas lingkungan (carrying capacity) yang menjadi pembatas 

alami dalam pertumbuhan populasi. Model ini diperluas dalam bentuk 

model Lotka-Volterra, yang mensimulasikan interaksi predator-mangsa. 

Dalam model ini, dua PDB saling terkait digunakan untuk 

merepresentasikan perubahan jumlah populasi mangsa dan predator, 

menghasilkan dinamika fluktuatif yang menyerupai pola-pola yang 

diamati di alam. 

Simulasi dinamis juga sangat penting dalam bidang 

epidemiologi, yaitu studi tentang penyebaran penyakit menular. Model 

klasik yang digunakan adalah model SIR (Susceptible-Infected-

Recovered) yang menggunakan sistem PDB: 

 
di mana S, I, dan R masing-masing mewakili jumlah individu yang 

rentan, terinfeksi, dan sembuh. Parameter β adalah tingkat penularan, 

dan γ adalah tingkat pemulihan. Dengan simulasi numerik terhadap 

sistem ini, para ahli kesehatan dapat memperkirakan kapan puncak 

wabah akan terjadi, berapa jumlah maksimum kasus, serta mengevaluasi 

dampak strategi intervensi seperti vaksinasi, karantina, atau pembatasan 

sosial. Selama pandemi COVID-19, model seperti ini menjadi dasar 

berbagai simulasi skenario yang membantu pengambilan kebijakan di 

seluruh dunia. 

Simulasi dinamis juga digunakan dalam farmakokinetika dan 

farmakodinamika, yaitu studi tentang bagaimana obat bekerja di dalam 

tubuh dan bagaimana tubuh mempengaruhi obat. Misalnya, dalam model 

satu kompartemen, konsentrasi obat dalam darah sering digambarkan 

dengan persamaan  



174  Pemrograman dan Komputasi Numerik 

 

𝑑𝐶

𝑑𝑡
= −𝑘𝐶 

 

di mana C adalah konsentrasi dan k adalah laju eliminasi. Simulasi model 

ini membantu menentukan dosis optimal, durasi pemberian obat, serta 

mengevaluasi efek samping yang mungkin terjadi akibat akumulasi obat 

di dalam tubuh. Model ini dapat diperluas menjadi model multi-

kompartemen yang mempertimbangkan jaringan dan organ berbeda, 

serta interaksi kompleks antara metabolisme dan ekskresi. 

Pada skala molekuler dan seluler, simulasi dinamis menjadi alat 

penting dalam biologi sistem, yaitu studi tentang jaringan interaksi gen, 

protein, dan metabolit. Model regulasi genetik, misalnya, dapat 

menggunakan PDB untuk menggambarkan ekspresi dan supresi gen, 

serta osilasi dalam sistem biologis seperti jam biologis sirkadian. Salah 

satu contoh adalah model Goodwin yang menggambarkan osilasi 

konsentrasi protein yang mengatur ritme harian organisme. Di sini, 

simulasi membantu memprediksi efek dari mutasi genetik, pengaruh 

obat, dan interaksi sinyal biokimia dalam sel. Simulasi juga mendukung 

desain terapi berbasis genetik, serta rekayasa jaringan dan sintesis sistem 

biologis baru (biologi sintetik). 

Perangkat lunak yang umum digunakan dalam simulasi dinamis 

sistem biologi mencakup Python dengan pustaka SciPy dan NumPy, 

MATLAB, serta perangkat khusus seperti COPASI, CellDesigner, dan 

BioNetGen. Simulasi dilakukan dengan menyelesaikan sistem PDB 

menggunakan metode numerik seperti Runge-Kutta Orde 4 (RK4) atau 

solver adaptif seperti odeint dan solve_ivp. Dalam model dengan banyak 

variabel dan parameter, teknik seperti analisis sensitivitas dan estimasi 

parameter digunakan untuk mengevaluasi seberapa kuat model terhadap 

variasi input, dan untuk menyesuaikan model dengan data eksperimen. 

Secara umum, keunggulan utama dari simulasi dinamis dalam 

sistem biologi adalah kemampuannya untuk menangani kompleksitas 

sistem hidup, baik dalam skala mikro (seluler) maupun makro (populasi 

atau ekosistem), yang hampir mustahil dipecahkan secara analitik. 

Dengan simulasi, para peneliti dapat mengamati konsekuensi dari 

intervensi yang belum pernah diuji, mengevaluasi ketidakpastian 

biologis, dan merancang sistem biologis baru berdasarkan prinsip 

dinamika dan kontrol. Namun demikian, tantangan utama tetap ada, 
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terutama dalam hal ketersediaan data parameter, validasi eksperimental, 

serta ketidakpastian biologis yang sulit dimodelkan secara deterministik. 

Dengan demikian, simulasi dinamis telah menjadi bagian integral 

dari biologi modern. Tidak hanya sebagai alat bantu visualisasi dan 

prediksi, tetapi juga sebagai kerangka konseptual yang memungkinkan 

integrasi berbagai tingkat informasi biologis dari genetik hingga 

populasi ke dalam satu sistem yang bisa dianalisis, dimodifikasi, dan 

diaplikasikan secara nyata dalam riset kesehatan, konservasi, dan 

bioteknologi. Seiring berkembangnya teknologi komputasi dan integrasi 

data biologis berbasis omik, simulasi dinamis diperkirakan akan terus 

berperan sentral dalam inovasi biomedis dan bioinformatika masa depan. 
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BAB IX 

KOMPUTASI MATRIKS 

DAN ALJABAR LINIER 

LANJUT 
 

 

 

Matriks dan transformasi linier bukan hanya bagian dari teori 

matematika, melainkan juga alat komputasi yang sangat kuat dalam 

menyelesaikan berbagai persoalan di bidang teknik, fisika, data science, 

dan pemodelan numerik. Dalam bab ini, pembaca akan diperkenalkan 

pada topik-topik lanjutan seperti dekomposisi matriks (LU, QR, dan 

SVD), eigenvalue-eigenvector, serta sistem persamaan linier berskala 

besar yang menuntut pendekatan algoritmik efisien. Penekanan 

diberikan pada bagaimana teori aljabar linier dapat diimplementasikan 

secara numerik melalui pemrograman, serta bagaimana kestabilan 

numerik dan efisiensi algoritma menjadi pertimbangan utama dalam 

aplikasi dunia nyata. Pendekatan yang digunakan dalam bab ini bersifat 

praktis namun tetap memperhatikan landasan teoritis, sehingga pembaca 

tidak hanya mampu memahami konsep, tetapi juga menguasai cara 

penerapannya secara langsung.  

 

A. Eigenvalue dan Eigenvector 

 

Eigenvalue dan eigenvector adalah konsep fundamental dalam 

aljabar linier yang memiliki peranan penting dalam banyak bidang sains 

dan teknik, termasuk fisika, rekayasa, ilmu komputer, pembelajaran 

mesin, serta pemrosesan citra dan suara. Konsep ini memungkinkan kita 

memahami bagaimana transformasi linier mempengaruhi ruang vektor 

dan bagaimana sistem dapat direduksi atau disederhanakan menjadi 
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bentuk yang lebih terstruktur untuk analisis atau komputasi. Saat 

merujuk pada Lay, D.C. (2012) Linear Algebra and Its Applications, 

Pearson dijelaskan bahwa eigenvalue (nilai eigen) dan eigenvector 

(vektor eigen) adalah solusi dari transformasi linier berbasis matriks. 

Secara formal, diberikan sebuah matriks persegi  

A ∈ Rn×n, 

vektor tak nol  

v ∈ Rn 

 

dan skalar  

λ ∈ R 

 

maka v disebut sebagai eigenvector dari A, dan λ adalah eigenvalue yang 

sesuai jika memenuhi: 

 
Artinya, jika suatu vektor dikenai transformasi oleh matriks A, hasilnya 

tetap searah dengan vektor semula, hanya mengalami perubahan skala 

oleh faktor λ. 

 

1. Interpretasi Geometris 

Interpretasi geometris dari eigenvalue dan eigenvector 

merupakan fondasi visual yang kuat dalam memahami bagaimana suatu 

transformasi linier bekerja terhadap ruang vektor. Jika kita 

membayangkan sebuah matriks A sebagai suatu transformasi linier 

dalam ruang dua atau tiga dimensi, maka eigenvector dapat dipahami 

sebagai arah tertentu dalam ruang tersebut yang tetap tidak berubah arah 

ketika dikenai transformasi oleh A; hanya panjangnya yang berubah, 

diperbesar, diperkecil, atau bahkan dibalik arah tergantung pada nilai 

eigenvalue-nya. Pandangan ini sangat penting dalam memahami struktur 

sistem dinamis, deformasi spasial, dan perilaku asimtotik dari banyak 

sistem matematika dan fisik. 

Bayangkan bidang dua dimensi R2, dan vektor v adalah suatu 

panah yang menunjuk ke suatu arah tertentu dari titik asal. Ketika kita 

menerapkan transformasi linier dengan matriks A terhadap vektor ini, 

hasilnya adalah vektor baru Av. Untuk vektor biasa, arah dari Av akan 

berubah tergantung pada bagaimana matriks A bertindak terhadap 

komponen-komponen x dan y dari vektor tersebut. Namun, jika v adalah 
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sebuah eigenvector dari A, maka arah Av tetap searah atau berlawanan 

arah dengan v. Perubahan yang terjadi hanyalah skala panjangnya, yang 

diatur oleh eigenvalue λ sehingga: 

Av = λv 

Ini berarti transformasi oleh A "memanjangkan", "memendekkan", atau 

"membalik" vektor tersebut tanpa mengubah orientasinya di dalam 

ruang. Sebagai contoh konkret, pertimbangkan matriks dua dimensi 

sederhana seperti: 

 
Matriks ini adalah transformasi skala (stretching) terhadap 

sumbu x sebesar faktor 3 dan sumbu y sebesar faktor 2. Dalam hal ini, 

vektor v1 =[
1
0

] dan v2 = [
0
1

] adalah eigenvector dari A karena ketika 

dikalikan oleh A, masing-masing hanya mengalami perubahan panjang: 

 

 
Dari sini, kita dapat memahami bahwa kedua arah x dan y adalah 

arah "khusus" yang tidak berubah arah ketika dikenai transformasi oleh 

A. Inilah yang dimaksud dengan arah tetap dari transformasi linier. Jika 

kita mengambil vektor sembarang yang bukan kombinasi linear dari 

vektor eigen ini, maka hasil transformasi tidak akan searah dengan 

vektor semula, arahnya akan berubah karena komponennya mengalami 

transformasi yang berbeda di setiap sumbu. 

Interpretasi ini menjadi semakin menarik ketika kita berhadapan 

dengan transformasi rotasi, refleksi, atau shearing (geseran). Misalnya, 

dalam kasus rotasi murni pada bidang dua dimensi, tidak ada vektor 

(selain nol) yang tetap pada arah yang sama setelah transformasi; oleh 

karena itu, tidak ada eigenvector nyata untuk rotasi murni dengan sudut 

bukan kelipatan 180°. Sebaliknya, dalam refleksi terhadap garis tertentu, 

maka garis refleksi itu sendiri adalah arah eigenvector dengan eigenvalue 

1, dan garis tegaknya adalah arah eigenvector dengan eigenvalue -1, 

karena arah tegak lurus tersebut dibalik oleh transformasi. 



180  Pemrograman dan Komputasi Numerik 

 

Interpretasi geometris ini juga sangat berguna dalam memahami 

sistem dinamik. Dalam sistem dinamis linier, misalnya 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥, arah 

vektor eigen menggambarkan arah mode pertumbuhan atau peluruhan 

sistem. Eigenvalue positif menunjukkan arah di mana sistem tumbuh 

secara eksponensial seiring waktu, sedangkan eigenvalue negatif 

menunjukkan arah peluruhan. Eigenvalue kompleks dengan bagian 

imajiner menggambarkan rotasi atau osilasi dalam sistem, dengan bagian 

real menentukan apakah amplitudo osilasi meningkat, menurun, atau 

tetap. 

Pada tiga dimensi (R3), interpretasi serupa berlaku. Eigenvector 

direpresentasikan sebagai arah tertentu dalam ruang tiga dimensi yang 

tidak berubah arah setelah dikenai transformasi. Eigenvalue menentukan 

perubahan panjang sepanjang arah tersebut. Visualisasi dalam ruang tiga 

dimensi umumnya lebih sulit, namun secara konseptual sama vektor 

tetap pada garis yang sama dari asal, hanya jaraknya dari titik asal yang 

berubah. 

Interpretasi geometris ini juga mendasari teknik komputasional 

seperti Principal Component Analysis (PCA). Dalam PCA, kita mencari 

arah (komponen utama) dalam data multidimensi di mana varians 

(penyebaran data) paling besar. Arah ini merupakan eigenvector dari 

matriks kovarian data, dan besarnya penyebaran di sepanjang arah 

tersebut diwakili oleh eigenvalue-nya. Dengan kata lain, PCA 

merepresentasikan data ke dalam sumbu-sumbu baru (basis baru) yang 

ditentukan oleh arah geometri intrinsik dari distribusi data itu sendiri 

sebuah aplikasi langsung dari interpretasi geometris eigenvalue dan 

eigenvector. 

Dengan pemahaman geometris ini, kita dapat lebih intuitif 

mengenali dan menjelaskan bagaimana sistem bekerja dan berubah 

dalam ruang vektor. Daripada hanya melihat eigenvalue dan eigenvector 

sebagai hasil aljabar, interpretasi ini membawa kita lebih dekat pada 

pemahaman fungsional dalam dunia nyata mulai dari arah getaran dalam 

struktur teknik, rotasi dalam grafik komputer, hingga pola dominan 

dalam data statistik. 

 

2. Cara Menentukan Eigenvalue dan Eigenvector 

Menentukan eigenvalue dan eigenvector dari sebuah matriks 

merupakan salah satu proses inti dalam aljabar linier yang banyak 
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diterapkan dalam komputasi ilmiah, teknik, statistik, dan berbagai 

cabang matematika terapan. Proses ini melibatkan dua langkah utama: 

pertama, menemukan nilai-nilai eigen (eigenvalue) dari matriks; dan 

kedua, mencari vektor-vektor yang sesuai (eigenvector) untuk masing-

masing nilai tersebut. Meskipun secara konseptual sederhana, 

perhitungannya bisa menjadi kompleks, tergantung pada ukuran dan sifat 

matriks yang dianalisis. 

Langkah pertama dalam menentukan eigenvalue dimulai dengan 

menyusun persamaan karakteristik dari matriks tersebut. Misalkan 

diberikan sebuah matriks kuadrat A berukuran n×n, maka kita mencari 

nilai skalar λ dan vektor tak nol v yang memenuhi hubungan: 

 
 

di mana I adalah matriks identitas berukuran n×n. Agar persamaan ini 

memiliki solusi non-trivial (selain solusi vektor nol), maka matriks 

(A−λI) harus bersifat singular, yaitu memiliki determinan nol. Oleh 

karena itu, kita harus menyelesaikan persamaan determinan berikut: 

 
Inilah yang disebut persamaan karakteristik, dan penyelesaian 

dari persamaan ini memberikan kita nilai-nilai eigen dari matriks A. 

Persamaan ini umumnya berupa polinomial berderajat n, dan solusinya 

bisa berupa bilangan real, kompleks, atau bahkan berulang (multiplikitas 

lebih dari satu). Sebagai contoh, misalkan kita memiliki matriks dua 

dimensi berikut: 
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Sistem ini bersifat dependen, dan memiliki solusi tak hingga. 

Kita bisa memilih v1 =1 maka v2 = q, sehingga salah satu eigenvector-

nya adalah 𝑣1 = [
1
1

]. Hal yang sama dilakukan untuk λ=2 dan kita 

dapatkan eigenvector lainnya, misalnya 𝑣2 = [
1
2

]. Secara umum, sistem 

(A−λI)v=0 adalah sistem linier homogen yang selalu memiliki solusi 

non-trivial jika dan hanya jika λ adalah nilai eigen dari A. 

Penyelesaiannya dapat dilakukan menggunakan eliminasi Gauss, 

substitusi, atau dengan bantuan perangkat lunak matematika seperti 

MATLAB, Python (NumPy/SciPy), Mathematica, atau R. 

Pada kasus ketika nilai eigen memiliki multiplikitas lebih dari 

satu, kita juga perlu memperhatikan dimensi dari ruang eigennya. Ini 

berkaitan dengan jumlah vektor eigen linier independen yang dapat 

dihasilkan untuk satu nilai eigen. Jika jumlah ini sama dengan 

multiplicity-nya, maka matriks tersebut dapat didiagonalisasi, yaitu 

direpresentasikan sebagai A=PDP−1, di mana D adalah matriks diagonal 

dari eigenvalue dan P adalah matriks yang kolom-kolomnya terdiri dari 

eigenvector yang bersesuaian. 

Prosedur di atas menjadi lebih kompleks untuk matriks 

berdimensi besar atau matriks dengan elemen kompleks. Dalam banyak 
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kasus praktis, terutama untuk matriks berukuran besar, pendekatan 

numerik digunakan untuk menghitung nilai eigen secara efisien. Metode 

populer meliputi Power Iteration untuk mencari nilai eigen terbesar, QR 

Algorithm untuk menemukan semua nilai eigen, dan Jacobi Method 

untuk matriks simetris. 

Cara menentukan eigenvalue dan eigenvector memerlukan 

pemahaman aljabar linier yang mendalam, penguasaan terhadap 

manipulasi matriks, serta keterampilan komputasional dalam 

menyelesaikan sistem linier. Proses ini bukan sekadar manipulasi 

simbolik, tetapi berakar pada pemahaman struktur dan dinamika sistem 

linier, serta penting dalam banyak aplikasi mulai dari stabilitas struktur 

dalam teknik sipil, analisis data dalam statistik, hingga pembelajaran 

mesin dan pencitraan digital. 

 

3. Aplikasi Eigenvalue dan Eigenvector 

Eigenvalue dan eigenvector memiliki peran penting dalam 

berbagai bidang sains dan teknik karena kemampuannya dalam 

menyederhanakan analisis sistem yang kompleks melalui pendekatan 

struktural. Konsep ini tidak hanya relevan dalam matematika murni, 

tetapi juga menjadi tulang punggung banyak metode numerik dan teknik 

komputasi modern. Dalam dunia nyata, banyak fenomena fisika, sistem 

mekanik, jaringan sosial, pemrosesan sinyal, serta pembelajaran mesin 

dapat dimodelkan dan diselesaikan lebih efisien dengan memahami 

struktur eigennya. Berikut ini adalah uraian mendalam mengenai 

beberapa aplikasi utama dari eigenvalue dan eigenvector dalam berbagai 

konteks. 

Pada bidang rekayasa struktur dan mekanika, eigenvalue 

digunakan dalam analisis getaran. Ketika sebuah struktur seperti 

jembatan, gedung pencakar langit, atau pesawat mengalami gangguan 

atau gaya luar, sistem tersebut akan berosilasi pada frekuensi-frekuensi 

tertentu yang disebut frekuensi alami (natural frequencies). Frekuensi 

ini adalah akar dari eigenvalue dari sistem matriks massa dan kekakuan 

(mass and stiffness matrices). Misalnya, dalam analisis mode getar suatu 

bangunan, setiap eigenvalue merepresentasikan kuadrat dari frekuensi 

alami, dan eigenvectornya menunjukkan bentuk mode (mode shape) dari 

getaran tersebut. Dengan demikian, memahami eigenstructure dari 

sistem mekanik sangat penting untuk desain struktur yang aman terhadap 

resonansi atau beban dinamis. 
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Pada fisika kuantum, konsep eigenvalue sangat fundamental. 

Persamaan Schrödinger, yang menggambarkan perilaku sistem kuantum, 

secara matematis merupakan persamaan eigen. Fungsi gelombang 

kuantum (wavefunction) dari suatu partikel merupakan eigenvector, dan 

energi-energi diskrit yang dapat dimiliki oleh partikel tersebut adalah 

nilai eigen. Setiap operator fisika seperti momentum, energi, dan spin 

direpresentasikan sebagai operator linier, dan hasil pengukuran nilai-

nilainya adalah nilai eigen dari operator tersebut. Oleh karena itu, seluruh 

struktur teori kuantum dibangun di atas landasan eigenvalue-

eigenvector. 

Pada analisis data dan pembelajaran mesin, eigenvalue dan 

eigenvector menjadi alat utama dalam teknik reduksi dimensi, terutama 

dalam Principal Component Analysis (PCA). PCA adalah metode 

statistik yang digunakan untuk mengurangi kompleksitas data 

berdimensi tinggi dengan menemukan sumbu-sumbu utama (principal 

components) dari distribusi data. Sumbu-sumbu ini ditentukan oleh 

eigenvector dari matriks kovarian data, dan sumbu-sumbu dengan 

eigenvalue terbesar mewakili arah dengan variasi data paling signifikan. 

Dengan memilih beberapa komponen utama pertama, kita dapat 

mengurangi dimensi data tanpa kehilangan informasi penting secara 

signifikan. Ini sangat berguna dalam pengolahan citra, pengenalan pola, 

dan kompresi data. 

Pada graf teori dan analisis jaringan, eigenvalue digunakan dalam 

banyak aspek, salah satunya adalah algoritma PageRank milik Google. 

Dalam pendekatan ini, halaman web direpresentasikan sebagai simpul 

(nodes) dalam graf terarah, dan hubungan antar halaman sebagai sisi 

(edges). Matriks transisi dari graf ini digunakan untuk membentuk sistem 

Markov, dan peringkat halaman ditentukan oleh eigenvector dominan 

dari matriks tersebut. Halaman dengan bobot (komponen) terbesar dalam 

eigenvector tersebut dianggap paling penting. Selain itu, dalam analisis 

jaringan sosial atau jaringan biologis, spektrum eigen dari matriks 

ketetanggaan (adjacency matrix) atau matriks Laplacian jaringan 

memberikan informasi penting tentang struktur jaringan, seperti 

keterhubungan, jumlah komunitas, dan ketahanan terhadap gangguan. 

Pada sistem dinamik dan kontrol, terutama sistem diferensial 

linier seperti 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥, eigenvalue dari matriks 𝐴 menentukan perilaku 

jangka panjang sistem tersebut. Jika semua eigenvalue memiliki bagian 
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real negatif, maka sistem bersifat stabil karena semua solusi cenderung 

ke nol. Jika ada eigenvalue dengan bagian real positif, sistem bersifat 

tidak stabil. Di sinilah peran penting analisis eigensistem untuk 

memastikan kestabilan sistem kontrol, baik dalam robotika, pesawat 

terbang, maupun sistem otomatisasi industri. 

Di bidang komputasi citra dan pemrosesan sinyal, transformasi 

yang melibatkan matriks kovarian atau matriks transformasi sering kali 

memanfaatkan eigenvalue dan eigenvector. Misalnya, dalam face 

recognition (pengenalan wajah), metode seperti Eigenfaces membangun 

basis wajah dari kumpulan gambar pelatihan dengan mencari 

eigenvector dari matriks citra. Setiap gambar wajah kemudian dapat 

direpresentasikan sebagai kombinasi linear dari basis ini, sehingga 

identifikasi dan klasifikasi wajah menjadi lebih efisien dan akurat. 

Pada bidang ekonomi dan ekonometri, eigenvalue digunakan 

dalam analisis input-output antar sektor, serta dalam model stokastik 

seperti analisis Markov Chain, di mana matriks transisi menyimpan 

probabilitas perpindahan antara keadaan-keadaan sistem. Eigenvector 

stasioner dari matriks transisi menggambarkan distribusi jangka panjang 

dari sistem ekonomi tersebut. Di bidang biologi matematika, terutama 

dalam model populasi, eigenvalue membantu menentukan pertumbuhan 

populasi jangka panjang dan stabilitas ekosistem. Contohnya, dalam 

model Leslie matrix (model pertumbuhan populasi terstruktur menurut 

usia), nilai eigen terbesar (dominant eigenvalue) merepresentasikan 

tingkat pertumbuhan populasi, sedangkan eigenvectornya memberi 

distribusi populasi dalam keadaan stabil. 

 

Gambar 5. Big Data 

 
Sumber: Dqlab 
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Dari berbagai bidang ini, dapat disimpulkan bahwa eigenvalue 

dan eigenvector menyediakan kerangka kerja matematis untuk 

mengevaluasi dan menyederhanakan sistem yang kompleks. Kekuatan 

utama dari konsep ini adalah kemampuannya dalam mengubah sistem 

menjadi bentuk diagonal atau hampir-diagonal, di mana analisis dan 

perhitungan menjadi jauh lebih sederhana. Dalam era big data dan 

komputasi intensif, pemanfaatan struktur eigen menjadi semakin penting 

karena efisiensinya dalam menangani persoalan berdimensi besar dan 

kompleks. Oleh karena itu, penguasaan terhadap konsep dan aplikasi 

eigenvalue dan eigenvector adalah keterampilan esensial bagi ilmuwan, 

insinyur, dan analis data modern. 

 

B. Dekomposisi LU, QR, dan SVD 

 

Dekomposisi matriks merupakan teknik fundamental dalam 

aljabar linier numerik yang digunakan untuk menyederhanakan berbagai 

perhitungan matematis, seperti penyelesaian sistem persamaan linier, 

komputasi nilai eigen, dan reduksi dimensi. Tiga metode dekomposisi 

paling penting dan sering digunakan adalah LU decomposition (Lower-

Upper decomposition), QR decomposition, dan Singular Value 

Decomposition (SVD). Masing-masing memiliki peran dan keunggulan 

tertentu dalam penerapan praktis dan komputasi numerik. 

 

1. Dekomposisi LU (Lower-Upper Decomposition) 

Dekomposisi LU (Lower-Upper Decomposition) adalah teknik 

aljabar linier yang memfaktorkan sebuah matriks persegi A menjadi hasil 

perkalian dua matriks segitiga: matriks segitiga bawah L (Lower) dan 

matriks segitiga atas U (Upper), sehingga diperoleh bentuk A=LU. 

Konsep ini sangat penting dalam komputasi numerik karena 

menyederhanakan berbagai perhitungan, terutama dalam penyelesaian 

sistem persamaan linier, invers matriks, dan perhitungan determinan. 

Dengan mendekomposisi matriks ke dalam bentuk segitiga, kita dapat 

memanfaatkan sifat-sifat sederhana dari sistem linier segitiga untuk 

menyelesaikan masalah dengan efisien dan stabil. 

Secara umum, dekomposisi LU hanya berlaku untuk matriks 

persegi n×n, dan tidak semua matriks memiliki dekomposisi LU tanpa 

modifikasi. Untuk menjamin dekomposisi ini bisa dilakukan secara 

stabil, sering kali diperlukan pivoting, yaitu pertukaran baris untuk 
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menghindari pembagian oleh nol atau bilangan sangat kecil. Dalam 

kasus ini, dekomposisi menjadi PA=LU, di mana P adalah matriks 

permutasi yang menyatakan posisi baris yang ditukar. Proses 

dekomposisi dilakukan melalui metode eliminasi Gauss, di mana 

elemen-elemen di bawah diagonal utama diubah menjadi nol 

menggunakan operasi baris elementer, dan koefisien yang digunakan 

untuk operasi tersebut disimpan dalam matriks L. 

Dekomposisi LU memiliki keuntungan besar dalam 

menyelesaikan sistem persamaan linier: 

Ax=b 

Setelah matriks A didekomposisi menjadi LU, kita dapat menyelesaikan 

sistem tersebut dalam dua tahap:  

1. Menyelesaikan  

Ly=b 

menggunakan substitusi maju (forward substitution), karena L 

adalah matriks segitiga bawah;  

2. Menyelesaikan  

Ux=y 

menggunakan substitusi mundur (back substitution), karena U 

adalah matriks segitiga atas. Proses ini jauh lebih efisien 

dibandingkan langsung menggunakan invers matriks atau eliminasi 

Gauss berulang untuk setiap vektor ƅ. 

Dekomposisi LU juga sangat berguna dalam konteks faktorisasi 

matriks untuk perhitungan determinan. Jika: 

A = LU 

maka determinan det(A) = det(L) ⋅ det(U). Karena determinan dari 

matriks segitiga adalah hasil kali elemen diagonalnya, maka perhitungan 

determinan menjadi sangat cepat dan stabil. 

Pada implementasi komputasi, dekomposisi LU tersedia dalam 

berbagai bahasa dan pustaka numerik seperti: 

• MATLAB ([L,U,P] = lu(A)ʺ  

• Python melalui SciPy (scipy.linalg.lu) 

• Julia 

Keunggulannya adalah dapat digunakan secara efisien dalam 

perhitungan berskala besar, misalnya dalam simulasi struktur teknik, 

analisis jaringan listrik, atau model-model numerik fisika dan kimia. 
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2. Dekomposisi QR 

Dekomposisi QR adalah salah satu metode faktorisasi matriks 

yang sangat penting dalam aljabar linier numerik dan memiliki beragam 

aplikasi dalam penyelesaian sistem overdetermined (jumlah persamaan 

lebih banyak dari variabel), pencarian solusi least squares, serta dalam 

algoritma komputasi nilai eigen. Dalam dekomposisi ini, sebuah matriks 

A ∈ Rm×n (dengan m≥n) difaktorkan menjadi hasil perkalian dua matriks, 

yaitu matriks ortogonal QQQ dan matriks segitiga atas RRR, sehingga 

diperoleh bentuk: 

A = QR 

 

Matriks Q ∈ Rm×m memiliki sifat ortogonal, yang berarti kolom-

kolomnya adalah vektor ortonormal dan memenuhi QTQ = I, sementara 

matriks R ∈ Rm×n adalah matriks segitiga atas, yang menyimpan 

koefisien kombinasi linier dari kolom-kolom vektor asli pada A. Salah 

satu aplikasi utama dekomposisi QR adalah dalam penyelesaian masalah 

least squares. Ketika sistem linier Ax = b tidak memiliki solusi eksak 

karena sistemnya overdetermined, solusi terbaik dalam arti minimum 

kesalahan kuadrat dapat dicari dengan mengubahnya menjadi sistem 

normal: ATAx = ATb.  

Namun, pendekatan ini bisa menghasilkan instabilitas numerik 

karena meningkatkan kondisi numerik yang buruk. Alternatif yang lebih 

stabil adalah dengan menggunakan dekomposisi QR. Jika A = QR, maka 

Ax = QRx = b, dan dengan mengalikan kedua sisi dengan QT, diperoleh 

sistem sederhana Rx = QTb, yang kemudian diselesaikan dengan 

substitusi mundur karena RRR berbentuk segitiga atas. 

Secara praktis, dekomposisi QR dapat dilakukan dengan 

beberapa metode, antara lain metode Gram-Schmidt, Householder 

reflections, dan Givens rotations. Metode Gram-Schmidt menggunakan 

proses ortonormalisasi vektor dan lebih intuitif secara konsep, tetapi 

kurang stabil secara numerik. Metode Householder, yang menggunakan 

refleksi ortogonal, lebih stabil dan sering digunakan dalam perangkat 

lunak numerik seperti MATLAB dan SciPy. Givens rotations, di sisi 

lain, lebih cocok untuk matriks besar dan jarang (sparse matrices) karena 

memodifikasi dua baris pada satu waktu. 

Pada algoritma komputasi nilai eigen, QR decomposition 

menjadi komponen utama dalam algoritma QR iteration, yang 
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digunakan untuk menghitung spektrum eigen suatu matriks. Keuntungan 

dari metode ini adalah kemampuannya menangani matriks non-simetri 

dan mengkonsolidasikan informasi struktural dari matriks melalui proses 

berulang. 

Dekomposisi QR juga digunakan dalam analisis numerik, 

pemrosesan sinyal, dan pembelajaran mesin, terutama ketika stabilitas 

numerik dan ortogonalitas menjadi penting. Karena kemampuan QR 

decomposition dalam menjaga kestabilan komputasi dan struktur 

geometri data, metode ini menjadi alat utama dalam berbagai bidang 

ilmiah dan teknis. Dengan berbagai metode implementasinya dan 

dukungan dari perangkat lunak komputasi ilmiah, dekomposisi QR 

merupakan teknik faktorisasi yang tak tergantikan dalam praktik 

komputasi numerik modern. 

 

3. Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) adalah salah satu teknik 

dekomposisi matriks paling kuat dan serbaguna dalam aljabar linier 

numerik. Berbeda dengan dekomposisi LU atau QR yang hanya berlaku 

pada matriks dengan syarat tertentu (seperti matriks persegi atau penuh-

rangking), SVD dapat diterapkan pada semua jenis matriks, baik persegi, 

persegi panjang, penuh-rangking maupun rangking rendah. Secara 

formal, jika diberikan matriks A∈Rm×n, maka SVD memfaktorkan 

matriks tersebut menjadi hasil perkalian tiga matriks: 

 

Di sini, U∈Rm×m adalah matriks ortogonal yang kolom-

kolomnya disebut left singular vectors. 

 

Σ∈Rm×n 

 

adalah matriks diagonal (atau hampir diagonal) yang elemen-elemen 

diagonalnya adalah bilangan non-negatif dan disebut singular values. 

 

VT∈Rn×n 

 

adalah transpose dari matriks ortogonal V, dengan kolom-kolom V 

disebut right singular vectors. Nilai-nilai dalam Σ biasanya disusun 
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dalam urutan menurun dan memberikan ukuran kontribusi dari masing-

masing komponen basis terhadap struktur asli data. 

Keunggulan utama SVD terletak pada stabilitas numerik dan 

fleksibilitasnya, sehingga sangat cocok untuk pemrosesan matriks yang 

tidak simetris, tidak persegi, bahkan ketika tidak memiliki invers. Dalam 

konteks reduksi dimensi dan kompresi data, SVD memungkinkan kita 

melakukan aproksimasi matriks dengan hanya mempertahankan 

beberapa singular values terbesar dan mengabaikan yang kecil, sehingga 

informasi utama tetap terjaga sementara kompleksitas dikurangi. Teknik 

ini menjadi dasar dalam Principal Component Analysis (PCA), di mana 

vektor-vektor singular dari SVD digunakan sebagai sumbu baru 

(komponen utama) yang memaksimalkan variansi data. 

Pada kompresi citra digital, misalnya, SVD dapat digunakan 

untuk menyimpan representasi gambar dalam basis singular vectors. 

Dengan hanya menyimpan sejumlah kecil singular values dan vektor 

terkait, gambar dapat direkonstruksi dengan kualitas yang masih baik 

namun ukuran file jauh lebih kecil. Selain itu, dalam Natural Language 

Processing (NLP), SVD digunakan dalam metode Latent Semantic 

Analysis (LSA) untuk menemukan struktur laten dalam dokumen teks, 

dengan cara mengurai matriks term-document menjadi komponen 

semantik dominan. SVD juga berperan penting dalam pseudoinvers 

matriks (Moore-Penrose inverse), yaitu ketika kita ingin menyelesaikan 

sistem Ax=b namun A tidak memiliki invers atau berbentuk tidak 

persegi. Dengan SVD, kita dapat menghitung solusi terkecil dalam 

norma Euclidean dengan cara yang stabil dan akurat.  

 

C. Aplikasi dalam Pemrosesan Data dan Machine Learning 

 

Pemrograman dan komputasi numerik menjadi fondasi utama 

dalam pengolahan data dan pengembangan metode machine learning 

(ML) modern. Dalam konteks ini, teknik-teknik komputasi numerik, 

seperti dekomposisi matriks, optimasi numerik, dan algoritma statistik, 

berperan penting dalam mengolah data besar, membangun model 

prediktif, serta meningkatkan akurasi dan efisiensi pembelajaran mesin 

(Goodfellow, Bengio, & Courville, 2016). Dengan ketersediaan data 

yang masif dan kebutuhan analisis yang kompleks, pemrograman 

numerik memungkinkan transformasi data mentah menjadi informasi 

bermakna serta model yang dapat diandalkan. 
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1. Pemrosesan Data 

Pemrosesan data adalah rangkaian aktivitas yang bertujuan untuk 

mengubah data mentah menjadi informasi yang bermakna dan berguna 

untuk pengambilan keputusan, analisis, dan berbagai aplikasi lanjutan. 

Proses ini sangat penting dalam era digital di mana data dihasilkan secara 

masif dari berbagai sumber seperti sensor IoT, transaksi bisnis, media 

sosial, dan sistem informasi lainnya. Data mentah yang tidak terstruktur, 

bising, dan berdimensi tinggi harus diolah melalui serangkaian tahap 

agar dapat diekstrak pola, insight, atau model prediktif yang akurat. Oleh 

karena itu, pemrosesan data menjadi fondasi utama dalam bidang data 

science dan machine learning. 

Tahap awal dalam pemrosesan data adalah pengumpulan data, di 

mana data dikumpulkan dari berbagai sumber dengan berbagai format. 

Data tersebut kemudian mengalami pembersihan (data cleaning) untuk 

mengatasi masalah seperti nilai yang hilang (missing values), duplikasi, 

dan kesalahan input. Pembersihan data penting karena data yang tidak 

konsisten atau rusak dapat menghasilkan model yang bias dan tidak 

akurat (Rahm & Do, 2000). Selanjutnya, data mengalami transformasi 

dan normalisasi. Transformasi mencakup pengubahan format, 

pengkodean variabel kategorikal menjadi numerik, dan penanganan 

outlier. Normalisasi, seperti skala min-max atau standardisasi, dilakukan 

agar fitur-fitur data berada pada rentang yang sama, sehingga algoritma 

machine learning dapat bekerja lebih efektif dan cepat konvergen (Han, 

Kamber, & Pei, 2011). 

Reduksi dimensi juga merupakan tahap penting dalam 

pemrosesan data, terutama untuk dataset berdimensi tinggi yang dapat 

menyebabkan masalah curse of dimensionality. Teknik seperti Principal 

Component Analysis (PCA) dan Singular Value Decomposition (SVD) 

digunakan untuk mereduksi fitur menjadi komponen-komponen utama 

yang mewakili variansi terbesar dari data tanpa kehilangan informasi 

penting. Dengan cara ini, kompleksitas data berkurang, yang 

mempercepat proses pelatihan model sekaligus meningkatkan 

interpretabilitas (Jolliffe, 2002). Setelah data siap, dilakukan eksplorasi 

data (Exploratory Data Analysis, EDA) untuk memahami karakteristik 

data, distribusi, korelasi antar variabel, dan pola tersembunyi. Visualisasi 

data seperti histogram, scatter plot, dan heatmap sangat membantu dalam 

tahap ini untuk mengidentifikasi tren dan anomali (Tukey, 1977). 
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Pemrosesan data juga mencakup teknik feature engineering, 

yaitu proses menciptakan fitur baru yang lebih representatif berdasarkan 

fitur asli. Misalnya, menggabungkan beberapa fitur menjadi indeks atau 

menghitung rata-rata per periode waktu tertentu dalam data waktu (time-

series). Feature engineering yang baik dapat meningkatkan performa 

model secara signifikan (Kuhn & Johnson, 2013). Dalam konteks data 

streaming dan big data, pemrosesan data harus dilakukan secara real-

time dan skalabel. Teknologi seperti Apache Hadoop dan Apache Spark 

memungkinkan pemrosesan paralel dan distribusi data yang efisien di 

cluster komputer besar. Pendekatan ini sangat penting untuk menangani 

volume data yang sangat besar dengan kecepatan tinggi (Zaharia et al., 

2010). Pemrosesan data juga mengantisipasi aspek keamanan dan 

privasi, dengan menerapkan teknik seperti enkripsi data dan anonimasi 

agar data sensitif tidak disalahgunakan selama proses analisis (Dwork, 

2008). 

 

2. Machine Learning 

Machine learning (ML) merupakan cabang dari kecerdasan 

buatan (artificial intelligence) yang memungkinkan sistem komputer 

untuk belajar dari data dan meningkatkan performa tanpa diprogram 

secara eksplisit. ML berfokus pada pengembangan algoritma dan model 

matematis yang dapat mengidentifikasi pola, membuat prediksi, dan 

mengambil keputusan berdasarkan data yang tersedia. Konsep inti ML 

adalah bahwa sistem belajar dengan mengenali pola dalam data dan 

menggeneralisasi pola tersebut ke data baru yang belum pernah ditemui 

sebelumnya (Mitchell, 1997). 

ML dapat dibagi menjadi beberapa kategori utama berdasarkan 

jenis data dan cara belajar, yaitu supervised learning, unsupervised 

learning, dan reinforcement learning. Pada supervised learning, model 

dilatih menggunakan data berlabel, di mana input dan output yang 

diinginkan sudah diketahui. Contoh algoritma supervised learning 

meliputi regresi linier, pohon keputusan, dan neural networks. Model 

bertujuan mempelajari hubungan antara input dan output agar dapat 

memprediksi output pada data baru dengan akurat (Hastie et al., 2009). 

Sebaliknya, pada unsupervised learning, data yang digunakan tidak 

berlabel, sehingga model mencoba menemukan struktur atau pola 

tersembunyi dalam data. Teknik umum termasuk clustering seperti k-

means dan hierarchical clustering, serta reduksi dimensi seperti PCA. 
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Unsur utama di sini adalah mengenali kelompok data atau fitur penting 

tanpa panduan output (Aggarwal, 2015). 

Reinforcement learning berbeda dengan kedua pendekatan 

sebelumnya karena sistem belajar melalui interaksi dengan lingkungan 

dan mendapatkan umpan balik berupa reward atau penalti. Pendekatan 

ini banyak digunakan dalam pengembangan agen cerdas untuk 

permainan dan robotika (Sutton & Barto, 2018). Model ML modern 

semakin kompleks dengan hadirnya deep learning, yaitu subbidang yang 

menggunakan jaringan saraf tiruan bertingkat (deep neural networks). 

Deep learning mampu mengolah data yang sangat besar dan kompleks, 

seperti gambar, suara, dan teks, dengan tingkat akurasi yang tinggi. 

Jaringan saraf konvolusional (CNN) untuk pengolahan citra dan jaringan 

saraf rekuren (RNN) untuk data urutan adalah contoh aplikasi deep 

learning yang sangat populer (Goodfellow et al., 2016). 

Proses machine learning umumnya melibatkan beberapa 

tahapan: pengumpulan data, pembersihan dan praproses data, pemilihan 

dan ekstraksi fitur, pemilihan model, pelatihan model, validasi, dan 

evaluasi performa. Pemilihan fitur yang relevan sangat penting karena 

dapat meningkatkan efisiensi dan akurasi model. Selain itu, teknik 

validasi seperti cross-validation digunakan untuk menghindari 

overfitting, yaitu kondisi di mana model terlalu menghafal data latih 

sehingga gagal menggeneralisasi ke data baru (Kuhn & Johnson, 2013). 

ML juga memanfaatkan metode optimasi numerik untuk meminimalkan 

fungsi kerugian (loss function) selama pelatihan. Algoritma optimasi 

seperti gradient descent dan variannya berperan penting dalam 

mempercepat proses pelatihan dan menemukan solusi optimal (Bottou, 

2010). Aplikasi machine learning sangat luas dan berkembang pesat di 

berbagai bidang. Dalam kesehatan, ML digunakan untuk diagnosis 

penyakit dan analisis citra medis. Dalam bisnis, ML mendukung analisis 

pelanggan, prediksi penjualan, dan sistem rekomendasi. Di bidang 

transportasi, ML menggerakkan teknologi kendaraan otonom dan 

prediksi lalu lintas (Jordan & Mitchell, 2015). 

 

D. Optimasi Performa Komputasi Matriks 

 

Optimasi performa komputasi matriks merupakan aspek penting 

dalam komputasi numerik, ilmu komputer, dan berbagai aplikasi teknik 

serta ilmiah. Matriks adalah struktur data dasar yang digunakan secara 
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luas dalam pemodelan matematis, pemrosesan sinyal, pembelajaran 

mesin, grafik komputer, dan simulasi ilmiah. Namun, komputasi matriks, 

terutama pada skala besar, bisa sangat intensif secara komputasi dan 

memori. Oleh karena itu, mengoptimalkan kinerja operasi matriks sangat 

penting untuk mengurangi waktu komputasi dan pemakaian sumber daya 

komputer (Demmel, 1997). 

 

1. Pemilihan Algoritma yang Efisien 

Pemilihan algoritma yang efisien merupakan aspek krusial dalam 

optimasi performa komputasi matriks karena algoritma menentukan 

bagaimana operasi matematika dijalankan dan berdampak langsung pada 

kecepatan serta penggunaan sumber daya komputasi. Dalam konteks 

komputasi matriks, efisiensi algoritma terutama diukur dari 

kompleksitas waktu (time complexity) dan kompleksitas ruang (space 

complexity) yang diperlukan untuk menyelesaikan operasi, seperti 

perkalian matriks, invers matriks, dekomposisi, dan penyelesaian sistem 

linear (Demmel, 1997). 

Misalnya, perkalian matriks standar menggunakan metode 

iteratif dengan kompleksitas O(n³) untuk matriks berukuran n×n. 

Algoritma ini cukup sederhana dan mudah diimplementasikan, tetapi 

menjadi sangat lambat untuk matriks besar. Oleh karena itu, algoritma 

alternatif seperti algoritma Strassen yang memiliki kompleksitas lebih 

rendah yaitu O(n^2.81) dapat dipilih untuk mempercepat komputasi, 

meskipun implementasinya lebih rumit dan memiliki overhead yang 

signifikan pada matriks berukuran kecil (Strassen, 1969). Algoritma 

yang lebih canggih, seperti algoritma Coppersmith-Winograd, bahkan 

menurunkan kompleksitas perkalian matriks hingga sekitar O(n^2.37), 

tetapi biasanya hanya digunakan dalam penelitian dan aplikasi khusus 

karena kompleksitas implementasi yang tinggi (Williams, 2012). 

Pemilihan algoritma juga harus mempertimbangkan karakteristik 

matriks, seperti kepadatan elemen (dense vs sparse). Untuk matriks 

jarang, algoritma khusus yang mengabaikan elemen nol dapat 

mengurangi komputasi dan penggunaan memori secara drastis. 

Contohnya adalah penggunaan metode iteratif seperti Conjugate 

Gradient atau GMRES yang lebih efisien untuk sistem linear sparse 

dibandingkan metode langsung seperti eliminasi Gauss (Saad, 2003). 

Selain itu, algoritma harus diadaptasi dengan arsitektur perangkat keras 

yang digunakan. Algoritma yang mendukung paralelisasi atau yang 
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dioptimalkan untuk memanfaatkan cache dan instruksi SIMD akan jauh 

lebih efisien pada sistem modern (Kirk & Hwu, 2016). Dengan 

demikian, pemilihan algoritma yang efisien adalah keputusan strategis 

yang menggabungkan analisis kompleksitas, karakteristik data, dan 

pemahaman terhadap perangkat keras agar hasil komputasi matriks dapat 

dicapai secara optimal dan efektif. 

 

2. Pengelolaan Memori 

Pengelolaan memori adalah salah satu faktor kunci dalam 

optimasi performa komputasi matriks karena kecepatan akses data 

sangat menentukan efisiensi keseluruhan operasi. Dalam komputasi 

matriks, data biasanya disimpan dalam array dua dimensi yang 

ukurannya bisa sangat besar, sehingga cara penyimpanan dan 

pengaksesan data harus diatur sedemikian rupa agar dapat memanfaatkan 

hirarki memori komputer secara optimal (Hennessy & Patterson, 2017). 

Komputer modern memiliki beberapa tingkat memori, mulai dari 

register, cache (L1, L2, L3), RAM, hingga penyimpanan sekunder. 

Cache, yang berukuran kecil tetapi sangat cepat, sangat penting dalam 

mempercepat akses data. Oleh karena itu, strategi pengelolaan memori 

seperti blocking atau tiling diterapkan untuk memecah operasi matriks 

menjadi sub-bagian kecil yang dapat dimuat sekaligus ke dalam cache. 

Teknik ini mengurangi cache miss dan latensi akses memori, sehingga 

meningkatkan throughput komputasi (Gustavson, 1997). 

Pola akses memori juga penting. Pengaksesan data secara 

kontigu (sekuensial) lebih cepat dibandingkan akses acak karena prinsip 

spatial locality yang dimanfaatkan oleh sistem cache. Oleh sebab itu, 

dalam operasi matriks seperti perkalian atau dekomposisi, pengaturan 

iterasi yang memprioritaskan akses baris demi baris atau kolom demi 

kolom sangat dianjurkan agar data dapat diakses secara efisien. 

Pengelolaan memori juga mempertimbangkan format penyimpanan 

matriks. Untuk matriks padat, penyimpanan secara row-major atau 

column-major mempengaruhi cara data diakses. Sementara pada matriks 

jarang, format seperti CSR (Compressed Sparse Row) dan CSC 

(Compressed Sparse Column) menghemat ruang memori dan 

mengurangi waktu akses elemen non-nol saja, sehingga meningkatkan 

performa operasi (Saad, 2003). 
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3. Paralelisasi Komputasi 

Paralelisasi komputasi merupakan teknik penting dalam optimasi 

performa operasi matriks yang memanfaatkan kemampuan perangkat 

keras modern untuk menjalankan banyak proses secara bersamaan. Pada 

dasarnya, paralelisasi membagi tugas komputasi besar menjadi bagian-

bagian kecil yang dapat dikerjakan secara simultan oleh beberapa inti 

(core) prosesor atau unit pemrosesan grafis (GPU). Pendekatan ini sangat 

efektif mengingat operasi matriks, seperti perkalian atau dekomposisi, 

sering kali dapat diparalelisasi karena setiap elemen hasil biasanya 

dihitung secara independen (Kirk & Hwu, 2016). 

Komputasi paralel dapat dilakukan pada berbagai tingkatan. Pada 

level CPU, model pemrograman seperti OpenMP memungkinkan 

pembagian pekerjaan ke beberapa core melalui threading. Sementara 

pada skala lebih besar, MPI (Message Passing Interface) digunakan 

untuk mengkoordinasi komputasi di cluster komputer, mendistribusikan 

data dan tugas ke banyak node. Di sisi lain, GPU dengan ribuan core 

kecil yang dirancang untuk komputasi paralel massal, menjadi sangat 

populer untuk mempercepat operasi matriks besar dengan menggunakan 

platform seperti CUDA atau OpenCL (Nickolls et al., 2008). 

Efektivitas paralelisasi sangat bergantung pada bagaimana tugas 

dibagi dan komunikasi antar unit dilakukan. Pembagian tugas harus 

seimbang agar tidak ada core yang idle terlalu lama, dan overhead 

komunikasi antar unit harus diminimalkan agar keuntungan paralelisasi 

tidak hilang. Teknik seperti data parallelism yang membagi data menjadi 

potongan-potongan kecil dan task parallelism yang membagi proses 

menjadi tugas-tugas berbeda sering digunakan dalam optimasi 

komputasi matriks (Grama et al., 2003). 

Paralelisasi juga memungkinkan pemrosesan matriks yang 

sangat besar yang tidak mungkin dilakukan secara efisien oleh satu core 

saja. Banyak perpustakaan numerik populer, seperti Intel MKL dan 

cuBLAS, sudah mengimplementasikan paralelisasi secara otomatis 

untuk memanfaatkan perangkat keras modern sehingga pengguna dapat 

merasakan peningkatan performa tanpa perlu menulis kode paralel 

secara eksplisit. 

 

4. Instruksi SIMD 

Instruksi SIMD (Single Instruction, Multiple Data) adalah fitur 

pada prosesor modern yang memungkinkan eksekusi satu instruksi yang 
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sama secara simultan pada beberapa data sekaligus. Konsep SIMD 

sangat efektif dalam mempercepat komputasi matriks dan operasi vektor 

karena banyak dari operasi ini melibatkan penerapan fungsi yang sama 

pada elemen-elemen data yang berbeda secara paralel (Williams et al., 

2009). Dengan SIMD, misalnya, sebuah prosesor dapat melakukan 

penjumlahan pada empat atau delapan pasangan elemen matriks 

sekaligus dalam satu siklus instruksi, dibandingkan dengan memproses 

satu elemen per siklus pada arsitektur tradisional. 

Pemanfaatan instruksi SIMD memerlukan dukungan perangkat 

keras serta compiler yang mampu menghasilkan kode mesin yang 

menggunakan instruksi ini. Contoh arsitektur yang mendukung SIMD 

antara lain Intel SSE (Streaming SIMD Extensions), AVX (Advanced 

Vector Extensions), dan ARM NEON untuk prosesor mobile. Instruksi 

SIMD umumnya bekerja dengan register khusus yang dapat menampung 

data vektor berukuran 128-bit, 256-bit, atau lebih, memungkinkan 

operasi simultan pada banyak elemen data (Fog, 2016). 

Penggunaan SIMD sangat cocok untuk algoritma yang 

berstruktur data paralel, seperti perkalian matriks, transformasi Fourier, 

dan operasi filter dalam pemrosesan sinyal. Dengan SIMD, jumlah 

instruksi yang harus dieksekusi berkurang drastis, sehingga 

meningkatkan throughput dan mengurangi latensi. Namun, optimalisasi 

dengan SIMD memerlukan penyesuaian pola akses data agar data 

tersimpan secara kontigu di memori dan alignment yang tepat agar tidak 

terjadi penalti performa (Hennessy & Patterson, 2017). 

Meski SIMD meningkatkan performa secara signifikan, ada 

beberapa keterbatasan seperti ukuran register terbatas dan kebutuhan 

data yang terstruktur rapi. Oleh karena itu, pemrogram perlu 

mempertimbangkan desain algoritma dan struktur data agar sesuai 

dengan model SIMD. Banyak perpustakaan matematika dan multimedia 

sudah memanfaatkan instruksi SIMD secara transparan sehingga 

pengguna dapat merasakan peningkatan performa tanpa pengetahuan 

detail tentang instruksi ini. 

 

5. Pemilihan Format Penyimpanan Matriks 

Pemilihan format penyimpanan matriks merupakan aspek 

penting dalam optimasi komputasi numerik karena berpengaruh 

langsung pada efisiensi penggunaan memori dan kecepatan akses data 

selama operasi matriks. Format penyimpanan matriks yang tepat sangat 
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bergantung pada karakteristik matriks itu sendiri, terutama apakah 

matriks tersebut padat (dense) atau jarang (sparse) (Saad, 2003). Untuk 

matriks padat, format penyimpanan yang umum digunakan adalah 

penyimpanan secara row-major atau column-major, di mana elemen-

elemen disimpan secara berurutan berdasarkan baris atau kolom. Format 

ini memudahkan akses sekuensial yang efisien pada memori, sehingga 

cocok untuk operasi matriks yang membutuhkan pembacaan elemen 

secara linear, seperti perkalian matriks konvensional atau dekomposisi 

LU (Golub & Van Loan, 2013). 

Untuk matriks jarang yang sebagian besar elemennya bernilai 

nol, penyimpanan dalam format padat akan sangat membuang-buang 

ruang memori dan memperlambat komputasi. Oleh karena itu, format 

penyimpanan khusus seperti Compressed Sparse Row (CSR), 

Compressed Sparse Column (CSC), atau Coordinate (COO) digunakan. 

Format-format ini hanya menyimpan elemen non-nol dan indeks 

posisinya, sehingga secara signifikan mengurangi kebutuhan memori 

dan mempercepat operasi yang hanya fokus pada elemen non-nol (Saad, 

2003). 

Pemilihan format juga mempertimbangkan jenis operasi yang 

akan dilakukan. Misalnya, CSR lebih efisien untuk operasi perkalian 

matriks dengan vektor karena akses baris yang cepat, sedangkan CSC 

lebih optimal untuk operasi yang membutuhkan akses kolom. Selain itu, 

format penyimpanan harus kompatibel dengan perpustakaan numerik 

dan perangkat keras yang digunakan agar bisa memanfaatkan optimasi 

paralelisasi dan instruksi SIMD (Kirk & Hwu, 2016).  
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BAB X 

STUDI KASUS DAN 

PROYEK APLIKASI 
 

 

 

Bab Studi Kasus dan Proyek Aplikasi hadir sebagai bagian 

penting dalam buku ini untuk menjembatani teori dan praktik dalam 

pemrograman serta komputasi numerik. Pada bab ini, pembaca diajak 

untuk melihat secara langsung bagaimana konsep-konsep matematis dan 

algoritma numerik yang telah dipelajari dapat diterapkan dalam 

menyelesaikan masalah nyata dari berbagai bidang, seperti teknik, fisika, 

biologi, ekonomi, dan lain-lain. Melalui serangkaian studi kasus yang 

dipilih secara representatif, pembaca akan memahami proses 

pengembangan solusi numerik mulai dari perumusan masalah, pemilihan 

metode yang tepat, hingga implementasi menggunakan bahasa 

pemrograman populer seperti Python dan MATLAB. Proyek-proyek 

aplikasi yang disajikan juga bertujuan untuk mengasah keterampilan 

analisis, pemrograman, serta kemampuan interpretasi hasil komputasi, 

sehingga pembaca tidak hanya memahami teori, tetapi juga mampu 

mengaplikasikannya secara efektif dalam konteks dunia nyata.  

 

A. Simulasi Perpindahan Panas 

 

Perpindahan panas adalah proses di mana energi panas berpindah 

dari satu bagian ke bagian lain akibat perbedaan suhu. Dalam teknik dan 

ilmu terapan, simulasi perpindahan panas sangat penting untuk 

merancang sistem termal, seperti pendingin elektronik, sistem pemanas, 

hingga proses manufaktur. Pada studi kasus ini, kita akan membahas 

perpindahan panas dalam sebuah batang logam satu dimensi yang 

mengalami perubahan suhu sepanjang batang seiring waktu. Model 
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matematis yang digunakan adalah Persamaan Difusi Panas 1D (Heat 

Equation): 

 
 

1. Kondisi Awal dan Batas 

a. Panjang batang: L meter 

b. Waktu simulasi: T detik 

c. Kondisi awal suhu batang: misal suhu awal seragam, 𝑢(𝑥, 0) =

𝑢0  

d. Kondisi batas: suhu pada kedua ujung batang tetap konstan, 

misalnya 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 𝑇0 

 

2. Metode Numerik: Metode Elemen Hingga atau Finite 

Difference 

Untuk menyelesaikan persamaan ini secara numerik, metode 

finite difference sering digunakan. Misalnya, metode eksplisit Euler 

maju: 
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Implementasi dalam Python 
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Implementasi dalam MATLAB 

 
 

Simulasi ini menggambarkan bagaimana suhu dalam batang 

logam berubah dari kondisi awal dan batas yang ditetapkan sampai 

mencapai distribusi suhu akhir yang stabil. Hasil visualisasi dari Python 

dan MATLAB menunjukkan grafik suhu terhadap posisi sepanjang 

batang setelah waktu simulasi tertentu. Pada kedua bahasa, pendekatan 

numeriknya sama, yaitu metode beda hingga eksplisit dengan stabilitas 

dipastikan lewat pemilihan Δt  dan Δx sesuai aturan numerik. Perbedaan 

utama terletak pada sintaks dan cara pengelolaan array atau vektor. 

Studi kasus ini dapat diperluas ke dimensi lebih tinggi atau 

dengan kondisi batas dan sumber panas yang lebih kompleks. Selain itu, 

teknik numerik lain seperti metode implisit atau Crank-Nicolson dapat 

digunakan untuk mendapatkan kestabilan yang lebih baik dengan 

interval waktu yang lebih besar. 

Simulasi perpindahan panas merupakan contoh klasik aplikasi 

komputasi numerik yang penting dalam berbagai disiplin. Pemahaman 
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teori dan keterampilan pemrograman dalam berbagai bahasa sangat 

membantu untuk mengembangkan solusi sesuai kebutuhan praktis. 

Melalui contoh implementasi di Python, MATLAB, dan C++, pembaca 

dapat memahami cara menyusun model numerik, mengimplementasikan 

algoritma, dan melakukan analisis hasil simulasi secara efektif.  

 

Gunakan metode selisih hingga (Finite Difference) untuk mendekati 

solusi dari persamaan diferensial orde dua berikut: 
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B. Pemodelan Populasi dan Epidemi 

 

Pemodelan populasi dan epidemi merupakan alat penting dalam 

ilmu kesehatan masyarakat untuk memahami dan memprediksi 

penyebaran penyakit menular. Salah satu model dasar yang populer 

adalah model SIR, yang membagi populasi ke dalam tiga kategori utama: 

Susceptible (rentan terinfeksi), Infected (terinfeksi), dan Recovered 

(sembuh dan kebal). Model ini membantu para ilmuwan dan pembuat 

kebijakan mengantisipasi laju penyebaran penyakit dan merancang 

strategi pengendalian. 

Contoh nyata adalah pandemi COVID-19 yang melanda dunia 

sejak akhir 2019. Model SIR digunakan untuk memprediksi puncak 

kasus, durasi wabah, serta efek intervensi seperti pembatasan sosial dan 

vaksinasi. Dalam studi kasus ini, kita akan memodelkan dinamika 

penyebaran COVID-19 menggunakan model SIR dengan parameter 

yang disesuaikan dari data epidemiologi awal. Persamaan diferensial 

model SIR adalah: 
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• 𝑆(𝑡)   : Jumlah individu rentan pada waktu t 

• 𝐼(𝑡)   : Jumlah individu terinfeksi pada waktu t 

• 𝑅(𝑡)   : Jumlah individu sembuh/kebal pada waktu t 

• 𝑁 = 𝑆 + 𝐼 + 𝑅  : Total populasi (diasumsikan konstan) 

• 𝛽    : Laju penularan  

• 𝛾    : Laju pemulihan 

Parameter kunci yang digunakan untuk COVID-19 berdasarkan literatur 

awal adalah: 

• 𝛽 : 0.3 per hari (menunjukkan rata-rata tiap orang menularkan virus 

ke 0.3 orang per hari)  

• 𝛾 : 0.1 per hari (rata-rata durasi infeksi 10 hari) 

 

1. Kondisi Awal 

a. Total populasi N = 1.000.000 

b. Awal infeksi I0 = 1 orang 

c. Rentan S0 = N−I0 = 999.999  

d. Sembuh R0 = 0  

 

2. Metode Numerik 

Untuk menyelesaikan sistem persamaan diferensial ini, kita 

gunakan metode Euler maju dengan diskritisasi waktu Δt. Secara 

numerik: 
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Implementasi Python 

 

 
 

 



 207  Buku Referensi 

Implementasi MATLAB 
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Implementasi C++ 

 
 

 
Simulasi model SIR ini menggambarkan bagaimana jumlah 

populasi yang rentan, terinfeksi, dan sembuh berubah selama 160 hari. 

Grafik yang dihasilkan umumnya menunjukkan: 

1. Awal wabah, jumlah terinfeksi meningkat tajam, sementara populasi 

rentan menurun. 

2. Setelah mencapai puncak infeksi, jumlah pasien terinfeksi mulai 

menurun karena bertambahnya populasi yang sembuh. 



 209  Buku Referensi 

3. Populasi sembuh meningkat secara konsisten, menandakan 

akumulasi kekebalan. 

Model ini sangat berguna untuk memperkirakan beban sistem 

kesehatan, merencanakan intervensi, dan mengukur dampak kebijakan 

pembatasan sosial atau vaksinasi. Namun, model SIR sederhana 

memiliki keterbatasan karena mengasumsikan populasi homogen dan 

konstan serta tidak memasukkan faktor-faktor seperti mobilitas, mutasi 

virus, atau perilaku manusia. Model lebih kompleks seperti SEIR, agent-

based, atau metapopulasi dapat dipakai untuk analisis lebih rinci. 

 

C. Optimasi Portofolio dan Pemodelan Finans 

 

Optimasi portofolio adalah proses memilih kombinasi aset 

investasi yang optimal untuk memaksimalkan return yang diharapkan 

dengan risiko yang dapat diterima. Salah satu pendekatan klasik adalah 

model Mean-Variance yang diperkenalkan oleh Harry Markowitz pada 

tahun 1952. Model ini menjadi dasar teori portofolio modern (Modern 

Portfolio Theory, MPT). Pada konteks nyata, investor di Bursa Efek 

Indonesia (BEI) sering dihadapkan pada pilihan beragam saham dengan 

return dan risiko yang berbeda. Studi ini mengaplikasikan model 

Markowitz untuk menentukan bobot optimal pada portofolio terdiri dari 

beberapa saham unggulan di BEI dengan tujuan meminimalkan risiko 

untuk tingkat return yang diharapkan. 

Misalkan kita menggunakan data return historis bulanan selama 3 tahun 

terakhir dari 4 saham unggulan di BEI: 

1. Saham A (contoh: PT Telekomunikasi Indonesia Tbk) 

2. Saham B (contoh: PT Bank Central Asia Tbk) 

3. Saham C (contoh: PT Unilever Indonesia Tbk) 

4. Saham D (contoh: PT Astra International Tbk) 

Data return bulanan (dalam persen) disederhanakan sebagai berikut 

(dalam bentuk matriks): 
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1. Implementasi Python (menggunakan library cvxpy) 
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2. Implementasi MATLAB 
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3. Implementasi C++ (menggunakan pustaka Eigen untuk matriks 

dan optimasi sederhana) 

 
Studi kasus ini menggambarkan aplikasi nyata optimasi 

portofolio di pasar saham Indonesia. Dengan model Markowitz, investor 

dapat menentukan distribusi investasi yang meminimalkan risiko untuk 

tingkat return yang diinginkan. Python dan MATLAB memudahkan 

implementasi melalui pustaka optimasi bawaan, sedangkan di C++ 

implementasi lengkap memerlukan pustaka tambahan untuk solusi QP. 

Optimasi portofolio juga bisa dikembangkan dengan 

menambahkan batasan realistik, seperti batas bobot maksimum per 

saham, biaya transaksi, serta model risiko lain seperti CVaR 

(Conditional Value at Risk). Penggunaan model ini mendukung 

pengambilan keputusan investasi yang lebih rasional dan berbasis data 

historis, meningkatkan peluang return optimal dengan risiko terkendali.  
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GLOSARIUM 
 

 

Bit  Unit terkecil dalam representasi data digital, 

bernilai 0 atau 1, yang menjadi dasar dalam 

operasi logika komputer dan komunikasi biner. 

 

Bug Kesalahan dalam penulisan kode program yang 

menyebabkan gangguan fungsi atau hasil yang 

tidak sesuai dengan yang diharapkan. 

 

Loop Struktur kontrol dalam program yang 

memungkinkan pengulangan perintah selama 

kondisi tertentu masih terpenuhi. 

 

Flag  Variabel khusus yang digunakan untuk 

menandai status tertentu dalam eksekusi 

program, biasanya berupa nilai logika. 

 

Code Kumpulan instruksi tertulis dalam bahasa 

pemrograman yang dapat diterjemahkan oleh 

mesin untuk menjalankan tugas tertentu. 

 

Byte  Unit data yang terdiri dari 8 bit, digunakan untuk 

menyimpan satu karakter atau nilai kecil dalam 

memori komputer. 

 

Plot  Representasi visual dari data numerik atau fungsi 

matematis dalam bentuk grafik untuk tujuan 

analisis dan interpretasi. 

 

Hash Teknik konversi data menjadi nilai unik tetap 

menggunakan fungsi matematika, sering 

digunakan dalam pencarian cepat dan keamanan 

data. 
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Bool Tipe data logika yang hanya memiliki dua nilai, 

yaitu benar (true) dan salah (false), esensial 

dalam pengambilan keputusan. 

 

Char  Tipe data primitif yang merepresentasikan satu 

karakter, seperti huruf, angka, atau simbol dalam 

sistem pengkodean. 

 

Read  Operasi untuk mengambil atau memperoleh data 

dari sumber luar seperti file, sensor, atau 

perangkat masukan. 

 

Mean Nilai rata-rata dari sekumpulan angka, diperoleh 

dengan menjumlahkan semua nilai dan 

membaginya dengan jumlah data. 

 

Scan Proses membaca setiap elemen data atau struktur 

dengan urutan tertentu untuk tujuan evaluasi atau 

pencarian. 

 

Call Instruksi untuk memanggil fungsi atau prosedur 

tertentu dalam program agar menjalankan 

serangkaian perintah tertentu. 

 

Heap Struktur data berbasis pohon biner yang 

digunakan dalam pengelolaan memori dan 

pengurutan prioritas. 
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